The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception
Abstract
:1. Introduction
- (1)
- Why proteins adopt the MG state;
- (2)
- What impacts cellular proteins causing a change in their stability and transition to MG;
- (3)
- What functions the molten protein globule performs in the cell.
- -
- Post-translational protein modifications: acetylation, phosphorylation, ubiquitination, glycation, and others.
- -
- Protein–protein interactions: substrate–receptor, multimers, modular proteins.
- -
- Protein–membrane interactions.
- -
- Protein–chaperone interactions.
- -
- Protein interactions with specific adapter proteins.
2. Physics of the MG
3. Cellular Events Causing Changes in Protein Structure Stability and Leading to the Transition to the MG
3.1. Post-Translational Modifications
3.1.1. Acetylation
3.1.2. Phosphorylation
3.1.3. Ubiquitination
3.1.4. Glycation
3.2. Protein–Protein Interactions
3.3. Protein–Membrane Interactions
3.4. Protein–Chaperone Interactions
3.5. Protein Interactions with Specific Adapter Proteins and Organizing Centers
4. Functions of the Molten Protein Globule in the Cell
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ptitsyn, O.B. Step-wise mechanism of self-organization of protein molecules. Dokl. Acad. Nauk USSR 1973, 210, 1213–1215. [Google Scholar]
- Dolgikh, D.A.; Gilmanshin, R.I.; Brazhnikov, E.V.; Bychkova, V.E.; Semisotnov, G.V.; Venyaminov, S.Y.; Ptitsyn, O.B. Alpha-lactalbumin: Compact state with fluctuating tertiary structure? FEBS Lett. 1981, 136, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Gilmanshin, R.I.; Dolgikh, D.A.; Ptitsyn, O.B.; Finkelshtein, A.V.; Shakhnovich, E.I. Protein globules without the unique tertiary structure: Experimental data for alpha-lactalbumins and the general model. Biophysics 1982, 27, 1005–1016. [Google Scholar]
- Ptitsyn, O.B.; Dolgikh, D.A.; Gilmanshin, R.I.; Shakhnovich, E.I.; Finkelshtein, A.V. Fluctuating state of a protein globule. Mol. Biol. 1983, 17, 569–576. [Google Scholar]
- Ohgushi, M.; Wada, A. ‘Molten-globule state’: A compact form of globular proteins with mobile side-chains. FEBS Lett. 1983, 164, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, Y.; Kidokoro, S.; Wada, A. Thermodynamic characterization of cytochrome c at low pH. Observation of the molten globule state and of the cold denaturation process. J. Mol. Biol. 1992, 223, 1139–1153. [Google Scholar] [CrossRef]
- Creighton, T.E. Proteins: Structures and Molecular Properties, 2nd ed.; W. H. Freeman & Co: New York, NY, USA, 1993; Chapters 2 and 7. [Google Scholar]
- Bychkova, V.E.; Ptitsyn, O.B. The molten globule in vitro and in vivo. Chemtracts 1993, 4, 133–163. [Google Scholar]
- Ptitsyn, O.B. Molten globule and protein folding. Adv. Prot. Chem. 1995, 47, 83–229. [Google Scholar]
- Bychkova, V.E.; Semisotnov, G.V.; Balobanov, V.A.; Finkelstein, A.V. The molten globule concept: 45 years later. Biochemistry 2018, 83, S33–S47. [Google Scholar] [CrossRef]
- Arai, M.; Kuwajima, K. Role of the molten globule state in protein folding. Adv. Prot. Chem. 2000, 53, 209–282. [Google Scholar]
- Dobson, C.M. Protein folding. Solid evidence for molten globules. Curr. Biol. 1994, 4, 636–640. [Google Scholar] [CrossRef]
- Pande, V.S.; Rokhsar, D.S. Is the molten globule a third phase of proteins? Proc. Natl. Acad. Sci. USA 1998, 95, 1490–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkelstein, A.V.; Ptitsyn, O.B. Protein Physics. A Course of Lectures, 2nd ed.; Academic Press: New York, NY, USA, 2016; Chapters 17–21. [Google Scholar]
- Finkelstein, A.V. 50+ Years of protein folding. Biochemistry 2018, 83, S3–S18. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, A.V.; Garbuzynskiy, S.O. Reduction of the search space for the folding of proteins at the level of formation and assembly of secondary structures: A new view on the solution of levinthal’s paradox. Chemphyschem 2015, 16, 3375–3378. [Google Scholar] [CrossRef]
- Camilloni, C.; Bonetti, D.; Morrone, A.; Giri, R.; Dobson, C.M.; Brunori, M.; Gianni, S.; Vendruscolo, M. Towards a structural biology of the hydrophobic effect in protein folding. Sci. Rep. 2016, 6, 28285. [Google Scholar] [CrossRef]
- Baldwin, R.L.; Rose, G.D. Molten globules, entropy-driven conformational change and protein folding. Curr. Opin. Struct. Biol. 2013, 23, 4–10. [Google Scholar] [CrossRef]
- Garbuzynskiy, S.O.; Ivankov, D.N.; Bogatyreva, N.S.; Finkelstein, A.V. Golden triangle for folding rates of globular proteins. Proc. Natl. Acad. Sci. USA 2013, 110, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Ivankov, D.N.; Garbuzynskiy, S.O.; Alm, E.; Plaxco, K.W.; Baker, D.; Finkelstein, A.V. Contact order revisited: Influence of protein size on the folding rate. Prot. Sci. 2003, 12, 2057–2062. [Google Scholar] [CrossRef] [Green Version]
- Galzitskaya, O.V.; Garbuzynskiy, S.O.; Ivankov, D.N.; Finkelstein, A.V. Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins-Struct. Funct. Bioinform. 2003, 51, 162–166. [Google Scholar] [CrossRef]
- Uversky, V.N.; Finkelstein, A.V. Life in phases: Intra-and inter-molecular phase transitions in protein solutions. Biomolecules 2019, 9, 842. [Google Scholar] [CrossRef] [Green Version]
- Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding; W. H. Freeman & Co.: New York, NY, USA, 1999; Chapters 15, 18, 19. [Google Scholar]
- Palmer, A.G. Enzyme dynamics from NMR spectroscopy. Acc. Chem. Res. 2015, 48, 457–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bychkova, V.E.; Basova, L.V.; Balobanov, V.A. How membrane surface affects protein structure. Biochemistry 2014, 79, 1483–1514. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.K.; Udgaonkar, J.B. Direct evidence for a dry molten globule intermediate during the unfolding of a small protein. Proc. Natl. Acad. Sci. USA 2009, 106, 12289–12294. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, R.L.; Frieden, C.; Rose, G.D. Dry molten globule intermediates and the mechanism of protein unfolding. Proteins-Struct. Funct. Bioinform. 2010, 78, 2725–2737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, S.S.; Udgaonkar, J.B.; Krishnamoorthy, G. Unfolding of a small protein proceeds via dry and wet globules and a solvated transition state. Biophys. J. 2013, 105, 2392–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balobanov, V.A.; Katina, N.S.; Finkelstein, A.V.; Bychkova, V.E. Intermediate states of apomyoglobin: Are they parts of the same area of conformations diagram? Biochemistry 2017, 82, 625–631. [Google Scholar] [CrossRef]
- Kharakoz, D.P.; Bychkova, V.E. Molten globule of human alpha-lactalbumin: Hydration, density, and compressibility of the interior. Biochemistry 1997, 36, 1882–1890. [Google Scholar] [CrossRef]
- Samatova, E.N.; Katina, N.S.; Balobanov, V.A.; Melnik, B.S.; Dolgikh, D.A.; Bychkova, V.E.; Finkelstein, A.V. How strong are side chain interactions in the folding intermediate? Prot. Sci. 2009, 18, 2152–2159. [Google Scholar] [CrossRef] [Green Version]
- Li, L.Y.; Shi, X.S.; Guo, X.D.; Li, H.; Xu, C.Q. Ionic protein lipid interaction at the plasma membrane: What can the charge do? Trends Biochem. Sci. 2014, 39, 130–140. [Google Scholar] [CrossRef]
- Mizukami, T.; Xu, M.; Fazlieva, R.; Bychkova, V.E.; Roder, H. Complex folding landscape of apomyoglobin at acidic pH revealed by ultrafast kinetic analysis of core mutants. J. Phys. Chem. B 2018, 122, 11228–11239. [Google Scholar] [CrossRef]
- Tompa, P.; Fersht, A. Structure and Function of Intrinsically Desordered Proteins, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2009; Chapters 1–3, 8, 10–12, 15. [Google Scholar]
- Wright, P.E.; Dyson, H.J. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Biol. 1999, 293, 321–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyson, H.J.; Wright, P.E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 2002, 12, 54–60. [Google Scholar] [CrossRef]
- Uversky, V.N. Natively unfolded proteins: A point where biology waits for physics. Prot. Sci. 2002, 11, 739–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uversky, V.N. What does it mean to be natively unfolded? Eur. J. Biochem. 2002, 269, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Receveur-Brechot, V.; Durand, D. How random are intrinsically disordered proteins? a small angle scattering perspective. Curr. Protein Pept. Sci. 2012, 13, 55–75. [Google Scholar] [CrossRef] [PubMed]
- Permyakov, S.E.; Millett, I.S.; Doniach, S.; Permyakov, E.A.; Uversky, V.N. Natively unfolded C-terminal domain of caldesmon remains substantially unstructured after the effective binding to calmodulin. Proteins-Struct. Funct. Bioinform. 2003, 53, 855–862. [Google Scholar] [CrossRef]
- Bracken, C. NMR spin relaxation methods for characterization of disorder and folding in proteins. J. Mol. Graph. Model. 2001, 19, 3–12. [Google Scholar] [CrossRef]
- Bracken, C.; Iakoucheva, L.M.; Rorner, P.R.; Dunker, A.K. Combining prediction, computation and experiment for the characterization of protein disorder. Curr. Opin. Struct. Biol. 2004, 14, 570–576. [Google Scholar] [CrossRef]
- Csizmok, V.; Szollosi, E.; Friedrich, P.; Tompa, P. A novel two-dimensional electrophoresis technique for the identification of intrinsically unstructured proteins. Mol. Cell. Proteom. 2006, 5, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.E. How do small single-domain proteins fold? Fold Des. 1998, 3, R81–R91. [Google Scholar] [CrossRef] [Green Version]
- Shakhnovich, E.I.; Finkelstein, A.V. Theory of cooperative transitions in protein molecules. I. Why denaturation of globular proteins is a first-order phase transition. Biopolymers 1989, 28, 1667–1680. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.P.; Tanford, C. Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride. A process involving separable sequential conformational transitions. J. Biol. Chem. 1973, 248, 8518–8523. [Google Scholar] [CrossRef]
- Robson, B.; Pain, R.H. The mechanism of folding of globular proteins. Equilibria and kinetics of conformational transitions of penicillinase from Staphylococcus aureus involving a state of intermediate conformation. Biochem. J. 1976, 155, 331–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwajima, K.; Nitta, K.; Yoneyama, M.; Sugai, S. Three-state denaturation of alpha-lactalbumin by guanidine hydrochloride. J. Mol. Biol. 1976, 106, 359–373. [Google Scholar] [CrossRef]
- Ikeguchi, M.; Kuwajima, K.; Sugai, S. Ca2+-induced alteration in the unfolding behavior of alpha-lactalbumin. J. Biochem. 1986, 99, 1191–1201. [Google Scholar] [CrossRef]
- Finkelstein, A.V.; Shakhnovich, E.I. Theory of cooperative transitions in protein molecules. II. Phase diagram for a protein molecule in solution. Biopolymers 1989, 28, 1681–1694. [Google Scholar] [CrossRef]
- Muñoz, V.; Sadqi, M.; Naganathan, A.N.; de Sancho, D. Exploiting the downhill folding regime via experiment. HFSP J. 2008, 2, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Prasad, M.; Thomas, J.L.; Whittal, R.M.; Bose, H.S. Mitochondrial 3 beta-hydroxysteroid dehydrogenase enzyme activity requires reversible ph-dependent conformational change at the intermembrane space. J. Biol. Chem. 2012, 287, 9534–9546. [Google Scholar] [CrossRef] [Green Version]
- Ceskova, P.; Chichgeri, H.; Wallace, M.; Vojtesek, B.; Hupp, T.R. On the mechanism of sequence-specific DNA-dependent acetylation of p53: The acetylation motif is exposed upon DNA binding. J. Mol. Biol. 2006, 357, 442–456. [Google Scholar] [CrossRef]
- Armstrong, B.D.; Choi, J.; Lopez, C.; Wesener, D.A.; Hubbell, W.; Cavagnero, S.; Han, S. Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water. J. Am. Chem. Soc. 2011, 133, 5987–5995. [Google Scholar] [CrossRef] [Green Version]
- Spolaore, B.; Raboni, S.; Molina, A.R.; Satwekar, A.; Damiano, N.; Fontana, A. Local unfolding is required for the site-specific protein modification by transglutaminase. Biochemistry 2012, 51, 8679–8689. [Google Scholar] [CrossRef] [PubMed]
- Taira, N.; Yoshida, K. Post-translational modifications of p53 tumor suppressor: Determinants of its functional targets. Histol. Histopathol. 2012, 27, 437–443. [Google Scholar] [PubMed]
- Chen, D.M.; Wang, L.; Lee, T.H. Post-translational modifications of the peptidyl-prolyl isomerase pin1. Front. Cell Dev. Biol. 2020, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soond, S.M.; Savvateeva, L.V.; Makarov, V.A.; Gorokhovets, N.V.; Townsend, P.A.; Zamyatnin, A.A. Making connections: P53 and the cathepsin proteases as co-regulators of cancer and apoptosis. Cancers 2020, 12, 3476. [Google Scholar] [CrossRef]
- Teixeira, C.S.S.; Cerqueira, N.; Gomes, P.; Sousa, S.E. A Molecular perspective on sirtuin activity. Int. J. Mol. Sci. 2020, 21, 8609. [Google Scholar] [CrossRef]
- Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325, 834–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlev, N.A.; Liu, L.; Chehab, N.H.; Mansfield, K.; Harris, K.G.; Halazonetis, T.D.; Berger, S.L. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 2001, 8, 1243–1254. [Google Scholar] [CrossRef]
- Sarg, B.; Helliger, W.; Talasz, H.; Koutzamani, E.; Lindner, H.H. Histone H4 hyperacetylation precludes histone H4 lysine 20 trimethylation. J. Biol. Chem. 2004, 279, 53458–53464. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.S.; Shemorry, A.; Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 2010, 327, 973–977. [Google Scholar] [CrossRef] [Green Version]
- Thinon, E.; Hang, H.C. Chemical reporters for exploring protein acylation. Biochem. Soc. Trans. 2015, 43, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Goto, Y.; Okamura, N.; Aimoto, S. ATP-induced conformational transition of denatured proteins. J. Biochem. 1991, 109, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.R.; Zhang, Y.P.; Wang, Y.J.; Yang, M.W.; Hong, F.F.; Yang, S.L. Protein phosphorylation in cancer: Role of nitric oxide Signaling Pathway. Biomolecules 2021, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- Gavrilov, Y.; Hagai, T.; Levy, Y. Nonspecific yet decisive: Ubiquitination can affect the native-state dynamics of the modified protein. Prot. Sci. 2015, 24, 1580–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabbe, C.; Husnjak, K.; Dikic, I. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 2011, 12, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikawa, D.; Sato, Y.; Ito, H.; Tokunaga, F. Linear ubiquitin code: Its writer, erasers, decoders, inhibitors, and implications in disorders. Int. J. Mol. Sci. 2020, 21, 3381. [Google Scholar] [CrossRef] [PubMed]
- Haglund, K.; Dikic, I. Ubiquitylation and cell signaling. EMBO J. 2005, 24, 3353–3359. [Google Scholar] [CrossRef] [Green Version]
- Thrower, J.S.; Hoffman, L.; Rechsteiner, M.; Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000, 19, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Ciechanover, A.; Kwon, Y.T. Protein Quality control by molecular chaperones in neurodegeneration. Front. Neurosci. 2017, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Krappmann, D.; Scheidereit, C. A pervasive role of ubiquitin conjugation in activation and termination of IkB kinase pathways. EMBO Rep. 2005, 6, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Santonico, E. Old and new concepts in ubiquitin and NEDD8 recognition. Biomolecules 2020, 10, 566. [Google Scholar] [CrossRef] [Green Version]
- Kliza, K.; Husnjak, K. Resolving the complexity of ubiquitin networks. Front. Mol. Biosci. 2020, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, K.D. DUBs at a glance. J. Cell Sci. 2009, 122, 2325–2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikic, I.; Wakatsuki, S.; Walters, K.J. Ubiquitin binding domains–from structures to functions. Nat. Rev. Mol. Cell Biol. 2009, 10, 659–671. [Google Scholar] [CrossRef]
- Tyrrell, A.; Flick, K.; Kleiger, G.; Zhang, H.W.; Deshaies, R.J.; Kaiser, P. Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins. Proc. Natl. Acad. Sci. USA 2010, 107, 19796–19801. [Google Scholar] [CrossRef] [Green Version]
- Iwai, K.; Tokunaga, F. Linear polyubiquitination: A new regulator of NF-kappa B activation. EMBO Rep. 2009, 10, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Indurthi, V.S.K.; Leclerc, E.; Vetter, S.W. Interaction between glycated serum albumin and AGE-receptors depends on structural changes and the glycation reagent. Arch. Biochem. Biophys. 2012, 528, 185–196. [Google Scholar] [CrossRef]
- Nakagawa, S.H.; Tager, H.S. Importance of main-chain flexibility and the insulin fold in insulin-receptor interactions. Biochemistry 1993, 32, 7237–7243. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.X.; Ladbury, J.E.; Weiss, M.A. Dynamics of a monomeric insulin analogue: Testing the molten-globule hypothesis. Biochemistry 1993, 32, 1433–1442. [Google Scholar] [CrossRef]
- Ward, C.W.; Lawrence, M.C. Ligand-induced activation of the insulin receptor: A multi-step process involving structural changes in both the ligand and the receptor. Bioessays 2009, 31, 422–434. [Google Scholar] [CrossRef]
- Hua, Q.X.; Xu, B.; Huang, K.; Hu, S.Q.; Nakagawa, S.; Jia, W.H.; Wang, S.; Whittaker, J.; Katsoyannis, P.G.; Weiss, M.A. Enhancing the activity of a protein by stereospecific unfolding: Conformational life cycle of insulin and its evolutionary origins. J. Biol. Chem. 2009, 284, 14586–14596. [Google Scholar] [CrossRef] [Green Version]
- Whitten, A.E.; Smith, B.J.; Menting, J.G.; Margetts, M.B.; McKern, N.M.; Lovrecz, G.O.; Adams, T.E.; Richards, K.; Bentley, J.D.; Trewhella, J.; et al. Solution structure of ectodomains of the insulin receptor family: The ectodomain of the type 1 insulin-like growth factor receptor displays asymmetry of ligand binding accompanied by limited conformational change. J. Mol. Biol. 2009, 394, 878–892. [Google Scholar] [CrossRef] [PubMed]
- Smock, R.G.; Gierasch, L.M. Sending signals dynamically. Science 2009, 324, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Hua, Q. Insulin: A small protein with a long journey. Prot. Cell 2010, 1, 537–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menting, J.G.; Whittaker, J.; Margetts, M.B.; Whittaker, L.J.; Kong, G.K.W.; Smith, B.J.; Watson, C.J.; Zakova, L.; Kletvikova, E.; Jiracek, J.; et al. How insulin engages its primary binding site on the insulin receptor. Nature 2013, 493, 241–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Balabanidou, V.; Remeta, D.P.; Minetti, C.; Portaliou, A.G.; Economou, A.; Kalodimos, C.G. Structural instability tuning as a regulatory mechanism in protein-protein interactions. Mol. Cell 2011, 44, 734–744. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Tang, C.Y.; Man, X.F.; Tang, H.N.; Tang, J.; Wang, F.; Zhou, C.L.; Tan, S.W.; Feng, Y.Z.; Zhou, H.D. Insulin receptor substrate-1 time-dependently regulates bone formation by controlling collagen I alpha 2 expression via miR-342. FASEB J. 2016, 30, 4214–4226. [Google Scholar] [CrossRef] [Green Version]
- Svendsen, A.M.; Vrecl, M.; Knudsen, L.; Heding, A.; Wade, J.D.; Bathgate, R.A.D.; De Meyts, P.; Nohr, J. Dimerization and negative cooperativity in the relaxin family peptide receptors. Relaxin Relat. Pept. Fifth Int. Conf. 2009, 1160, 54–59. [Google Scholar] [CrossRef]
- Jean-Baptiste, G.; Yang, Z.; Greenwood, M.T. Regulatory mechanisms involved in modulating RGS function. Cell. Mol. Life Sci. 2006, 63, 1969–1985. [Google Scholar] [CrossRef]
- Abramow-Newerly, M.; Roy, A.A.; Nunn, C.; Chidiac, P. RGS proteins have a signalling complex: Interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell. Signal. 2006, 18, 579–591. [Google Scholar] [CrossRef]
- Bychkova, V.E.; Pain, R.H.; Ptitsyn, O.B. The “molten globule” state is involved in translocation of proteins across membranes? FEBS Lett. 1988, 238, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Bucciantini, M.; Cecchi, C. Biological membranes as protein aggregation matrices and targets of amyloid toxicity. Protein Misfold. Cell. Stress Dis. Aging Concepts Protoc. 2010, 648, 231–243. [Google Scholar]
- Bokvist, M.; Grobner, G. Misfolding of amyloidogenic proteins at membrane surfaces: The impact of macromolecular crowding. J. Am. Chem. Soc. 2007, 129, 14848–14849. [Google Scholar] [CrossRef] [PubMed]
- Hiller, S. Molecular chaperones and their denaturing effect on client proteins. J. Biomol. NMR 2021, 75, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Borin, B.N.; Martinez-Yamout, M.A.; Dyson, H.J. The client protein p53 adopts a molten globule-like state in the presence of Hsp90. Nat. Struct. Mol. Biol. 2011, 18, 537–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.H.; Hyun, J.Y.; Varshavsky, A. Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway. Proc. Natl. Acad. Sci. USA 2017, 114, E4370–E4379. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Kostic, M.; Dyson, H.J. Dynamic interaction of hsp90 with its client protein p53. J. Mol. Biol. 2011, 411, 158–173. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Munoz, A.; Medina-Abarca, H.F.; Fontana, W. Combinatorial protein-protein interactions on a polymerizing scaffold. Proc. Natl. Acad. Sci. USA 2020, 117, 2930–2937. [Google Scholar] [CrossRef] [Green Version]
- Pey, A.L.; Salido, E.; Sanchez-Ruiz, J.M. Role of low native state kinetic stability and interaction of partially unfolded states with molecular chaperones in the mitochondrial protein mistargeting associated with primary hyperoxaluria. Amino Acids 2011, 41, 1233–1245. [Google Scholar] [CrossRef]
- Xu, H.F. ATP-driven nonequilibrium activation of kinase clients by the molecular chaperone Hsp90. Biophys. J. 2020, 119, 1538–1549. [Google Scholar] [CrossRef]
- Bershtein, S.; Mu, W.M.; Serohijos, A.W.R.; Zhou, J.W.; Shakhnovich, E.I. Protein quality control acts on folding intermediates to shape the effects of mutations on organismal fitness. Mol. Cell 2013, 49, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Shiber, A.; Ravid, T. Chaperoning proteins for destruction: Diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. Biomolecules 2014, 4, 704–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawson, T.; Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 2003, 300, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, J.D.; Pawson, T. Cell signaling in space and time: Where proteins come together and when they’re apart. Science 2009, 326, 1220–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.A.; Nash, P.D. Evolution of SH2 domains and phosphotyrosine signalling networks. Philos. Trans. R. Soc. B-Biol. Sci. 2012, 367, 2556–2573. [Google Scholar] [CrossRef]
- Bhattacharyya, R.P.; Remenyi, A.; Yeh, B.J.; Lim, W.A. Domains, motifs, and scaffolds: The role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 2006, 75, 655–680. [Google Scholar] [CrossRef] [Green Version]
- Zeke, A.; Lukacs, M.; Lim, W.A.; Remenyi, A. Scaffolds: Interaction platforms for cellular signaling circuits. Trends Cell Biol. 2009, 19, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Good, M.C.; Zalatan, J.G.; Lim, W.A. Scaffold proteins: Hubs for controlling the flow of cellular information. Science 2011, 332, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Langeberg, L.K.; Scott, J.D. Signalling scaffolds and local organization of cellular behaviour. Nat. Rev. Mol. Cell Biol. 2015, 16, 232–244. [Google Scholar] [CrossRef] [Green Version]
- Schultz, J.E.; Natarajan, J. Regulated unfolding: A basic principle of intraprotein signaling in modular proteins. Trends Biochem. Sci. 2013, 38, 538–545. [Google Scholar] [CrossRef]
- Liu, D.; Bienkowska, J.; Petosa, C.; Collier, R.J.; Fu, H.; Liddington, R. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 1995, 376, 191–194. [Google Scholar] [CrossRef]
- Yaffe, M.B.; Rittinger, K.; Volinia, S.; Caron, P.R.; Aitken, A.; Leffers, H.; Gamblin, S.J.; Smerdon, S.J.; Cantley, L.C. The structural basis for 14-3-3:phosphopeptide binding specifity. Cell 1997, 91, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Subramanian, R.R.; Masters, S.C. 14-3-3 Proteins: Structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 2000, 40, 617–647. [Google Scholar] [CrossRef] [PubMed]
- Pawson, T. Specificity in signal transduction: From phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 2004, 116, 191–203. [Google Scholar] [CrossRef] [Green Version]
- JiJin, J.; Pawson, T. Modular evolution of phosphorylation-based signalling systems. Philos. Trans. R. Soc. B-Biol. Sci. 2012, 367, 2540–2555. [Google Scholar] [CrossRef] [PubMed]
- Obsilova, V.; Silhan, J.; Boura, E.; Teisinger, J.; Obsil, T. 14-3-3 Proteins: A family of versatile molecular regulators. Physiol. Res. 2008, 57 (Suppl. S3), S11–S21. [Google Scholar] [CrossRef] [PubMed]
- Mitrea, D.M.; Kriwacki, R.W. Regulated unfolding of proteins in signaling. FEBS Lett. 2013, 587, 1081–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obsilova, V.; Kopecka, M.; Kosek, D.; Kacirova, M.; Kylarova, S.; Rezabkova, L.; Obsil, T. Mechanism of the 14-3-3 protein function: Regulation of protein function through conformational modulation. Physiol. Res. 2014, 63 (Suppl. S1), S155–S164. [Google Scholar] [CrossRef]
- Yaffe, M.B. How do 14-3-3 proteins work?-Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 2002, 513, 53–57. [Google Scholar] [CrossRef]
- Ikeguchi, M.; Kuwajima, K.; Mitani, M.; Sugai, S. Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: A comparative study of the folding reactions of alpha-lactalbumin and lysozyme. Biochemistry 1986, 25, 6965–6972. [Google Scholar] [CrossRef]
- Radford, S.E.; Dobson, C.M.; Evans, P.A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 1992, 358, 302–307. [Google Scholar] [CrossRef]
- Sluchanko, N.N.; Beelen, S.; Kulikova, A.A.; Weeks, S.D.; Antson, A.A.; Gusev, N.B.; Strelkov, S.V. Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator. Structure 2017, 25, 305–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magg, C.; Kubelka, J.; Holtermann, G.; Haas, E.; Schmid, F.X. Specifity of the initial collapse in the folding of the cold shock protein. J. Mol. Biol. 2006, 360, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Shastry, M.C.; Roder, H. Folding dynamics of the B1 domain of protein G explored by ultra-rapid mixing. Nat. Struct. Biol. 1999, 6, 943–947. [Google Scholar] [CrossRef]
- Kimura, T.; Uzawa, T.; Ishimori, K.; Morishima, I.; Takahashi, S.; Konno, T.; Akiyama, S.; Fujisawa, T. Specific collapse followed by slow hydrogen-bond formation of beta-sheet in the folding of single-chain monellin. Proc. Natl. Acad. Sci. USA 2005, 102, 2748–2753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juneja, J.; Udgaonkar, J.B. Characterization of the unfolding of Ribonuclease A by a pulsed hydrogen exchange study: Evidence for competing pathways for unfolding. Biochemistry 2002, 41, 2641–2654. [Google Scholar] [CrossRef] [PubMed]
- Capaldi, A.P.; Shastry, M.C.R.; Kleanthous, C.; Roder, H.; Radford, S.E. Ultrarapid mixing experiments reveal that Im7 folds via an on-pathway intermediate. Nat. Struc. Biol. 2001, 8, 68–72. [Google Scholar]
- Reiner, A.; Henklein, P.; Kiefhaber, T. An unlocking/relocking barrier in conformational fluctuations of villin headpiece subdomain. Proc. Natl. Acad. Sci. USA 2010, 107, 4955–4960. [Google Scholar] [CrossRef] [Green Version]
- Hoeltzli, S.D.; Frieden, C. Stopped-flow NMR spectroscopy: Real-time unfolding studies of 6-19F-tryptophan-labeled Escherichia coli dihydrofolate reductase DHFR. Proc. Natl. Acad. Sci. USA 1995, 92, 9318–9322. [Google Scholar] [CrossRef] [Green Version]
- Kiefhaber, T.; Labhardt, A.M.; Baldwin, R.L. Direct NMR evidence for an intermediate preceding the rate-limiting step in the unfolding of ribonuclease A. Nature 1995, 375, 513–515. [Google Scholar] [CrossRef]
- Bemporad, F.; Gsponer, J.; Hopearuoho, H.I.; Plakoutsi, G.; Stati, G.; Stefani, M.; Taddei, N.; Vendruscolo, M.; Chiti, F. Biological function in a non-native partially folded state of a protein. EMBO J. 2008, 27, 1525–1535. [Google Scholar] [CrossRef] [Green Version]
- Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Luheshi, L.M.; Dobson, C.M. Bridging the gap: From protein misfolding to protein misfolding diseases. FEBS Lett. 2009, 583, 2581–2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersson-Kastberg, J.; Mossberg, A.K.; Trulsson, M.; Yong, Y.J.; Min, S.; Lim, Y.; O’Brien, J.E.; Svanborg, C.; Mok, K.H. Alpha-Lactalbumin, engineered to be nonnative and inactive, kills tumor cells when in complex with oleic acid: A new biological function resulting from partial unfolding. J. Mol. Biol. 2009, 394, 994–1010. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, A.; Sanborn, J.; Gettel, D.L.; Ho, C.S.J.; Rydstrom, A.; Ngassam, V.N.; Klausen, T.K.; Pedersen, S.F.; Lam, M.; Parikh, A.N.; et al. Protein receptor-independent plasma membrane remodeling by HAMLET: A tumoricidal protein-lipid complex. Sci. Rep. 2015, 5, 16432. [Google Scholar] [CrossRef] [Green Version]
- Clementi, E.A.; Wilhelm, K.R.; Schleucher, J.; Morozova-Roche, L.A.; Hakansson, A.P. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae. PLoS ONE 2013, 8, e80649. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Tian, K.G.; Jing, G.Z. An in vitro peptide folding model suggests the presence of the molten globule state during nascent peptide folding. Prot. Eng. 2000, 13, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Leal, S.S.; Gomes, C.M. Studies of the molten globule state of ferredoxin: Structural characterization and implications on protein folding and iron-sulfur center assembly. Proteins-Struct. Funct. Bioinform. 2007, 68, 606–616. [Google Scholar] [CrossRef]
- Kumar, A.; Gaikwad, S.M. Multistate unfolding of alpha-mannosidase from Canavalia ensiformis (Jack Bean): Evidence for the thermostable molten globule. Biochem. Biophys. Res. Commun. 2010, 403, 391–397. [Google Scholar] [CrossRef]
- Tseng, T.S.; Cheng, C.S.; Chen, D.J.; Shih, M.F.; Liu, Y.N.; Hsu, S.T.D.; Lyu, P.C. A molten globule-to-ordered structure transition of Drosophila melanogaster crammer is required for its ability to inhibit cathepsin. Biochem. J. 2012, 442, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Vamvaca, K.; Jelesarov, I.; Hilvert, D. Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J. Mol. Biol. 2008, 382, 971–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasper, J.R.; Park, C. Ligand binding to a high-energy partially unfolded protein. Prot. Sci. 2015, 24, 129–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitazawa, S.; Kameda, T.; Yagi-Utsumi, M.; Sugase, K.; Baxter, N.J.; Kato, K.; Williamson, M.P.; Kitahara, R. Solution structure of the q41n variant of ubiquitin as a model for the alternatively folded N-2 state of ubiquitin. Biochemistry 2013, 52, 1874–1885. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, R.S.; Indu, S.; Varadarajan, R. Identification and thermodynamic characterization of molten globule states of periplasmic binding proteins. Biochemistry 2007, 46, 10339–10352. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, R.; Jagannadham, M.V.; Kayastha, A.M. Evidence for a molten globule state in cicer alpha-galactosidase induced by pH, temperature, and guanidine hydrochloride. Appl. Biochem. Biotechnol. 2013, 169, 2315–2325. [Google Scholar] [CrossRef]
- Lamb, D.C.; Ostermann, A.; Prusakov, V.E.; Parak, F.G. From metmyoglobin to deoxymyoglobin: Relaxations of an intermediate state. Eur. Biophys. J. Biophys. Lett. 1998, 27, 113–125. [Google Scholar]
Impact Type and Conditions | MG State, Globular Proteins | IDP State, Natively Unfolded Proteins |
---|---|---|
Unfolding by strong denaturants | Global unfolding to the coil state | Usually, no further global unfolding, but disruption of local structures is possible |
Heat effect | Decrease in secondary structure content | Structuring, heat resistance |
Different behavior of normalized SAXS curves (Kratky plots) [38,39] | Bell-shaped curves with a pronounced maximum | Monotonic curve rising (no maximum) |
H/D exchange [40,41] | Slightly elevated exchange as compared to the N state | The exchange is orders of magnitude higher than that for MG |
Gel filtration, electrophoresis [42,43] | Increase in hydrodynamic volume by 20–50% as compared to the N state | Hydrodynamic volume is 400–600% larger when compared to the N state of globular proteins with the same molecular weight |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bychkova, V.E.; Dolgikh, D.A.; Balobanov, V.A.; Finkelstein, A.V. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules 2022, 27, 4361. https://doi.org/10.3390/molecules27144361
Bychkova VE, Dolgikh DA, Balobanov VA, Finkelstein AV. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules. 2022; 27(14):4361. https://doi.org/10.3390/molecules27144361
Chicago/Turabian StyleBychkova, Valentina E., Dmitry A. Dolgikh, Vitalii A. Balobanov, and Alexei V. Finkelstein. 2022. "The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception" Molecules 27, no. 14: 4361. https://doi.org/10.3390/molecules27144361
APA StyleBychkova, V. E., Dolgikh, D. A., Balobanov, V. A., & Finkelstein, A. V. (2022). The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules, 27(14), 4361. https://doi.org/10.3390/molecules27144361