Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sensory Aroma of Hydrocolloid-Filled Olives
2.2. Volatile Compounds of Hydrocolloid-Filled Olives
2.3. Application of E-nose for the Discrimination of Stuffed Olives
2.4. Quantification of Sensory Parameters Using E-nose
3. Materials and Methods
3.1. Experimental Design and Sample Preparation
3.2. Analyses
3.2.1. Sensory Analysis
3.2.2. Analysis of Volatile Compounds
3.2.3. E-nose System
3.3. Multivariate Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Olive Council (IOC). Method Sensory Analysis of Table Olives. 2021. COI/OT/MO No 1/Rev.3. Madrid, Spain. Available online: https://www.internationaloliveoil.org (accessed on 5 February 2022).
- Schaide, T.; Cabrera-Bañegil, M.; Pérez-Nevado, F.; Esperilla, A.; Martín-Vertedor, D. Effect of olive leaf extract combined with Saccharomyces cerevisiae in the fermentation process of table olives. J. Food Sci. Technol. 2019, 56, 3001–3013. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Gómez, A.H.; García García, P.; Rejano Navarro, L. Elaboration of table olives. Grasas Aceites 2006, 57, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Lanza, B. Abnormal fermentations in table-olive processing: Microbial origin and sensory evaluation. Front. Microbiol. 2013, 4, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montaño, A.; de Castro, A.; Rejano, L.; Sánchez, A.H. Analysis of zapatera olives by gas and high-performance liquid chromatography. J. Chromatogr. A 1992, 594, 259–267. [Google Scholar] [CrossRef]
- García García, P.; Romero Barranco, C.; Durán Quintana, M.C.; Garrido Fernández, A. Biogenic Amine Formation and “Zapatera” Spoilage of Fermented Green Olives: Effect of Storage Temperature and Debittering Process. J. Food Prot. 2004, 67, 117–123. [Google Scholar] [CrossRef]
- Cortés-Delgado, A.; Sánchez, A.H.; de Castro, A.; López-López, A.; Beato, V.M.; Montaño, A. Volatile profile of Spanish-style green table olives prepared from different cultivars grown at different locations. Food Res. Int. 2016, 83, 131–142. [Google Scholar] [CrossRef] [Green Version]
- López-López, A.; Sánchez-Gómez, A.H.; Montaño, A.; Cortés-Delgado, A.; Garrido-Fernández, A. Sensory profile of green Spanish-style table olives according to cultivar and origin. Food Res. Int. 2018, 108, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Nanou, A.; Mallouchos, A.; Panagou, E.Z. Elucidation of the Volatilome of Packaged Spanish-Style Green Olives of Conservolea and Halkidiki Varieties Using SPME-GC/MS. Proceedings 2020, 70, 75. [Google Scholar] [CrossRef]
- Martín-Vertedor, D.; Schaide, T.; Boselli, E.; Martínez, M.; Arias-Calderón, R.; Pérez-Nevado. Effects of different controlled temperatures on Spanish-style fermentation processes of olives. Foods 2021, 10, 666. [Google Scholar] [CrossRef]
- Royal Degree 679/2016. Norma de Calidad de las Aceitunas de Mesa. Boletín Oficial del Estado 304. 2016, pp. 88525–88533. Available online: http://consumo.jcyl.es/web/jcyl/Consumo/es/Plantilla100Detalle/1251181526148/Normativa/1284686756430/Redaccion (accessed on 9 January 2022).
- International Olive Council (IOC). Commercial Standard Applicable to Table Olives. COI/OT/NC No 1. Madrid, Spain. 2004. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-OT-NC1-2004-Eng.pdf (accessed on 5 February 2022).
- Codex Alimentarius. Codex Stan 192-1995; FAO: Rome, Italy, 2019; Volume 53, p. 520. [Google Scholar]
- Lu, W.; Nishinari, K.; Matsukawa, S.; Fang, Y. The future trends of food hydrocolloids. Food Hydrocoll. 2020, 103, 105713. [Google Scholar] [CrossRef]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Boselli, E.; Arroyo, P.; Meléndez, F. E-Nose Discrimination of Abnormal Fermentations in Spanish-Style Green Olives. Molecules 2021, 26, 5353. [Google Scholar] [CrossRef]
- Sánchez, R.; Pérez-Nevado, F.; Montero-Fernández, I.; Lozano, J.; Meléndez, F.; Martín-Vertedor, D. Application of Electronic Nose to Discriminate Species of Mold Strains in Synthetic Brines. Front. Microbiol. 2022, 13, 1657. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S. Digital Assessment and Classification of Wine Faults Using a Low-Cost Electronic Nose, Near-Infrared Spectroscopy and Machine Learning Modelling. Sensors 2022, 22, 2303. [Google Scholar] [CrossRef]
- Jiang, H.; He, Y.; Chen, Q. Qualitative identification of the edible oil storage period using a homemade portable electronic nose combined with multivariate analysis. J. Sci. Food Agric. 2021, 101, 3448–3456. [Google Scholar] [CrossRef]
- Wen, T.; Zheng, L.; Dong, S.; Gong, Z.; Sang, M.; Long, X.; Luo, M.; Peng, H. Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis (Hendel) based on electronic nose. Postharvest Biol. Technol. 2019, 147, 156–165. [Google Scholar] [CrossRef]
- Makarichian, A.; Chayjan, R.A.; Ahmadi, E.; Zafari, D. Early detection and classification of fungal infection in garlic (A. sativum) using electronic nose. Comput. Electron. Agric. 2022, 192, 106575. [Google Scholar] [CrossRef]
- Martínez Gila, D.M.; Gámez García, J.; Bellincontro, A.; Mencarelli, F.; Gómez Ortega, J. Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharvest Biol. Technol. 2020, 160, 111058. [Google Scholar] [CrossRef]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. Evaluation of the olfactory pattern of black olives stuffed with flavored hydrocolloids. LWT-Food Sci. Technol. 2022, 163, 113556. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses in classification and quality control of edible oils: A review. Food Chem. 2018, 246, 192–201. [Google Scholar] [CrossRef]
- Martín-torres, S.; Ruiz-castro, L.; Jim, A.M.; Cuadros-rodríguez, L. Applications of multivariate data analysis in shelf life studies of edible vegetal oils—A review of the few past years. Food Packag. Shelf Life 2021, 31, 100790. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, S.; Liu, Y.; Song, H. Comparison of flavour fingerprint, electronic nose and multivariate analysis for discrimination of extra virgin olive oils. R. Soc. Open Sci. 2019, 6, 190002. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Fernández, A.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. Electronic nose application for the discrimination of sterilization treatments applied to Californian-style black olive varieties. J. Sci. Food Agric. 2022, 102, 2232–2241. [Google Scholar] [CrossRef]
- Weichselbaum, E.; Benelam, B.; Soares Costa, H. Traditional Foods in Europe. Consortium, EU 6th Framework Food Quality and Safety Thematic Priority. Contract FOOD-CT-2005-513944. Norwich EuroFIR Project. 2009. Available online: http://www.eurofir.net/ (accessed on 9 February 2022).
- López-López, A.; Cortés-Delgado, A.; de Castro, A.; Sánchez, A.H.; Montaño, A. Changes in volatile composition during the processing and storage of black ripe olives. Food Res. Int. 2019, 125, 108568. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. A J. Chemom. Soc. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
‘Mojo picón’ Aroma | C | M2 | M4 | M8 | |
---|---|---|---|---|---|
Positive attribute | |||||
’Mojo picón’ | 9.7 ± 0.8 a | n.d. | 3.1 ± 0.6 d | 5.3 ± 0.4 c | 7.2 ± 0.6 b |
Negative attribute | |||||
’Zapatería’ | n.d. | 5.1 ± 0.5 a | 3.5 ± 0.4 b | 1.1 ± 0.2 c | n.d. |
Commercial classification | Extra | 2nd. Category | 1st. Category | Extra | Extra |
CAS Number | Volatile Compound | T.R. (min.) | ’Mojo picón’ Aroma | C | M2 | M4 | M8 |
---|---|---|---|---|---|---|---|
64-19-7 | Acetic acid | 2.6 | 2.6 ± 0.2 a | n.d. | n.d. | n.d. | n.d. |
57-55-6 | Propylene glycol | 5.8 | n.d. | 19.8 ± 4.5 a | n.d. | n.d. | n.d. |
109-52-4 | Pentanoic acid | 12.1 | n.d. | 3.1 ± 0.7 a | n.d. | n.d. | n.d. |
127-91-3 | beta-pinene | 15.5 | 19.7 ± 2.7 b | n.d. | 11.8 ± 2.1 a | 13.2 ± 2.1 a | 11.3 ± 1.3 a |
1515-80-6 | 2,4-Hexadienoic acid, methyl ester | 17.8 | n.d. | 11.2 ± 2.5 a | n.d. | n.d. | n.d. |
99-87-6 | p-cymene | 18.1 | 18.7 ± 3.4 ns | n.d. | 19.2 ± 2.2 ns | 21.0 ± 3.2 ns | 19.0 ± 2.4 ns |
99-85-4 | Gamma-terpinene | 19.9 | 24.7 ± 3.5 ns | n.d. | 27.4 ± 3.8 ns | 27.3 ± 2.7 ns | 21.7 ± 3.5 ns |
2179-57-9 | Diallyl disulphide | 21.1 | 14.6 ± 2.2 b | n.d. | 12.1 ± 2.5 a | 11.6 ± 1.5 a | 14.4 ± 2.4 b |
2396-84-1 | 2,4-Hexadienoic acid, ethyl ester | 22.0 | n.d. | 14.5 ± 3.2 a | n.d. | n.d. | n.d. |
98-89-5 | Cyclohexanocarboxylic acid | 26.5 | n.d. | 12.7 ± 2.2 c | 5.2 ± 1.1 b | 2.0 ± 0.5 a | n.d. |
93-51-6 | Creosol | 26.7 | n.d. | 25.0 ± 3.4 d | 5.0 ± 0.8 c | 2.4 ± 0.7 a | 3.6 ± 0.6 b |
88973-62-0 | Propyl 2,4-hexadienecarboxylate | 26.9 | n.d. | 9.8 ± 1.5 a | n.d. | n.d. | n.d. |
122-03-2 | Cuminaldehyde | 29.1 | 6.2 ± 0.8 a | n.d. | 9.8 ± 1.1b | 9.7 ± 0.9 b | 14.3 ± 2.1 c |
3913-81-3 | 2-Decenal, (E)- | 29.9 | n.d. | 3.8 ± 0.5 a | n.d. | n.d. | n.d. |
1197-15-5 | alpha-terpinen-7-al | 31.2 | 6.8 ± 0.9 b | n.d. | 3.5 ± 0.5 a | 3.7 ± 0.2 a | 6.1 ± 0.4 b |
2050-87-5 | Allyl trisulfide | 31.8 | 6.8 ± 0.8 a | n.d. | 6.1 ± 0.8 a | 9.1 ± 0.4 b | 9.5 ± 1.3 b |
Predicted Class | ||||
---|---|---|---|---|
Real Class | C | M2 | M4 | M8 |
C | 21.9 | 3.1 | 0 | 0 |
M2 | 3.1 | 21.9 | 0 | 0 |
M4 | 0 | 0 | 25.0 | 0 |
M8 | 0 | 0 | 0 | 25.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, R.; Boselli, E.; Fernández, A.; Arroyo, P.; Lozano, J.; Martín-Vertedor, D. Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose. Molecules 2022, 27, 4300. https://doi.org/10.3390/molecules27134300
Sánchez R, Boselli E, Fernández A, Arroyo P, Lozano J, Martín-Vertedor D. Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose. Molecules. 2022; 27(13):4300. https://doi.org/10.3390/molecules27134300
Chicago/Turabian StyleSánchez, Ramiro, Emanuele Boselli, Antonio Fernández, Patricia Arroyo, Jesús Lozano, and Daniel Martín-Vertedor. 2022. "Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose" Molecules 27, no. 13: 4300. https://doi.org/10.3390/molecules27134300
APA StyleSánchez, R., Boselli, E., Fernández, A., Arroyo, P., Lozano, J., & Martín-Vertedor, D. (2022). Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose. Molecules, 27(13), 4300. https://doi.org/10.3390/molecules27134300