The Health-Promoting and Sensory Properties of Tropical Fruit Sorbets with Inulin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials for Sorbets
2.2. Preparation of the Sorbets
2.3. Physico-Chemical Parameters
- V—melting resistance [%]
- V1—volume of melted sorbet [cm3]
- V2—volume of cylinder (24.73) [cm3]
2.4. Sensory Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Goff, H.D.; Hartel, R.W. Ice Cream, 7th ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Rashid, S. Functional and Therapeutic Potential of Inulin: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2017, 59, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Jalil Masoumi, S.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berizi, E.; Shekarforoush, S.S.; Mohammadinezhad, S.; Hosseinzadeh, S.; Farahnaki, A. The use of inulin as fat replacer and its effect on texture and sensory properties of emulsion type sausages. Iran. J. Vet. Res. 2017, 18, 253–262. [Google Scholar] [PubMed]
- Marinho, J.F.U.; Mazzocato, M.C.; Tulini, F.L.; Silva, M.P.; De Martinis, E.C.P.; Favaro-Trindade, C.S. Evaluation of probiotic and synbiotic jussara sorbets. Nutr. Food Sci. 2019, 50, 373–383. [Google Scholar] [CrossRef]
- Szydłowska, A.; Kołożyn-Krajewska, D. Development of potentially probiotic and synbiotic pumpkin frozen desserts. CyTA J. Food 2019, 17, 251–259. [Google Scholar] [CrossRef]
- Szydłowska, A.; Kołożyn-Krajewska, D. Effect of oligofructose as additive on selected distinguishing features of quality of probiotic fruit-tea sorbets. Zywn Nauk. Technol. Jak/Food Sci. Technol. Qual. 2016, 5, 82–94. (In Polish) [Google Scholar] [CrossRef]
- Przybylski, W.; Sionek, B.; Jaworska, D.; Spychalska, A.; Rupińska, M. Effect of Inulin Addition on Quality of Fruit and Vegetable Sorbets. Zywn Nauk. Technol. Jak/Food Sci. Technol. Qual. 2020, 124, 66–76. (In Polish) [Google Scholar] [CrossRef]
- Rolon, L.M.; Bakke, A.J.; Coupland, J.N.; Hayes, J.E.; Roberts, R.F. Effect of fat content on the physical properties and consumer acceptability of vanilla ice cream. J. Dairy Sci. 2017, 100, 5217–5227. [Google Scholar] [CrossRef] [Green Version]
- Syed, Q.A.; Anwar, S.; Shukat, R.; Zahoor, T. Effects of different ingredients on texture of ice cream. J. Nutr. Health Food Eng. 2018, 8, 422–435. [Google Scholar] [CrossRef]
- Pei, Z.J.; Schmidt, K.A. Ice Cream: Foam Formation and Stabilization—A Review. Food Rev. Int. 2010, 26, 122–137. [Google Scholar]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.-L. Influence of Freezing Process and Frozen Storage on the Quality of Fruits and Fruit Products. Food Rev. Int. 2016, 32, 280–304. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, L.J.; Rupasinghe, H. Effect of Thermal and Non-thermal Pasteurisation on the Microbial Inactivation and Phenolic Degradation in Fruit Juice: A Mini-review. J. Sci. Food Agric. 2013, 93, 981–986. [Google Scholar] [CrossRef]
- Fardet, A.; Richonnet, C. Nutrient Density and Bioaccessibility, and the Antioxidant, Satiety, Glycemic, and Alkalinizing Potentials of Fruit-Based Foods According to the Degree of Processing: A Narrative Review. Crit. Rev. Food Sci. Nutr. 2019, 60, 3233–3258. [Google Scholar] [CrossRef]
- Wongkaew, M.; Sangta, J.; Chansakaow, S.; Jantanasakulwong, K.; Rachtanapun, P.; Sommano, S.R. Volatile Profiles from Over-Ripe Purée of Thai Mango Varieties and Their Physiochemical Properties during Heat Processing. PLoS ONE 2021, 16, e0248657. [Google Scholar] [CrossRef]
- Hernández-Parra, O.D.; Plana-Fattori, A.; Alvarez, G.; Ndoye, F.-T.; Benkhelifa, H.; Flick, D. Modeling Flow and Heat Transfer in a Scraped Surface Heat Exchanger during the Production of Sorbet. J. Food Eng. 2018, 221, 54–69. [Google Scholar] [CrossRef]
- Taulavuori, K.; Julkunen-Tiitto, R.; Hyöky, V.; Taulavuori, E. Blue Mood for Superfood. NPC 2013, 8, 791–794. [Google Scholar] [CrossRef] [Green Version]
- Cieślik, E.; Gręda, A.; Adamus, W. Contents of polyphenols in fruit and vegetables. Food Chem. 2006, 94, 135–142. [Google Scholar] [CrossRef]
- Lima, G.P.P.; Vianello, F.; Corrêa, C.R.; Da Silva Campos, R.A.; Borguini, M.G. Polyphenols in Fruits and Vegetables and Its Effect on Human Health. Food Nutr. Sci. 2014, 5, 1065–1082. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea Americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef] [Green Version]
- Dreher, M.L.; Davenport, A.J. Hass Avocado Composition and Potential Health Effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [Green Version]
- Yahia, E.M.; Woolf, A.B. Avocado (Persea Americana Mill.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2001; pp. 125–186e. [Google Scholar]
- Fundo, J.F.; Miller, F.A.; Garcia, E.; Santos, J.R.; Silva, C.L.M.; Brandão, T.R.S. Physicochemical Characteristics, Bioactive Compounds and Antioxidant Activity in Juice, Pulp, Peel and Seeds of Cantaloupe Melon. J. Food Meas. Charact. 2018, 12, 292–300. [Google Scholar] [CrossRef]
- Ismail, H.I.; Chan, K.W.; Mariod, A.A.; Ismail, M. Phenolic Content and Antioxidant Activity of Cantaloupe (Cucumis melo) Methanolic Extracts. Food Chem. 2010, 119, 643–647. [Google Scholar] [CrossRef]
- Naknaen, P.; Itthisoponkul, T. Characteristics of Cantaloupe Jams as Affected by Substitution of Sucrose with Xylitol. Int. J. Fruit Sci. 2015, 15, 442–455. [Google Scholar] [CrossRef]
- Vella, F.M.; Cautela, D.; Laratta, B. Characterization of Polyphenolic Compounds in Cantaloupe Melon By-Products. Foods 2019, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Vouldoukis, I.; Lacan, D.; Kamate, C.; Coste, P.; Calenda, A.; Mazier, D.; Conti, M.; Dugas, B. Antioxidant and Anti-Inflammatory Properties of a Cucumis melo LC. Extract Rich in Superoxide Dismutase Activity. J. Ethnopharmacol. 2004, 94, 67–75. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Q.; Lan, T.; Geng, T.; Gao, C.; Yuan, Q. Comparative Analysis of Physicochemical Characteristics, Nutritional and Functional Components and Antioxidant Capacity of Fifteen Kiwifruit (Actinidia) Cultivars. Foods 2020, 9, 1267. [Google Scholar] [CrossRef]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Vegetables and Fruit in the Prevention of Chronic Diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The Nutritional and Health Attributes of Kiwifruit: A Review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar] [CrossRef] [Green Version]
- Jahurul, M.H.A.; Zaidul, I.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.-L.; Norulaini, N.; Sahena, F.; Omar, A.M. Mango (Mangifera indica L.) by-Products and Their Valuable Components: A Review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Lauricella, M.; Emanuele, S.; Calvaruso, G.; Giuliano, M.; D’Anneo, A. Multifaceted Health Benefits of Mangifera indica L. (Mango): The Inestimable Value of Orchards Recently Planted in Sicilian Rural Areas. Nutrients 2017, 9, 525. [Google Scholar] [CrossRef] [PubMed]
- Lebaka, V.R.; Wee, Y.-J.; Ye, W.; Korivi, M. Nutritional Composition and Bioactive Compounds in Three Different Parts of Mango Fruit. Int. J. Environ. Res. Public Health 2021, 18, 741. [Google Scholar] [CrossRef] [PubMed]
- Ledeker, C.N.; Chambers, D.H.; Chambers, I.E.; Adhikari, K. Changes in the Sensory Characteristics of Mango Cultivars during the Production of Mango Purée and Sorbet. J. Food Sci. 2012, 77, S348–S355. [Google Scholar] [CrossRef]
- Telis, V.R.N.; Telis-Romero, J.; Sobral, P.J.A.; Gabas, A.L. Freezing Point and Thermal Conductivity of Tropical Fruit Pulps: Mango and Papaya. Int. J. Food Prop. 2007, 10, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Maietti, A.; Tedeschi, P.; Stagno, C.; Bordiga, M.; Travaglia, F.; Locatelli, M.; Arlorio, M.; Brandolini, V. Analytical Traceability of Melon (Cucumis melo Var reticulatus): Proximate Composition, Bioactive Compounds, and Antioxidant Capacity in Relation to Cultivar Plant Physiology State, and Seasonal Variability. J. Food Sci. 2012, 77, 646–652. [Google Scholar] [CrossRef]
- Milind, P.; Kulwant, S. Musk Melon Is Eat-Must Melon. IRJP 2011, 2, 52–57. [Google Scholar]
- Huang, D.; Boxin, O.U.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Moon, J.K.; Shibamoto, T. Antioxidant Assays for Plant and Food Components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef]
- Cheftel, H.; Pigeaud, M.L. Estimation of Ascorbic Acid (Vitamin C) by Titration. Nature 1936, 138, 799. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists, 18th ed.; AOAC: Washington, DC, USA, 2010. [Google Scholar]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Kårlund, A.; Moor, U.; Mandell, M.; Karjalainen, R.O. The Impact of Harvesting, Storage and Processing Factors on Health-Promoting Phytochemicals in Berries and Fruits. Processes 2014, 2, 596–624. [Google Scholar] [CrossRef] [Green Version]
- Lija, M.; Beevy, S.S. A Review on the Diversity of Melon. Plant Sci. Today 2021, 8, 995–1003. [Google Scholar] [CrossRef]
- Rolim, P.M.; Seabra, L.M.J.; De Macedo, G.R. Melon By-Products: Biopotential in Human Health and Food Processing. Food Rev. Int. 2020, 36, 15–38. [Google Scholar] [CrossRef]
- Kalt, W.; Forney, C.F.; Martin, A.; Prior, R.L. Antioxidant Capacity, Vitamin C, Phenolics, and Anthocyanins after Fresh Storage of Small Fruits. J. Agric. Food Chem. 1999, 47, 4638–4644. [Google Scholar] [CrossRef] [PubMed]
- Rickman, J.C.; Barrett, D.M.; Bruhn, C.M. Nutritional Comparison of Fresh, Frozen and Canned Fruits and Vegetables. Part 1. Vitamins C and B and Phenolic Compounds. J. Sci. Food Agric. 2007, 87, 930–944. [Google Scholar] [CrossRef]
- Chaovanalikit, A.; Wrolstad, R.E. Anthocyanin and Polyphenolic Composition of Fresh and Processed Cherries. J. Food Sci. 2004, 69, FCT73–FCT83. [Google Scholar] [CrossRef]
- Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. Effect of Processing Techniques at Industrial Scale on Orange Juice Antioxidant and Beneficial Health Compounds. J. Agric. Food Chem. 2002, 50, 5107–5114. [Google Scholar] [CrossRef]
- Šamec, D.; Piljac-Žegarac, J. Fluctuations in the Levels of Antioxidant Compounds and Antioxidant Capacity of Ten Small Fruits During One Year of Frozen Storage. Int. J. Food Prop. 2015, 18, 21–32. [Google Scholar] [CrossRef]
- Palka, A. Evaluation of the Quality of Self-Manufactured Avocado Based Sorbets. Pol. J. Commod. Sci. 2018, 4, 76–85. [Google Scholar]
- Pilar Cano, M.; Fuster, C.; Marín, M.A. Freezing Preservation of Four Spanish Kiwi Fruit Cultivars (Actinidia Chinensis, Planch): Chemical Aspects. Z. Lebensm. Unters. Forsch. 1993, 196, 142–146. [Google Scholar] [CrossRef]
- Boland, M. Kiwifruit Proteins and Enzymes. Actinidin and Other Significant Proteins. Adv. Food Nutr. Res. 2013, 68, 59–80. [Google Scholar] [PubMed]
- Pintor, A.; Escalona-Buendía, H.B.; Totosaus, A. Effect of Inulin on Melting and Textural Properties of Low-Fat and Sugar-Reduced Ice Cream: Optimization via a Response Surface Methodology. Int. Food Res. J. 2017, 24, 1728–1734. [Google Scholar]
- Chaouch, M.A.; Benvenuti, S. The Role of Fruit By-Products as Bioactive Compounds for Intestinal Health. Foods 2020, 9, 1716. [Google Scholar] [CrossRef] [PubMed]
- Ong, Y.Q.; Harith, S.; Shahril, M.R.; Shahidan, N.; Hapidin, H. Polyphenolic profile and antioxidant activities of freeze-dried melon manis terengganu peel extracts. Malays. Appl. Biol. 2021, 50, 181–188. [Google Scholar] [CrossRef]
- Antasionas, I.; Riyanto, S.; Rohman, A. Antioxidant Activities and Phenolics Contents of Avocado (Persea Americana Mill.) Peel in Vitro. Res. J. Med. Plants 2017, 11, 55–61. [Google Scholar]
- Palka, A. Sorbets from old apple varieties in the consumers’ opinion. Pol. J. Commod. Sci. 2021, 1, 29–38. [Google Scholar]
- Pavlyuk, R.; Pogarskaya, V.; Pogarskiy, A.; Kakadii, I.; Stukonozhenko, T. Development of the Nanotechnology for Wellness Products ‘NatureSuperFood’ Fruit and Vegetable Ice cream Sorbets with a Record Content of Biologically Active Substances. EEJET 2018, 6, 59–68. [Google Scholar] [CrossRef]
Type of Fruit/Name of the Product | Fruits Amount [%] | Water [%] | Sucrose [%] | Lemon Juice [%] | Inulin [%] |
---|---|---|---|---|---|
Avocado | 48 | 40 | 10 | 2 | 0 |
Avocado with 2% of inulin | 46 | 40 | 10 | 2 | 2 |
Avocado with 5% of inulin | 43 | 40 | 10 | 2 | 5 |
Cantaloupe melon | 48 | 40 | 10 | 2 | 0 |
Cantaloupe melon with 2% of inulin | 46 | 40 | 10 | 2 | 2 |
Cantaloupe melon with 5% of inulin | 43 | 40 | 10 | 2 | 5 |
Kiwifruit | 48 | 40 | 10 | 2 | 0 |
Kiwifruit with 2% of inulin | 46 | 40 | 10 | 2 | 2 |
Kiwifruit with 5% of inulin | 43 | 40 | 10 | 2 | 5 |
Mango | 48 | 40 | 10 | 2 | 0 |
Mango with 2% of inulin | 46 | 40 | 10 | 2 | 2 |
Mango with 5% of inulin | 43 | 40 | 10 | 2 | 5 |
Honeydew melon (yellow) | 48 | 40 | 10 | 2 | 0 |
Honeydew melon (yellow) with 2% of inulin | 46 | 40 | 10 | 2 | 2 |
Honeydew melon (yellow) with 5% of inulin | 43 | 40 | 10 | 2 | 5 |
Score | Organoleptic quality | ||||
---|---|---|---|---|---|
Overall preference | Color | Odor | Taste | Consistency | |
1 | Dislike | Dark | Dislike | Very poor | Very poor |
2 | Neither like | Slightly dark | Neither like | Poor | Poor |
3 | Like slightly | Moderate | Like slightly | Fair | Fair |
4 | Like moderately | Pale | Like moderately | Good | Good |
5 | Like very much | Very pale | Like very much | Very good | Very good |
Type of Sorbet | Addition of Inulin [%] | Overall Preference | Color | Odor | Taste | Consistency |
---|---|---|---|---|---|---|
± SD | ± SD | ± SD | ± SD | ± SD | ||
Avocado | 0 | 3.0 ± 0.471 a | 4.0 ± 0.471 a | 2.7 ± 1.160 a | 2.8 ± 1.033 a | 4.4 ± 0.516 abcd |
Avocado | 2 | 3.5 ± 0.527 ab | 4.1 ± 0.738 ab | 3.4 ± 0.843 ab | 3.3 ± 0.823 ab | 4.4 ± 0.516 abcd |
Avocado | 5 | 3.7 ± 0.483 abc | 4.2 ± 0.632 abc | 3.5 ± 0.707 ab | 3.4 ± 0.699 abc | 4.2 ± 0.422 abc |
Cantaloupe melon | 0 | 4.2 ± 0.632 bcd | 3.8 ± 0.422 a | 4.0 ± 0.471 b | 4.1 ± 0.876 bcde | 3.7 ± 0.483 a |
Cantaloupe melon | 2 | 4.3 ± 0.483 bcd | 4.1 ± 0.316 ab | 3.8 ± 0.422 b | 4.3 ± 0.483 cde | 3.9 ± 0.568 ab |
Cantaloupe melon | 5 | 4.4 ± 0.516 cd | 4.1 ± 0.316 ab | 3.9 ± 0.316 b | 4.3 ± 0.483 cde | 4.2 ± 0.422 abc |
Kiwifruit | 0 | 4.2 ± 0.632 bcd | 4.1 ± 0.568 ab | 3.9 ± 0.876 b | 3.9 ± 1.101 bcd | 4.1 ± 0.738 abc |
Kiwifruit | 2 | 4.4 ± 0.699 cd | 4.3 ± 0.483 abc | 4.1 ± 0.994 b | 4.1 ± 0.568 bcde | 4.4 ± 0.699 abcd |
Kiwifruit | 5 | 4.6 ± 0.516 d | 4.3 ± 0.483 abc | 4.2 ± 0.919 b | 4.2 ± 0.422 bcde | 4.6 ± 0.516 bcd |
Mango | 0 | 4.6 ± 0.516 d | 4.8 ± 0.422 bc | 4.2 ± 0.422 b | 4.6 ± 0.516 de | 4.4 ± 0.516 abcd |
Mango | 2 | 4.7 ± 0.483 d | 4.9 ± 0.316 c | 4.3 ± 0.483 b | 4.9 ± 0.316 e | 4.8 ± 0.422 cd |
Mango | 5 | 4.8 ± 0.422 d | 4.9 ± 0.316 c | 4.4 ± 0.516 b | 4.9 ± 0.316 e | 5.0 ± 0.000 d |
Yellow honeydew melon | 0 | 4.2 ± 0.632 bcd | 3.9 ± 0.568 a | 3.5 ± 0.527 ab | 3.9 ± 0.568 bcd | 3.9 ± 0.568 ab |
Yellow honeydew melon | 2 | 4.1 ± 0.568 bcd | 3.9 ± 0.316 a | 3.5 ± 0.527 ab | 4.2 ± 0.422 bcde | 3.7 ± 0.483 a |
Yellow honeydew melon | 5 | 4.3 ± 0.483 bcd | 3.9 ± 0.316 a | 3.6 ± 0.516 ab | 4.2 ± 0.422 bcde | 3.9 ± 0.316 ab |
Type of Sorbet | Addition of Inulin [%] | Acidity [°SH] | Vit. C [mg/100 g] | Total Polyphenols [mg GAE/g Product] | DPPH [%] | Overrun [%] | Melting Resistance [%] | Viscosity [cSt] |
---|---|---|---|---|---|---|---|---|
± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ||
Avocado | 0 | 3.00 ± 0.000 ab | 1.80 ± 0.181 b | 10.97 ± 0.306 f | 49.87 ± 2.098 d | 17.33 ± 0.577 def | 20.89 ± 1.167 de | 15.04 ± 0.070 f |
Avocado | 2 | 3.50 ± 0.500 bcd | 1.71 ± 0.163 b | 10.30 ± 0.346 ef | 47.63 ± 1.115 cd | 18.33 ± 0.577 fg | 18.70 ± 0.693 cd | 16.23 ± 0.199 g |
Avocado | 5 | 3.50 ± 0.500 bcd | 1.73 ± 0.148 b | 9.90 ± 0.346 e | 47.17 ± 0.351 c | 18.67 ± 0.577 fg | 11.46 ± 1.167 a | 18.15 ± 0.242 h |
Cantaloupe melon | 0 | 3.50 ± 0.500 bcd | 0.47 ± 0.015 a | 6.70 ± 0.346 b | 46.53 ± 0.306 c | 12.33 ± 0.577 a | 33.02 ± 1.167 i | 10.09 ± 0.043 a |
Cantaloupe melon | 2 | 2.17 ± 0.289 a | 0.46 ± 0.040 a | 6.07 ± 0.321 b | 46.07 ± 0.231 c | 13.33 ± 0.577 ab | 26.96 ± 1.167 fg | 12.17 ± 0.062 c |
Cantaloupe melon | 5 | 2.17 ± 0.289 a | 0.46 ± 0.031 a | 6.27 ± 0.058 b | 45.07 ± 1.026 c | 13.33 ± 0.577 ab | 23.30 ± 0.872 ef | 14.15 ± 0.145 e |
Kiwifruit | 0 | 4.17 ± 0.306 de | 15.85 ± 0.493 e | 9.57 ± 0.115 d | 64.70 ± 1.200 e | 15.00 ± 1.000 bc | 38.41 ± 2.022 j | 11.14 ± 0.064 b |
Kiwifruit | 2 | 4.27 ± 0.058 de | 14.32 ± 0.284 d | 9.57 ± 0.115 d | 63.97 ± 0.945 e | 15.67 ± 0.577 cd | 31.35 ± 1.083 hi | 12.13 ± 0.056 c |
Kiwifruit | 5 | 4.27 ± 0.058 d | 14.68 ± 0.602 d | 9.63 ± 0.115 d | 63.70 ± 0.917 e | 16.00 ± 0.577 cde | 20.89 ± 1.173 de | 13.09 ± 0.194 d |
Mango | 0 | 2.83 ± 0.289 ab | 9.21 ± 0.170 c | 7.57 ± 0.231 c | 64.97 ± 0.503 e | 17.67 ± 0.577 ef | 23.03 ± 0.929 e | 13.17 ± 0.053 d |
Mango | 2 | 3.17 ± 0.289 bc | 8.76 ± 0.137 c | 6.10 ± 0.346 b | 63.70 ± 0.200 e | 18.67 ± 0.577 fg | 16.85 ± 1.167 bc | 15.26 ± 0.073 f |
Mango | 5 | 3.17 ± 0.289 bc | 8.94 ± 0.211 c | 6.27 ± 0.058 b | 62.90 ± 1.039 e | 19.67 ± 0.577 g | 13.48 ± 1.167 ab | 18.10 ± 0.096 h |
Yellow honeydew melon | 0 | 4.50 ± 0.000 e | 0.43 ± 0.018 a | 5.07 ± 0.252 a | 32.37 ± 0.252 b | 13.33 ± 0.577 ab | 34.37 ± 2.022 i | 10.20 ± 0.086 a |
Yellow honeydew melon | 2 | 3.97 ± 0.058 cde | 0.39 ± 0.015 a | 4.83 ± 0.351 a | 29.47 ± 0.404 a | 14.33 ± 0.577 bc | 31.00 ± 1.167 hi | 12.16 ± 0.142 c |
Yellow honeydew melon | 5 | 4.10 ± 0.100 de | 0.41 ± 0.030 a | 5.03 ± 0.208 a | 29.80 ± 0.361 ab | 14.67 ± 0.577 bc | 27.67 ± 0.643 gh | 13.12 ± 0.062 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palka, A.; Skotnicka, M. The Health-Promoting and Sensory Properties of Tropical Fruit Sorbets with Inulin. Molecules 2022, 27, 4239. https://doi.org/10.3390/molecules27134239
Palka A, Skotnicka M. The Health-Promoting and Sensory Properties of Tropical Fruit Sorbets with Inulin. Molecules. 2022; 27(13):4239. https://doi.org/10.3390/molecules27134239
Chicago/Turabian StylePalka, Agnieszka, and Magdalena Skotnicka. 2022. "The Health-Promoting and Sensory Properties of Tropical Fruit Sorbets with Inulin" Molecules 27, no. 13: 4239. https://doi.org/10.3390/molecules27134239
APA StylePalka, A., & Skotnicka, M. (2022). The Health-Promoting and Sensory Properties of Tropical Fruit Sorbets with Inulin. Molecules, 27(13), 4239. https://doi.org/10.3390/molecules27134239