Lead Isotopic Constraints on the Provenance of Antarctic Dust and Atmospheric Circulation Patterns Prior to the Mid-Brunhes Event (~430 kyr ago)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ice Core Samples and Decontamination Procedure
2.2. Mass Spectrometry
2.3. Validation Methodology for Decontamination Procedures
2.4. An Isotope Mixing Model to Estimate Source Contributions to a Mixture
3. Results and Discussion
3.1. Elemental Concentrations and Pb Isotopes
3.2. Comparison of Dust-Derived Pb Isotopic Compositions before and after the MBE
3.3. Dust Provenance and Its Relevance to a Shift of the SWW
3.4. Volcanic Isotopic Signatures and Their Atmospheric Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EPICA Community Members. Eight glacial cycles from an Antarctic ice core. Nature 2004, 429, 623–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.M.; Chappellaz, J.; et al. Orbital and millennial antarctic climate variability over the past 800,000 years. Science 2007, 317, 793–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson-Delmotte, V.; Stenni, B.; Pol, K.; Braconnot, P.; Cattani, O.; Falourd, S.; Kageyama, M.; Jouzel, J.; Landais, A.; Minster, B.; et al. EPICA Dome C record of glacial and interglacial intensities. Quat. Sci. Rev. 2010, 29, 113–128. [Google Scholar] [CrossRef]
- Yung, Y.L.; Lee, T.; Wang, C.-H.; Shieh, Y.-T. Dust: A diagnostic of the hydrologic cycle during the last glacial maximum. Science 1996, 271, 962–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, F.; Delmonte, B.; Petit, J.R.; Bigler, M.; Kaufmann, P.R.; Hutterli, M.A.; Stocker, T.F.; Ruth, U.; Steffensen, J.P.; Maggi, V. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 2008, 452, 616–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toggweiler, J.R.; Russell, J.L.; Carson, S.R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 2006, 21, PA2005. [Google Scholar] [CrossRef] [Green Version]
- Menviel, L.; Spence, P.; Yu, J.; Chamberlain, M.A.; Matear, R.J.; Meissner, K.J.; England, M.H. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat. Commun. 2018, 9, 2503. [Google Scholar] [CrossRef] [Green Version]
- Grousset, F.E.; Biscaye, P.E.; Revel, M.; Petit, J.R.; Pye, K.; Joussaume, S.; Jouzel, J. Antarctic (Dome C) ice-core dust at 18 k.y. B.P.: Isotopic constraints on origins. Earth Planet. Sci. Lett. 1992, 111, 175–182. [Google Scholar] [CrossRef]
- Basile, I.; Grousset, F.E.; Revel, M.; Petit, J.R.; Biscaye, P.E.; Barkov, N.I. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett. 1997, 146, 573–589. [Google Scholar] [CrossRef]
- Smith, J.; Vance, D.; Kemp, R.A.; Archer, C.; Toms, P.; King, M.; Zárate, M. Isotopic constraints on the source of Argentinian loess—With implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima. Earth Planet. Sci. Lett. 2003, 212, 181–196. [Google Scholar] [CrossRef]
- Delmonte, B.; Basile-Doelsch, I.; Petit, J.R.; Maggi, V.; Revel-Rolland, M.; Michard, A.; Jagoutz, E.; Grousset, F. Comparing the Epica and Vostok dust records during the last 220,000 years: Stratigraphical correlation and provenance in glacial periods. Earth Sci. Rev. 2004, 66, 63–87. [Google Scholar] [CrossRef]
- Delmonte, B.; Andersson, P.S.; Hansson, M.; Schöberg, H.; Petit, J.R.; Basile-Doelsch, I.; Maggi, V. Aeolian dust in East Antarctica (EPICA-Dome C and Vostok): Provenance during glacial ages over the last 800 kyr. Geophys. Res. Lett. 2008, 35, L07703. [Google Scholar] [CrossRef]
- Marino, F.; Castellano, E.; Ceccato, D.; De Deckker, P.; Delmonte, B.; Ghermandi, G.; Maggi, V.; Petit, J.R.; Revel-Rolland, M.; Udisti, R. Defining the geochemical composition of the EPICA Dome C ice core dust during the last glacial-interglacial cycle. Geochem. Geophys. Geosyst. 2008, 9, 1–11. [Google Scholar] [CrossRef]
- Gaiero, D.M. Dust provenance in Antarctic ice during glacial periods: From where in southern South America? Geophys. Res. Lett. 2007, 34, L17707. [Google Scholar] [CrossRef]
- Gili, S.; Gaiero, D.M.; Goldstein, S.L.; Chemale, F.; Jweda, J.; Kaplan, M.R.; Becchio, R.A.; Koester, E. Glacial/interglacial changes of Southern Hemisphere wind circulation from the geochemistry of South American dust. Earth Planet. Sci. Lett. 2017, 469, 98–109. [Google Scholar] [CrossRef]
- Vallelonga, P.; Gabrielli, P.; Rosman, K.J.R.; Barbante, C.; Boutron, C.F. A 220 kyr record of Pb isotopes at Dome C Antarctica from analyses of the EPICA ice core. Geophys. Res. Lett. 2005, 32, L01706. [Google Scholar] [CrossRef]
- Vallelonga, P.; Gabrielli, P.; Balliana, E.; Wegner, A.; Delmonte, B.; Turetta, C.; Burton, G.; Vanhaecke, F.; Rosman, K.J.R.; Hong, S.; et al. Lead isotopic compositions in the EPICA Dome C ice core and Southern Hemisphere Potential Source Areas. Quat. Sci. Rev. 2010, 29, 247–255. [Google Scholar] [CrossRef]
- Gili, S.; Gaiero, D.M.; Goldstein, S.L.; Chemale, F.; Koester, E.; Jweda, J.; Vallelonga, P.; Kaplan, M.R. Provenance of dust to Antarctica: A lead isotopic perspective. Geophys. Res. Lett. 2016, 43, 2291–2298. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Hur, S.D.; Han, Y.; Lee, K.; Hong, S.; Erhardt, T.; Fischer, H.; Svensson, A.M.; Steffensen, J.P.; Vallelonga, P. High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust. Sci. Rep. 2018, 8, 15582. [Google Scholar] [CrossRef]
- Hong, S.; Kim, Y.; Boutron, C.F.; Ferrari, C.P.; Petit, J.R.; Barbante, C.; Rosman, K.; Lipenkov, V.Y. Climate-related variations in lead concentrations and sources in Vostok Antarctic ice from 65,000 to 240,000 years BP. Geophys. Res. Lett. 2003, 30, 2138. [Google Scholar] [CrossRef]
- Candelone, J.-P.; Hong, S.; Boutron, F. An improved method for decontaminating polar snow or ice cores for heavy metal analysis. Anal. Chim. Acta 1994, 299, 9–16. [Google Scholar] [CrossRef]
- Han, C.; Burn-Nunes, L.J.; Lee, K.; Chang, C.; Kang, J.H.; Han, Y.; Hur, S.D.; Hong, S. Determination of lead isotopes in a new Greenland deep ice core at the sub-picogram per gram level by thermal ionization mass spectrometry using an improved decontamination method. Talanta 2015, 140, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Murozumi, M.; Chow, T.J.P.C. Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochim. Cosmochim. Acta 1969, 33, 1247–1294. [Google Scholar] [CrossRef]
- Vallelonga, P.; Van De Velde, K.; Candelone, J.P.; Ly, C.; Rosman, K.J.R.; Boutron, C.F.; Morgan, V.I.; Mackey, D.J. Recent advances in measurement of Pb isotopes in polar ice and snow at sub-picogram per gram concentrations using thermal ionisation mass spectrometry. Anal. Chim. Acta 2002, 453, 1–12. [Google Scholar] [CrossRef]
- Burn, L.J.; Rosman, K.J.R.; Candelone, J.P.; Vallelonga, P.; Burton, G.R.; Smith, A.M.; Morgan, V.I.; Barbante, C.; Hong, S.; Boutron, C.F. An ultra-clean technique for accurately analysing Pb isotopes and heavy metals at high spatial resolution in ice cores with sub-pg g−1 Pb concentrations. Anal. Chim. Acta 2009, 634, 228–236. [Google Scholar] [CrossRef]
- Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Veres, D.; Parrenin, F.; Martinerie, P.; Ritz, C.; Capron, E.; Lipenkov, V.; et al. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim. Past 2013, 9, 1715–1731. [Google Scholar] [CrossRef] [Green Version]
- Hur, S.D.; Soyol-Erdene, T.O.; Hwang, H.J.; Han, C.; Gabrielli, P.; Barbante, C.; Boutron, C.F.; Hong, S. Climate-related variations in atmospheric Sb and Tl in the EPICA Dome C ice (East Antarctica) during the past 800,000 years. Global Biogeochem. Cycles 2013, 27, 930–940. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Zreda-Gostynska, G.; Kyle, P.R.; Finnegan, D.; Prestbo, K.M. Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. J. Geophys. Res. 1997, 102, 15039–15055. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, A.H.; Todd, K. Trace metal suites in Antarctic pre-industrial ice are consistent with emissions from quiescent degassing of volcanoes worldwide. Earth Planet. Sci. Lett. 2001, 186, 33–43. [Google Scholar] [CrossRef]
- Traversi, R.; Becagli, S.; Castellano, E.; Marino, F.; Rugi, F.; Severi, M.; De Angelis, M.; Fischer, H.; Hansson, M.; Stauffer, B.; et al. Sulfate spikes in the deep layers of EPICA-Dome C ice core: Evidence of glaciological artifacts. Environ. Sci. Technol. 2009, 43, 8737–8743. [Google Scholar] [CrossRef] [PubMed]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevič, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Revel-Rolland, M.; De Deckker, P.; Delmonte, B.; Hesse, P.P.; Magee, J.W.; Basile-Doelsch, I.; Grousset, F.; Bosch, D. Eastern Australia: A possible source of dust in East Antarctica interglacial ice. Earth Planet. Sci. Lett. 2006, 249, 1–13. [Google Scholar] [CrossRef]
- Rocholl, A.; Stein, M.; Molzahn, M.; Hart, S.R.; Worner, G. Geochemical evolution of rift magmas by progressive tapping of a stratified mantle source beneath the Ross Sea Rift, Northern Victoria Land, Antarctica. Earth Planet. Sci. Lett. 1995, 131, 207–224. [Google Scholar] [CrossRef]
- Sun, S.S.; Hanson, G.N. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contrib. Mineral. Petrol. 1975, 52, 77–106. [Google Scholar] [CrossRef]
- Barreiro, B. Lead isotopic compositions of South Sandwich Island volcanic rocks and their bearing on magmagenesis in intra-oceanic island arcs. Geochim. Cosmochim. Acta 1983, 47, 817–822. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, J.I.; Choe, W.H.; Park, C.H. Trace element and isotopic evidence for temporal changes of the mantle sources in the South Shetland Island, Antarctica. Geochem. J. 2008, 42, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Sun, S. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philos. Trans. R. Soc. A 1980, 297, 409–445. [Google Scholar]
- McCulloch, M.T.; Kyser, T.K.; Woodhead, J.D.; Kinsley, L. Pb-Sr-Nd-O isotopic constraints on the origin of rhyolites from the Taupo Volcanic Zone of New Zealand: Evidence for assimilation followed by fractionation from basalt. Contrib. Mineral. Petrol. 1994, 115, 303–312. [Google Scholar] [CrossRef]
- le Roex, A.P.; Chevallier, L.; Verwoerd, W.J.; Barends, R. Petrology and geochemistry of Marion and Prince Edward Islands, Southern Ocean: Magma chamber processes and source region characteristics. J. Volcanol. Geotherm. Res. 2012, 223–224, 11–28. [Google Scholar] [CrossRef]
- Weis, D.; Frey, F.A.; Giret, A.; Cantagrel, J.M. Geochemical characteristics of the youngest volcano (Mount Ross) in the Kerguelen Archipelago: Inferences for magma flux, lithosphere assimilation and composition of the Kerguelen plume. J. Petrol. 1998, 39, 973–994. [Google Scholar] [CrossRef]
- Barling, J.; Goldstein, S.L.; Nicholls, I.A. Geochemistry of Heard Island (Southern Indian Ocean): Characterization of an enriched mantle component and implications for enrichment of the sub-Indian ocean mantle. J. Petrol. 1994, 35, 1017–1053. [Google Scholar] [CrossRef]
- Doucet, S.; Weis, D.; Scoates, J.S.; Debaille, V.; Giret, A. Geochemical and Hf-Pb-Sr-Nd isotopic constraints on the origin of the Amsterdam-St. Paul (Indian Ocean) hotspot basalts. Earth Planet. Sci. Lett. 2004, 218, 179–195. [Google Scholar] [CrossRef]
- Harmon, R.S.; Barreiro, B.A.; Moorbath, S.; Hoefs, J.; Francis, P.W.; Thorpe, R.S.; Deruelle, B.; McHugh, J.; Viglino, J.A. Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J. Geol. Soc. Lond. 1984, 141, 803–822. [Google Scholar] [CrossRef]
- Stern, C.R.; Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol. 1996, 123, 263–281. [Google Scholar] [CrossRef]
- Lamy, F.; Arz, H.W.; Kilian, R.; Lange, C.B.; Lembke-Jene, L.; Wengler, M.; Kaiser, J.; Baeza-Urrea, O.; Hall, I.R.; Harada, N.; et al. Glacial reduction and millennial-scale variations in Drake Passage throughflow. Proc. Natl. Acad. Sci. USA 2015, 112, 13496–13501. [Google Scholar] [CrossRef] [Green Version]
- Sugden, D.E.; McCulloch, R.D.; Bory, A.J.M.; Hein, A.S. Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nat. Geosci. 2009, 2, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.; Lamy, F. Links between Patagonian Ice Sheet fluctuations and Antarctic dust variability during the last glacial period (MIS 4-2). Quat. Sci. Rev. 2010, 29, 1464–1471. [Google Scholar] [CrossRef]
- Wolff, E.W.; Barbante, C.; Becagli, S.; Bigler, M.; Boutron, C.F.; Castellano, E.; de Angelis, M.; Federer, U.; Fischer, H.; Fundel, F.; et al. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat. Sci. Rev. 2010, 29, 285–295. [Google Scholar] [CrossRef]
- Gaiero, D.M.; Probst, J.L.; Depetris, P.J.; Bidart, S.M.; Leleyter, L. Iron and other transition metals in Patagonian riverborne and windborne materials: Geochemical control and transport to the southern South Atlantic Ocean. Geochim. Cosmochim. Acta 2003, 67, 3603–3623. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Kohfeld, K.E.; Graham, R.M.; de Boer, A.M.; Sime, L.C.; Wolff, E.W.; Le Quéré, C.; Bopp, L. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis. Quat. Sci. Rev. 2013, 68, 76–95. [Google Scholar] [CrossRef]
- Clark, P.U.; Shakun, J.D.; Baker, P.A.; Bartlein, P.J.; Brewer, S.; Brook, E.; Carlson, A.E.; Cheng, H.; Kaufman, D.S.; Liu, Z.; et al. Global climate evolution during the last deglaciation. Proc. Natl. Acad. Sci. USA 2012, 109, E1134–E1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmonte, B.; Andersson, P.S.; Schöberg, H.; Hansson, M.; Petit, J.R.; Delmas, R.; Gaiero, D.M.; Maggi, V.; Frezzotti, M. Geographic provenance of aeolian dust in East Antarctica during Pleistocene glaciations: Preliminary results from Talos Dome and comparison with East Antarctic and new Andean ice core data. Quat. Sci. Rev. 2010, 29, 256–264. [Google Scholar] [CrossRef]
- Röthlisberger, R.; Mudelsee, M.; Bigler, M.; De Angelis, M.; Fischer, H.; Hansson, M.; Lambert, F.; Masson-Delmotte, V.; Sime, L.; Udisti, R.; et al. The Southern Hemisphere at glacial terminations: Insights from the Dome C ice core. Clim. Past 2008, 4, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Abe-Ouchi, A.; Motoyama, H.; Ageta, Y.; Aoki, S.; Azuma, N.; Fujii, Y.; Fujita, K.; Fujita, S.; Fukui, K.; et al. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Sci. Adv. 2017, 3, e1600446. [Google Scholar]
- Lamy, F.; Kilian, R.; Arz, H.W.; Francois, J.P.; Kaiser, J.; Prange, M.; Steinke, T. Holocene changes in the position and intensity of the southern westerly wind belt. Nat. Geosci. 2010, 3, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, S.; Hughen, K.; Sepúlveda, J.; Pantoja, S. Late Holocene covariability of the southern westerlies and sea surface temperature in northern Chilean Patagonia. Quat. Sci. Rev. 2014, 105, 195–208. [Google Scholar] [CrossRef]
- Perren, B.B.; Hodgson, D.A.; Roberts, S.J.; Sime, L.; Van Nieuwenhuyze, W.; Verleyen, E.; Vyverman, W. Southward migration of the Southern Hemisphere westerly winds corresponds with warming climate over centennial timescales. Commun. Earth Environ. 2020, 1, 58. [Google Scholar] [CrossRef]
- Moreno, P.I.; Vilanova, I.; Villa-Martínez, R.; Dunbar, R.B.; Mucciarone, D.A.; Kaplan, M.R.; Garreaud, R.D.; Rojas, M.; Moy, C.M.; De Pol-Holz, R.; et al. Onset and evolution of Southern Annular Mode-like changes at centennial timescale. Sci. Rep. 2018, 8, 3458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheff, J.F.; Dargan, D. Twenty-first century multimodel subtropical precipitation declines are mostly midlatitude shifts. J. Clim. 2012, 25, 4330–4347. [Google Scholar] [CrossRef]
- Lambert, F.; Bigler, M.; Steffensen, J.P.; Hutterli, M.; Fischer, H. Centennial mineral dust variability in high-resolution ice core data from Dome C. Antarctica. Clim. Past 2012, 8, 609–623. [Google Scholar] [CrossRef] [Green Version]
- Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 2008, 453, 379–382. [Google Scholar] [CrossRef]
- Bereiter, B.; Eggleston, S.; Schmitt, J.; Nehrbass-Ahles, C.; Stocker, T.F.; Fischer, H.; Kipfstuhl, S.; Chappellaz, J. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 2015, 42, 542–549. [Google Scholar] [CrossRef]
- Bouttes, N.; Swingedouw, D.; Roche, D.M.; Sanchez-Goni, M.F.; Crosta, X. Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nine interglacials. Clim. Past 2018, 14, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Hole, M.J.; Kempton, P.D.; Millar, I.L. Trace-element and isotopic characteristics of small-degree melts of the asthenosphere: Evidence from the alkalic basalts of the Antarctic Peninsula. Chem. Geol. 1993, 109, 51–68. [Google Scholar] [CrossRef]
- Gabrielli, P.; Plane, J.M.C.; Boutron, C.F.; Hong, S.; Cozzi, G.; Cescon, P.; Ferrari, C.; Crutzen, P.J.; Petit, J.R.; Lipenkov, V.Y.; et al. A climatic control on the accretion of meteoric and super-chondritic iridium-platinum to the Antarctic ice cap. Earth Planet. Sci. Lett. 2006, 250, 459–469. [Google Scholar] [CrossRef]
- Moune, S.; Gauthier, P.J.; Delmelle, P. Trace elements in the particulate phase of the plume of Masaya Volcano, Nicaragua. J. Volcanol. Geotherm. Res. 2010, 193, 232–244. [Google Scholar] [CrossRef]
- Gauthier, P.J.; Sigmarsson, O.; Gouhier, M.; Haddadi, B.; Moune, S. Elevated gas flux and trace metal degassing from the 2014-2015 fissure eruption at the Bárarbunga volcanic system, Iceland. J. Geophys. Res. 2016, 121, 1610–1630. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, M.A.; Langmann, B.; Graf, H.F. Atmospheric transport and deposition of Indonesian volcanic emissions. Atmos. Chem. Phys. 2006, 6, 2525–2537. [Google Scholar] [CrossRef] [Green Version]
- Zoller, W.H.; Parrington, J.R.; Kotra, J.M.P. Iridium enrichment in airborne particles from Kilauea Volcano. Science 1983, 222, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, P.; Barbante, C.; Plane, J.M.C.; Boutron, C.F.; Jaffrezo, J.L.; Mather, T.A.; Stenni, B.; Gaspari, V.; Cozzi, G.; Ferrari, C.; et al. Siderophile metal fallout to Greenland from the 1991 winter eruption of Hekla (Iceland) and during the global atmospheric perturbation of Pinatubo. Chem. Geol. 2008, 255, 78–86. [Google Scholar] [CrossRef]
- Soyol-Erdene, T.O.; Huh, Y.; Hong, S.; Hur, S.D. A 50-year record of platinum, iridium, and rhodium in antarctic snow: Volcanic and anthropogenic sources. Environ. Sci. Technol. 2011, 45, 5929–5935. [Google Scholar] [CrossRef]
- Schaefer, G.; Rodger, J.S.; Hayward, B.W.; Kennett, J.P.; Sabaa, A.T.; Scott, G.H. Planktic foraminiferal and sea surface temperature record during the last 1 Myr across the Subtropical Front, Southwest Pacific. Mar. Micropaleontol. 2005, 54, 191–212. [Google Scholar] [CrossRef]
- Lamy, F.; Chiang, J.C.H.; Martínez-Méndez, G.; Thierens, M.; Arz, H.W.; Bosmans, J.; Hebbeln, D.; Lambert, F.; Lembke-Jene, L.; Stuut, J.B. Precession modulation of the South Pacific westerly wind belt over the past million years. Proc. Natl. Acad. Sci. USA 2019, 116, 23455–23460. [Google Scholar] [CrossRef] [Green Version]
- Marteel, A.; Boutron, C.F.; Barbante, C.; Gabrielli, P.; Cozzi, G.; Gaspari, V.; Cescon, P.; Ferrari, C.P.; Dommergue, A.; Rosman, K.; et al. Changes in atmospheric heavy metals and metalloids in Dome C (East Antarctica) ice back to 672.0 kyr BP (Marine Isotopic Stages 16.2). Earth Planet. Sci. Lett. 2008, 272, 579–590. [Google Scholar] [CrossRef]
- Esser, R.P.K.; Philip, R.; McIntosh, W.C. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: Volcano evolution. Bull. Volcanol. 2004, 66, 671–686. [Google Scholar] [CrossRef]
- Kelly, P.J.; Kyle, P.R.; Dunbar, N.W.; Sims, K.W.W. Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972–2004 and comparison with older lavas. J. Volcanol. Geotherm. Res. 2008, 177, 589–605. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Burn, L.J.; Vallelonga, P.; Hur, S.D.; Boutron, C.F.; Han, Y.; Lee, S.; Lee, A.; Hong, S. Lead Isotopic Constraints on the Provenance of Antarctic Dust and Atmospheric Circulation Patterns Prior to the Mid-Brunhes Event (~430 kyr ago). Molecules 2022, 27, 4208. https://doi.org/10.3390/molecules27134208
Han C, Burn LJ, Vallelonga P, Hur SD, Boutron CF, Han Y, Lee S, Lee A, Hong S. Lead Isotopic Constraints on the Provenance of Antarctic Dust and Atmospheric Circulation Patterns Prior to the Mid-Brunhes Event (~430 kyr ago). Molecules. 2022; 27(13):4208. https://doi.org/10.3390/molecules27134208
Chicago/Turabian StyleHan, Changhee, Laurie J. Burn, Paul Vallelonga, Soon Do Hur, Claude F. Boutron, Yeongcheol Han, Sanghee Lee, Ahhyung Lee, and Sungmin Hong. 2022. "Lead Isotopic Constraints on the Provenance of Antarctic Dust and Atmospheric Circulation Patterns Prior to the Mid-Brunhes Event (~430 kyr ago)" Molecules 27, no. 13: 4208. https://doi.org/10.3390/molecules27134208
APA StyleHan, C., Burn, L. J., Vallelonga, P., Hur, S. D., Boutron, C. F., Han, Y., Lee, S., Lee, A., & Hong, S. (2022). Lead Isotopic Constraints on the Provenance of Antarctic Dust and Atmospheric Circulation Patterns Prior to the Mid-Brunhes Event (~430 kyr ago). Molecules, 27(13), 4208. https://doi.org/10.3390/molecules27134208