Spider Silk-Improved Quartz-Enhanced Conductance Spectroscopy for Medical Mask Humidity Sensing
Abstract
:1. Introduction
2. Experimental Setup for the Humidity Sensing System
3. Characterization of the Spider Silk-Modified Quartz Tuning Fork
4. Spider Silk-Based Tuning Fork for Humidity Sensing
5. Stability of Spider Silk-Modified QTF Sensor
6. Humidity Evaluation of Medical Masks
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liu, D.; Tarakanova, A.; Hsu, C.C.; Yu, M.; Zheng, S.; Yu, L.; Liu, J.; He, Y.; Dunstan, D.J.; Buehler, M.J. Spider dragline silk as torsional actuator driven by humidity. Sci. Adv. 2019, 5, eaau9183. [Google Scholar] [CrossRef] [Green Version]
- Bell, F.I.; McEwen, I.J.; Viney, C. Supercontraction stress in wet spider dragline. Nature 2002, 416, 37. [Google Scholar] [CrossRef]
- Guinea, G.V.; Elices, M.; Pérez-Rigueiro, J.; Plaza, G. Self-tightening of spider silk fibers induced by moisture. Polymer 2003, 44, 5785–5788. [Google Scholar] [CrossRef]
- Schafer, A.; Vehoff, T.; Glisovic, A.; Salditt, T. Spider silk softening by water uptake: An AFM study. Eur. Biophys. J. 2008, 37, 197–204. [Google Scholar] [CrossRef]
- Jelinski, L.W.; Blye, A.; Liivak, O.; Michal, C.; LaVerde, G.; Seidel, A.; Shah, N.; Yang, Z.T. Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk. Int. J. Biol. Macromol. 1999, 24, 197–201. [Google Scholar] [CrossRef]
- Vehoff, T.; Glišović, A.; Schollmeyer, H.; Zippelius, A.; Salditt, T. Mechanical properties of spider dragline silk: Humidity, hysteresis, and relaxation. Biophys. J. 2007, 93, 4425–4432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnarsson, I.; Dhinojwala, A.; Sahni, V.; Blackledge, T.A. Spider silk as a novel high performance biomimetic muscle driven by humidity. J. Exp. Biol. 2009, 212, 1990–1994. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, W.; Hu, C.; Zhang, Y.; Yang, X.; Zhang, J.; Yang, J.; Yuan, L. Natural spider silk as a photonics component for humidity sensing. Opt. Express 2019, 27, 21946–21955. [Google Scholar] [CrossRef] [PubMed]
- Blackledge, T.A.; Boutry, C.; Wong, S.C.; Baji, A.; Dhinojwala, A.; Sahni, V.; Agnarsson, I. How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk. J. Exp. Biol. 2009, 212, 1980–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, J.; Vollrath, F.; Porter, D. Two mechanisms for supercontraction in Nephila spider dragline silk. Biomacromolecules 2011, 12, 4030–4035. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, M.; Zhang, Y.; Xu, Y.; Zhang, Y.X.; Yang, X.H.; Zhang, J.Z.; Yang, J.; Yuan, L.B. Spider silk-based humidity sensor. Opt. Lett. 2019, 44, 2907–2910. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Zhang, Y.; Xu, Y.; Zhang, Y.X.; Yang, X.H.; Zhang, J.Z.; Yang, J.; Yuan, L.B. Spider silk-based tapered optical fiber for humidity sensing based on multimode interference. Sens. Actuators A Phys. 2020, 313, 112179. [Google Scholar] [CrossRef]
- Lin, C.B.; Lin, Y.H.; Chen, W.Y.; Liu, C.Y. Photonic Nanojet Modulation Achieved by a Spider-Silk-Based Metal–Dielectric Dome Microlens. Photonics 2021, 8, 334. [Google Scholar] [CrossRef]
- Mohammadi, P.; Zemke, F.; Wagermaier, W.; Linder, M.B. Interfacial crystallization and supramolecular self-assembly of spider silk inspired protein at the water-air interface. Materials 2021, 14, 4239. [Google Scholar] [CrossRef]
- Müller, F.; Zainuddin, S.; Scheibel, T. Roll-to-roll production of spider silk nanofiber nonwoven meshes using centrifugal electrospinning for filtration applications. Molecules 2020, 25, 5540. [Google Scholar] [CrossRef]
- Lai, W.L.; Goh, K.L. Consequences of ultra-violet irradiation on the mechanical properties of spider silk. J. Funct. Biomater. 2015, 6, 901–916. [Google Scholar] [CrossRef] [Green Version]
- Resch, A.; Wolf, S.; Mann, A.; Weiss, T.; Stetco, A.L.; Radtke, C. Co-culturing human adipose derived stem cells and schwann cells on spider silk-A new approach as prerequisite for enhanced nerve regeneration. Int. J. Mol. Sci. 2018, 20, 71. [Google Scholar] [CrossRef] [Green Version]
- Salehi, S.; Koeck, K.; Scheibel, T. Spider silk for tissue engineering applications. Molecules 2020, 25, 737. [Google Scholar] [CrossRef] [Green Version]
- Kiseleva, A.P.; Kiselev, G.O.; Nikolaeva, V.O.; Seisenbaeva, G.; Kessler, V.; Krivoshapkin, P.V.; Krivoshapkina, E.F. Hybrid spider silk with inorganic nanomaterials. Nanomaterials 2020, 10, 1853. [Google Scholar] [CrossRef]
- Schlottmann, F.; Strauss, S.; Plaass, C.; Welke, B.; Vogt, P.M.; Kuhbier, J.W. Spider Silk-Augmented Scaffolds and Adipose-Derived Stromal Cells Loaded with Uniaxial Cyclic Strain: First Investigations of a Novel Approach for Tendon-Like Constructs. Appl. Sci. 2021, 11, 1218. [Google Scholar] [CrossRef]
- Withanage, S.; Savin, A.; Nikolaeva, V.; Kiseleva, A.; Dukhinova, M.; Krivoshapkin, P.; Krivoshapkina, E. Native spider silk-based antimicrobial hydrogels for biomedical applications. Polymers 2021, 13, 1796. [Google Scholar] [CrossRef] [PubMed]
- Greco, G.; Francis, J.; Arndt, T.; Schmuck, B.; Bäcklund, F.G.; Barth, A.; Rising, A. Properties of biomimetic artificial spider silk fibers tuned by postspin bath incubation. Molecules 2020, 25, 3248. [Google Scholar] [CrossRef] [PubMed]
- Fraternali, F.; Stehling, N.; Amendola, A.; Tiban Anrango, B.A.; Holland, C.; Rodenburg, C. Tensegrity modelling and the high toughness of spider dragline silk. Nanomaterials 2020, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rigueiro, J.; Elices, M.; Plaza, G.R.; Guinea, G.V. Basic principles in the design of spider silk fibers. Molecules 2021, 26, 1794. [Google Scholar] [CrossRef]
- Greco, G.; Pugno, N.M. Mechanical properties and Weibull Scaling Laws of unknown spider silks. Molecules 2020, 25, 2938. [Google Scholar] [CrossRef]
- Arndt, T.; Greco, G.; Schmuck, B.; Bunz, J.; Shilkova, O.; Francis, J.; Rising, A. Engineered Spider Silk Proteins for Biomimetic Spinning of Fibers with Toughness Equal to DragLine Silks. Adv. Funct. Mater. 2022, 32, 2200986. [Google Scholar] [CrossRef]
- Velmurugan, J.; Agrawal, A.; An, S.; Choudhary, E.; Szalai, V.A. Fabrication of scanning electrochemical microscopy-atomic force microscopy probes to image surface topography and reactivity at the nanoscale. Anal. Chem. 2017, 89, 2687–2691. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, L.; Shan, G.; Song, Z.; Yang, R.; Li, H.; Qian, J. A homemade atomic force microscope based on a quartz tuning fork for undergraduate instruction. Am. J. Phys. 2016, 84, 478–482. [Google Scholar] [CrossRef]
- Oria, R.; Otero, J.; González, L.; Botaya, L.; Carmona, M.; Puig-Vidal, M. Finite element analysis of electrically excited quartz tuning fork devices. Sensors 2013, 13, 7156–7169. [Google Scholar] [CrossRef] [Green Version]
- Yun, M.; Lee, S.; Yim, C.; Jung, N.; Thundat, T.; Jeon, S. Suspended polymer nanobridge on a quartz resonator. Appl. Phys. Lett. 2013, 103, 053109. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Yun, M.; Lee, S.; Jeon, S. Enhanced sensitivity of quartz tuning fork sensors using electrospun polymer wires. RSC Adv. 2016, 6, 31131–31134. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Kim, W.; Yoon, H.; Jeon, S. Performance Enhancement of a Microfabricated Resonator Using Electrospun Nanoporous Polymer Wire. ACS Sens. 2017, 2, 1355–1358. [Google Scholar] [CrossRef]
- Ko, J.; Jarzembski, A.; Park, K.; Lee, J. Hydrogel tip attached quartz tuning fork for shear force microscopy. Micro Nano Syst. Lett. 2018, 6, 8. [Google Scholar] [CrossRef]
- Gonzalez, L.; Martínez-Martín, D.; Otero, J.; De Pablo, P.J.; Puig-Vidal, M.; Gómez-Herrero, J. Improving the lateral resolution of quartz tuning fork-based sensors in liquid by integrating commercial AFM tips into the fiber end. Sensors 2015, 15, 1601–1610. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Zheng, H.; Montano, B.A.Z.; Wu, H.; Giglio, M.; Sampaolo, A.; Spagnolo, V. Ppb-level gas detection using on-beam quartz-enhanced photoacoustic spectroscopy based on a 28 kHz tuning fork. Photoacoustics 2022, 25, 100321. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Y.; Lin, H.; Liu, B.; Gu, X.; Li, D.; Tittel, F.K. Quartz-enhanced photoacoustic spectroscopy employing pilot line manufactured custom tuning forks. Photoacoustics 2020, 17, 100158. [Google Scholar] [CrossRef]
- Ko, J.; Yoon, Y.; Lee, J. Quartz tuning forks with hydrogel patterned by dynamic mask lithography for humidity sensing. Sens. Actuators B Chem. 2018, 273, 821–825. [Google Scholar] [CrossRef]
- Barbic, M.; Eliason, L.; Ranshaw, J. Femto-Newton force sensitivity quartz tuning fork sensor. Sens. Actuators A Phys. 2007, 136, 564–566. [Google Scholar] [CrossRef]
- Paetzold, U.W.; Lehnen, S.; Bittkau, K.; Rau, U.; Carius, R. Nanoscale observation of waveguide modes enhancing the efficiency of solar cells. Nano Lett. 2014, 14, 6599–6605. [Google Scholar] [CrossRef]
- Giessibl, F.J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 1998, 73, 3956–3958. [Google Scholar] [CrossRef]
- Breitegger, P.; Schweighofer, B.; Wegleiter, H.; Knoll, M.; Lang, B.; Bergmann, A. Towards low-cost QEPAS sensors for nitrogen dioxide detection. Photoacoustics 2020, 18, 100169. [Google Scholar] [CrossRef]
- Li, B.; Feng, C.; Wu, H.; Jia, S.; Dong, L. Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level. Sens. Actuators B Chem. 2022, 358, 131510. [Google Scholar] [CrossRef]
- Qiao, S.; Ma, Y.; He, Y.; Patimisco, P.; Sampaolo, A.; Spagnolo, V. Ppt level carbon monoxide detection based on light-induced thermoelastic spectroscopy exploring custom quartz tuning forks and a mid-infrared QCL. Opt. Express 2021, 29, 25100–25108. [Google Scholar] [CrossRef]
- Li, S.; Sun, B.; Shang, Z.; Li, B.; Cui, R.; Wu, H.; Dong, L. Quartz Enhanced Conductance Spectroscopy for Polymer Nano-Mechanical Thermal Analysis. Appl. Sci. 2020, 10, 4954. [Google Scholar] [CrossRef]
- Wu, H.; Dong, L.; Yin, X.; Sampaolo, A.; Patimisco, P.; Ma, W.; Jia, S. Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with VT relaxation self-calibration. Sens. Actuators B Chem. 2019, 297, 126753. [Google Scholar] [CrossRef]
- Yin, X.; Wu, H.; Dong, L.; Li, B.; Ma, W.; Zhang, L.; Tittel, F.K. Ppb-level SO2 photoacoustic sensors with a suppressed absorption-desorption effect by using a 7.41 μm external-cavity quantum cascade laser. ACS Sens. 2020, 5, 549–556. [Google Scholar] [CrossRef]
- Kim, W.; Park, E.; Jeon, S. Performance enhancement of a quartz tuning fork sensor using a cellulose nanocrystal-reinforced nanoporous polymer fiber. Sensors 2020, 20, 437. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.; Forzani, E.S.; Tao, N. Chemical sensor based on microfabricated wristwatch tuning forks. Anal. Chem. 2005, 77, 2700–2707. [Google Scholar] [CrossRef]
- Gonzalez, L.; Rodrigues, M.; Benito, M.; Pérez-García, L.; Puig-Vidal, M.; Otero, J. Piezoelectric tuning fork biosensors for the quantitative measurement of biomolecular interactions. Nanotechnology 2015, 26, 495502. [Google Scholar] [CrossRef]
- Kaleli-Can, G.; Özgüzar, H.F.; Mutlu, M. Development of QTF-based mass-sensitive immunosensor for phenylketonuria diagnosis. Appl. Phys. A 2022, 128, 277. [Google Scholar] [CrossRef]
- Zheng, H.; Yin, X.; Zhang, G.; Dong, L.; Wu, H.; Liu, X.; Tittel, F.K. Quartz-enhanced conductance spectroscopy for nanomechanical analysis of polymer wire. Appl. Phys. Lett. 2015, 107, 221903. [Google Scholar] [CrossRef] [Green Version]
- Tow, K.H.; Chow, D.M.; Vollrath, F.; Dicaire, I.; Gheysens, T.; Thévenaz, L. Exploring the use of native spider silk as an optical fiber for chemical sensing. J. Lightwave Technol. 2018, 36, 1138–1144. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Qian, Z.; Li, J.; Sun, H.; Han, Y.; Xia, X.; Wang, C. Synthetic engineering of spider silk fiber as implantable optical waveguides for low-loss light guiding. ACS Appl. Mater. Interfaces 2017, 9, 14665–14676. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Tang, Y.; Wen, M.; Yao, B.; Yuan, S.; Zhang, W.; Lei, H. Metal-Nanostructure-Decorated Spider Silk for Highly Sensitive Refractive Index Sensing. ACS Biomater. Sci. Eng. 2022, 8, 1060–1066. [Google Scholar] [CrossRef]
- Huby, N.; Vié, V.; Renault, A.; Beaufils, S.; Lefèvre, T.; Paquet-Mercier, F.; Bêche, B. Native spider silk as a biological optical fiber. Appl. Phys. Lett. 2013, 102, 123702. [Google Scholar] [CrossRef] [Green Version]
- Mistry, K.; Nguyen, V.H.; Arabi, M.; Ibrahim, K.H.; Asgarimoghaddam, H.; Yavuz, M.; Musselman, K.P. Highly Sensitive Self-Actuated Zinc Oxide Resonant Microcantilever Humidity Sensor. Nano Lett. 2022, 22, 3196–3203. [Google Scholar] [CrossRef]
- Schmid, S.; Jensen, K.D.; Nielsen, K.H.; Boisen, A. Damping mechanisms in high-Q micro and nanomechanical string resonators. Phys. Rev. B 2011, 84, 165307. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Thundat, T.; Lee, J. Resonant hair humidity sensors for disposable applications: Revisit the hair hygrometer. Sens. Actuators B Chem. 2019, 292, 1–6. [Google Scholar] [CrossRef]
- González, L.; Otero, J.; Cabezas, G.; Puig-Vidal, M. Electronic driver with amplitude and quality factor control to adjust the response of quartz tuning fork sensors in atomic force microscopy applications. Sens. Actuators A Phys. 2012, 184, 112–118. [Google Scholar] [CrossRef]
- Humenik, M.; Scheibel, T.; Smith, A. Spider silk: Understanding the structure-function relationship of a natural fiber. Prog. Mol. Biol. Transl. Sci. 2011, 103, 131–185. [Google Scholar]
- Asakura, T. Structure and dynamics of spider silk studied with solid-state nuclear magnetic resonance and molecular dynamics simulation. Molecules 2020, 25, 2634. [Google Scholar] [CrossRef]
- Du, N.; Liu, X.Y.; Narayanan, J.; Li, L.; Lim, M.L.M.; Li, D. Design of superior spider silk: From nanostructure to mechanical properties. Biophys. J. 2006, 91, 4528–4535. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Dong, L.; Zheng, H.; Yu, Y.; Ma, W.; Zhang, L.; Tittel, F.K. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nat. Commun. 2017, 8, 15331. [Google Scholar] [CrossRef] [Green Version]
- Kosterev, A.A.; Tittel, F.K.; Serebryakov, D.V.; Malinovsky, A.L.; Morozov, I.V. Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 2005, 76, 043105. [Google Scholar] [CrossRef] [Green Version]
- Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 2009, 20, 215502. [Google Scholar] [CrossRef]
- Szepietowski, J.C.; Matusiak, Ł.; Szepietowska, M.; Krajewski, P.K.; Białynicki-Birula, R. Face Mask-induced Itch: A Self-questionnaire Study of 2,315 Responders During the COVID-19 Pandemic. Acta Derm. Venereol. 2020, 100, 00152. [Google Scholar] [CrossRef]
- De Acevedo Chávez, B.G.; Miranda, G.A.; Mosqueda, R.A.; Gómez, M.I.A.; Martínez, J.C.; Gómez, A.M.; Hink, H.M. Cutaneous manifestations secondary to the COVID-19 pandemic. Acta Médica Grupo Ángeles 2021, 19, s27–s36. [Google Scholar]
- İnan Doğan, E.; Kaya, F. Dermatological findings in patients admitting to dermatology clinic after using face masks during Covid-19 pandemia: A new health problem. Dermatol. Ther. 2021, 34, e14934. [Google Scholar] [CrossRef]
- Abdali, S.; Yu, J. Occupational Dermatoses Related to Personal Protective Equipment Used During the COVID-19 Pandemic. Dermatol. Clin. 2021, 39, 555–568. [Google Scholar] [CrossRef]
- Warner, R.R.; Stone, K.J.; Boissy, Y.L. Hydration disrupts human stratum corneum ultrastructure. J. Investig. Dermatol. 2003, 120, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Han, H.S.; Shin, S.H.; Park, J.W.; Li, K.; Kim, B.J.; Yoo, K.H. Changes in skin characteristics after using respiratory protective equipment (medical masks and respirators) in the COVID-19 pandemic among healthcare workers. Contact Dermat. 2021, 85, 225–232. [Google Scholar] [CrossRef]
- Paichitrojjana, A. Demodicosis Associated with Wearing a Face Mask: A Case Report. Case Rep. Dermatol. 2022, 14, 19–23. [Google Scholar] [CrossRef]
- Damiani, G.; Gironi, L.C.; Grada, A.; Kridin, K.; Finelli, R.; Buja, A.; Savoia, P. COVID-19 related masks increase severity of both acne (maskne) and rosacea (mask rosacea): Multi-center, real-life, telemedical, and observational prospective study. Dermatol. Ther. 2021, 34, e14848. [Google Scholar] [CrossRef]
- Darlenski, R.; Kazandjieva, J.; Tsankov, N. Prevention and occupational hazards for the skin during COVID-19 pandemic. Clin. Dermatol. 2021, 39, 92–97. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Zhang, Z.; Sun, P.; Chen, H. High-sensitivity wearable and flexible humidity sensor based on graphene oxide/non-woven fabric for respiration monitoring. Langmuir 2020, 36, 9443–9448. [Google Scholar] [CrossRef]
- Pang, Y.; Jian, J.; Tu, T.; Yang, Z.; Ling, J.; Li, Y.; Ren, T.L. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 2018, 116, 123–129. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Zhong, Y.; Lin, H.; Wang, C.; Yang, Z.; Wu, Q.; Zhang, D.; Zhu, W.; Zhong, Y.; Pan, Y.; et al. Spider Silk-Improved Quartz-Enhanced Conductance Spectroscopy for Medical Mask Humidity Sensing. Molecules 2022, 27, 4320. https://doi.org/10.3390/molecules27134320
Lin L, Zhong Y, Lin H, Wang C, Yang Z, Wu Q, Zhang D, Zhu W, Zhong Y, Pan Y, et al. Spider Silk-Improved Quartz-Enhanced Conductance Spectroscopy for Medical Mask Humidity Sensing. Molecules. 2022; 27(13):4320. https://doi.org/10.3390/molecules27134320
Chicago/Turabian StyleLin, Leqing, Yu Zhong, Haoyang Lin, Chenglong Wang, Zhifei Yang, Qian Wu, Di Zhang, Wenguo Zhu, Yongchun Zhong, Yuwei Pan, and et al. 2022. "Spider Silk-Improved Quartz-Enhanced Conductance Spectroscopy for Medical Mask Humidity Sensing" Molecules 27, no. 13: 4320. https://doi.org/10.3390/molecules27134320
APA StyleLin, L., Zhong, Y., Lin, H., Wang, C., Yang, Z., Wu, Q., Zhang, D., Zhu, W., Zhong, Y., Pan, Y., Yu, J., & Zheng, H. (2022). Spider Silk-Improved Quartz-Enhanced Conductance Spectroscopy for Medical Mask Humidity Sensing. Molecules, 27(13), 4320. https://doi.org/10.3390/molecules27134320