Analytical Method Development for 19 Alkyl Halides as Potential Genotoxic Impurities by Analytical Quality by Design
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Silico Study for PGIs
2.2. Analytical Method Development by Analytical QbD
2.2.1. Method Scouting
2.2.2. Method Screening
2.2.3. Method Optimization by Analytical QbD
2.3. Analytical Method Validation
2.3.1. Specificity
2.3.2. Limit of Detection and Quantitation
2.3.3. Linearity
2.3.4. Accuracy
2.3.5. Precision
2.4. Applicability of the Method to Real Sample
3. Materials and Methods
3.1. Reagents, Materials, and Standards
3.2. In Silico Study
3.3. Preparation of Solutions
3.4. Analytical Condition and Equipment
3.5. Method Development by Analytical QbD
3.6. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eder, E.; Henschler, D.; Neudecker, T. Mutagenic properties of allylic and alpha, beta-unsaturated compounds: Consideration of alkylating mechanisms. Xenobiotica 1982, 12, 831–848. [Google Scholar] [CrossRef] [PubMed]
- Sobol, Z.; Engel, M.E.; Rubitski, E.; Ku, W.W.; Aubrecht, J.; Schiestl, R.H. Genotoxicity Profiles of Common Alkyl Halides and Esters with Alkylating Activity. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2007, 633, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Szekely, G.; de Sousa, M.C.A.; Gil, M.; Ferreira, F.C.; Heggie, W. Genotoxic Impurities in Pharmaceutical Manufacturing: Sources, Regulations, and Mitigation. Chem. Rev. 2015, 115, 8182–8229. [Google Scholar] [CrossRef] [PubMed]
- Bolt, H.M.; Gansewendt, B. Mechanisms of Carcinogenicity of Methyl Halides. Crit. Rev. Toxicol. 1993, 23, 237–253. [Google Scholar] [CrossRef]
- Müller, L.; Mauthe, R.J.; Riley, C.M.; Andino, M.M.; de Antonis, D.; Beels, C.; DeGeorge, J.; de Knaep, A.G.M.; Ellison, D.; Fagerland, J.A.; et al. A Rationale for Determining, Testing, and Controlling Specific Impurities in Pharmaceuticals That Possess Potential for Genotoxicity. Regul. Toxicol. Pharmacol. 2006, 44, 198–211. [Google Scholar] [CrossRef]
- Bercu, J.P.; Dobo, K.L.; Gocke, E.; Mcgovern, T.J. Overview of Genotoxic Impurities in Pharmaceutical Development. Int. J. Toxicol. 2009, 28, 468–478. [Google Scholar] [CrossRef]
- Raman, N.V.V.S.S.; Prasad, A.V.S.S.; Ratnakar Reddy, K. Strategies for the Identification, Control and Determination of Genotoxic Impurities in Drug Substances: A Pharmaceutical Industry Perspective. J. Pharm. Biomed. Anal. 2011, 55, 662–667. [Google Scholar] [CrossRef]
- Looker, A.R.; Ryan, M.P.; Neubert-Langille, B.J.; Naji, R. Risk Assessment of Potentially Genotoxic Impurities within the Framework of Quality by Design. Org. Process Res. Dev. 2010, 14, 1032–1036. [Google Scholar] [CrossRef]
- Ashby, J.; Tennant, R.W.; Zeiger, E.; Stasiewicz, S. Classification According to Chemical Structure, Mutagenicity to Salmonella and Level of Carcinogenicity of a Further 42 Chemicals Tested for Carcinogenicity by the U.S. National Toxicology Program. Mutat. Res. Genet. Toxicol. 1989, 223, 73–103. [Google Scholar] [CrossRef]
- Borman, P.J.; Chatfield, M.J.; Crowley, E.L.; Eckers, C.; Elder, D.P.; Francey, S.W.; Laures, A.M.F.; Wolff, J.C. Development, Validation and Transfer into a Factory Environment of a Liquid Chromatography Tandem Mass Spectrometry Assay for the Highly Neurotoxic Impurity FMTP (4-(4-Fluorophenyl)-1-Methyl-1,2,3,6-Tetrahydropyridine) in Paroxetine Active Pharmaceutical. J. Pharm. Biomed. Anal. 2008, 48, 1082–1089. [Google Scholar] [CrossRef]
- Li, S.; Dong, L.; Tang, K.; Lan, Z.; Liu, R.; Wang, Y.; Wang, R.; Lin, H. Simultaneous and Trace Level Quantification of Two Potential Genotoxic Impurities in Valsartan Drug Substance Using UPLC-MS/MS. J. Pharm. Biomed. Anal. 2022, 212, 114630. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, L.; Visky, D.; Xie, R.; Shao, S.; Liang, X. Derivatization of Genotoxic Nitroaromatic Impurities for Trace Analysis by LC-MS. Anal. Methods 2014, 6, 7277–7284. [Google Scholar] [CrossRef]
- Venugopal, N.; Vijaya Bhaskar Reddy, A.; Madhavi, G.; Jaafar, J.; Madhavi, V.; Gangadhara Reddy, K. Trace Level Quantification of 1-(3-Chloropropyl)-4-(3-Chlorophenyl)Piperazine HCl Genotoxic Impurity in Trazodone Using LC–MS/MS. Arab. J. Chem. 2019, 12, 1615–1622. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, H.; Zhou, Y.; Qian, X.; Tu, J.; Chen, B.; Duan, G. Development and Validation of a Sensitive Method for Alkyl Sulfonate Genotoxic Impurities Determination in Drug Substances Using Gas Chromatography Coupled to Triple Quadrupole Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 168, 23–29. [Google Scholar] [CrossRef]
- Khan, M.; Jayasree, K.; Reddy, K.V.S.R.K.; Dubey, P.K. A Validated CE Method for Determining Dimethylsulfate a Carcinogen and Chloroacetyl Chloride a Potential Genotoxin at Trace Levels in Drug Substances. J. Pharm. Biomed. Anal. 2012, 58, 27–33. [Google Scholar] [CrossRef]
- Ji, S.; Gao, H.; Xia, X.; Zheng, F. A New HPLC-UV Derivatization Approach for the Determination of Potential Genotoxic Benzyl Halides in Drug Substances. RSC Adv. 2019, 9, 25797–25804. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Feng, J.; Wu, S.; Shao, H.; Zhang, W.; Zhang, K.; Zhang, H.; Yang, Q. Determination of Methyl Methanesulfonate and Ethyl Methylsulfonate in New Drug for the Treatment of Fatty Liver Using Derivatization Followed by High-Performance Liquid Chromatography with Ultraviolet Detection. Molecules 2022, 27, 1950. [Google Scholar] [CrossRef]
- Ho, T.D.; Yehl, P.M.; Chetwyn, N.P.; Wang, J.; Anderson, J.L.; Zhong, Q. Determination of Trace Level Genotoxic Impurities in Small Molecule Drug Substances Using Conventional Headspace Gas Chromatography with Contemporary Ionic Liquid Diluents and Electron Capture Detection. J. Chromatogr. A 2014, 1361, 217–228. [Google Scholar] [CrossRef]
- Azzam, K.M.; Aboul-Enein, H.Y. Recent Advances in Analysis of Hazardous Genotoxic Impurities in Pharmaceuticals by HPLC, GC, and CE. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 1–7. [Google Scholar] [CrossRef]
- Liu, D.Q.; Sun, M.; Kord, A.S. Recent Advances in Trace Analysis of Pharmaceutical Genotoxic Impurities. J. Pharm. Biomed. Anal. 2010, 51, 999–1014. [Google Scholar] [CrossRef]
- Elder, D.P.; Lipczynski, A.M.; Teasdale, A. Control and Analysis of Alkyl and Benzyl Halides and Other Related Reactive Organohalides as Potential Genotoxic Impurities in Active Pharmaceutical Ingredients (APIs). J. Pharm. Biomed. Anal. 2008, 48, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Dispas, A.; Avohou, H.T.; Lebrun, P.; Hubert, P.; Hubert, C. ‘Quality by Design’ Approach for the Analysis of Impurities in Pharmaceutical Drug Products and Drug Substances. TrAC Trends Anal. Chem. 2018, 101, 24–33. [Google Scholar] [CrossRef]
- Tome, T.; Žigart, N.; Časar, Z.; Obreza, A. Development and Optimization of Liquid Chromatography Analytical Methods by Using AQbD Principles: Overview and Recent Advances. Org. Process Res. Dev. 2019, 23, 1784–1802. [Google Scholar] [CrossRef] [Green Version]
- International Council for Harmonisation Guideline M7 (R1) on Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk Step 4 Version. 2017. Available online: https://database.ich.org/sites/default/files/M7_R1_Guideline.pdf (accessed on 3 May 2022).
- Kormány, R.; Rácz, N.; Fekete, S.; Horváth, K. Development of a Fast and Robust Uhplc Method for Apixaban In-Process Control Analysis. Molecules 2021, 26, 3505. [Google Scholar] [CrossRef]
- Dinh, N.P.; Shamshir, A.; Hulaj, G.; Jonsson, T. Validated Modernized Assay for Foscarnet in Pharmaceutical Formulations Using Suppressed Ion Chromatography Developed through a Quality by Design Approach. Separations 2021, 8, 209. [Google Scholar] [CrossRef]
- Kumar, K.Y.K.; Dama, V.R.; Suchitra, C.; Maringanti, T.C. A Simple, Sensitive, High-Resolution, Customized, Reverse Phase Ultra-High Performance Liquid Chromatographic Method for Related Substances of a Therapeutic Peptide (Bivalirudin Trifluoroacetate) Using the Quality by Design Approach. Anal. Methods 2020, 12, 304–316. [Google Scholar] [CrossRef]
- Rub, R.A.; Beg, S.; Kazmi, I.; Afzal, O.; Almalki, W.H.; Alghamdi, S.; Akhter, S.; Ali, A.; Ahmed, F.J. Systematic Development of a Bioanalytical UPLC-MS/MS Method for Estimation of Risperidone and Its Active Metabolite in Long-Acting Microsphere Formulation in Rat Plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1160. [Google Scholar] [CrossRef]
- Alkhateeb, F.L.; Wilson, I.; Maziarz, M.; Rainville, P. Ultra High-Performance Liquid Chromatography Method Development for Separation of Formoterol, Budesonide, and Related Substances Using an Analytical Quality by Design Approach. J. Pharm. Biomed. Anal. 2021, 193, 113729. [Google Scholar] [CrossRef]
- Tome, T.; Obreza, A.; Časar, Z. Developing an Improved UHPLC Method for Efficient Determination of European Pharmacopeia Process-Related Impurities in Ropinirole Hydrochloride Using Analytical Quality by Design Principles. Molecules 2020, 25, 2691. [Google Scholar] [CrossRef]
- Žigart, N.; Časar, Z. Development of a Stability-Indicating Analytical Method for Determination of Venetoclax Using AQbD Principles. ACS Omega 2020, 5, 17726–17742. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, C. Application of Quality by Design Concept to Develop a Dual Gradient Elution Stability-Indicating Method for Cloxacillin Forced Degradation Studies Using Combined Mixture-Process Variable Models. J. Chromatogr. A 2017, 1514, 44–53. [Google Scholar] [CrossRef]
- Tome, T.; Casar, Z. Development of a Unified Reversed-Phase HPLC Method for E Ffi Cient Determination of EP and USP Process-Related Impurities in Celecoxib Using Analytical Quality by Design Principles. Molecules 2020, 25, 809. [Google Scholar] [CrossRef] [Green Version]
- Kasagić-Vujanović, I.; Jančić-Stojanović, B. Quality by Design Oriented Development of Hydrophilic Interaction Liquid Chromatography Method for the Analysis of Amitriptyline and Its Impurities. J. Pharm. Biomed. Anal. 2019, 173, 86–95. [Google Scholar] [CrossRef]
- International Council for Harmonisation Guideline on Q2(R1) Validation of Analytical Procedures: Text and Methodology Step 4 Version. 2005. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 3 May 2022).
- International Council for Harmonisation Guideline on M7 Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk—Addendum Step 2b. 2021. Available online: https://www.ema.europa.eu/documents/scientific-guideline/draft-ich-guideline-m7-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit_en.pdf (accessed on 3 May 2022).
- Lhasa Carcinogenicity Database. Available online: https://carcdb.lhasalimited.org (accessed on 3 May 2022).
- National Institute of Health Sciences Website. Available online: http://www.nihs.go.jp/dgm/amesqsar.html (accessed on 3 May 2022).
- Bercu, J.P.; Galloway, S.M.; Parris, P.; Teasdale, A.; Masuda-Herrera, M.; Dobo, K.; Heard, P.; Kenyon, M.; Nicolette, J.; Vock, E.; et al. Potential Impurities in Drug Substances: Compound-Specific Toxicology Limits for 20 Synthetic Reagents and by-Products, and a Class-Specific Toxicology Limit for Alkyl Bromides. Regul. Toxicol. Pharmacol. 2018, 94, 172–182. [Google Scholar] [CrossRef]
- Barber, E.D.; Donish, W.H.; Mueller, K.R. A procedure for the quantitative measurement of the mutagenicity of volatile liquids in the Ames Salmonella/microsome assay. Mutat. Res. Genet. Toxicol. 1981, 90, 31–48. [Google Scholar] [CrossRef]
- Seifried, H.E.; Seifried, R.M.; Clarke, J.J.; Junghans, T.B.; San, R.H.C. A Compilation of Two Decades of Mutagenicity Test Results with the Ames Salmonella Typhimurium and L5178Y Mouse Lymphoma Cell Mutation Assays. Chem. Res. Toxicol. 2006, 19, 627–644. [Google Scholar] [CrossRef]
- International Council for Harmonisation Guideline on Q3C (R8) Residual Solvents Step 4 Version 2021. Available online: https://database.ich.org/sites/default/files/ICH_Q3C-R8_Guideline_Step4_2021_0422_1.pdf (accessed on 3 May 2022).
- International Council for Harmonisation Guideline on Q14 Analytical Procedure Development Draft Version 2022. Available online: https://database.ich.org/sites/default/files/ICH_Q14_Document_Step2_Guideline_2022_0324.pdf (accessed on 3 May 2022).
- Lhasa Website. Available online: https://www.lhasalimited.org (accessed on 3 May 2022).
- Amberg, A.; Beilke, L.; Bercu, J.; Bower, D.; Brigo, A.; Cross, K.P.; Custer, L.; Dobo, K.; Dowdy, E.; Ford, K.A.; et al. Principles and Procedures for Implementation of ICH M7 Recommended (Q)SAR Analyses. Regul. Toxicol. Pharmacol. 2016, 77, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Vega Hub Website. Available online: https://www.vegahub.eu (accessed on 3 May 2022).
Abbreviation | Name | CAS No. | Derek Prediction | Sarah Prediction | VEGA Prediction | ICH M7 Class |
---|---|---|---|---|---|---|
1BB | 1-Bromobutane | 109-65-9 | Plausible | Positive | Positive | Class 2 |
BE | Bromoethane | 74-96-4 | Plausible | Positive | Positive | Class 1 |
VB | Vinyl bromide | 593-60-2 | Probable | Positive | Positive | Class 1 |
2BP | 2-Bromopropane | 75-26-3 | Plausible | Positive | Positive | Class 2 |
2BB | 2-Bromobutane | 78-76-2 | Plausible | Positive | Positive | Class 2 |
4B1B | 4-Bromo-1-butene | 5162-44-7 | Plausible | Positive | Positive | Class 2 |
2CP | 2-Chloropropane | 75-29-6 | Plausible | Positive | Positive | Class 2 |
2C1P | 2-Chloro-1-propene | 557-98-2 | Plausible | Positive | Positive | Class 2 |
3C2M1P | 3-Chloro-2-methyl-1-propene | 563-47-3 | Plausible | Positive | Positive | Class 1 |
3I1P | 3-Iodo-1-propene | 513-48-4 | Plausible | Positive | Positive | Class 2 |
1B2CE | 1-Bromo-2-chloroethane | 107-04-0 | Plausible | Positive | Positive | Class 2 |
1B3CP | 1-Bromo-3-chloropropane | 109-70-6 | Plausible | Positive | Positive | Class 2 |
12DCE | 1,2-Dichloroethane | 107-06-2 | Plausible | Positive | Positive | Class 1 |
12DCP | 1,2-Dichloropropane | 78-87-5 | Plausible | Positive | Positive | Class 1 |
13DBP | 1,3-Dibromopropane | 109-64-8 | Plausible | Positive | Negative | Class 2 |
11DBE | 1,1-Dibromoethane | 557-91-5 | Plausible | Positive | Negative | Class 2 |
12DBP | 1,2-Dibromopropane | 78-75-1 | Plausible | Positive | Positive | Class 2 |
14DBB | 1,4-Dibromobutane | 110-52-1 | Plausible | Positive | Positive | Class 2 |
DIM | Diiodomethane | 75-11-6 | Probable | Positive | Negative | Class 2 |
DoE for Method A | DoE for Method B | ||||||||
---|---|---|---|---|---|---|---|---|---|
No. Run | Flow Rate | Initial Temp. | Ramping Rate | Injector Temp. | No. Run | Flow Rate | Initial Temp. | Ramping Rate | Injector Temp. |
A-1 | 2.0 | 35 | 2.5 | 225 | B-1 | 2.5 | 40 | 2.0 | 225 |
A-2 | 2.0 | 65 | 2.5 | 225 | B-2 | 2.5 | 90 | 2.0 | 225 |
A-3 | 0.3 | 35 | 2.0 | 225 | B-3 | 1.0 | 40 | 1.5 | 225 |
A-4 | 2.0 | 35 | 2.5 | 215 | B-4 | 2.5 | 40 | 2.0 | 215 |
A-5 | 2.0 | 35 | 2.0 | 225 | B-5 | 2.5 | 40 | 1.5 | 225 |
A-6 | 2.0 | 35 | 2.0 | 215 | B-6 | 2.5 | 40 | 1.5 | 215 |
A-7 | 0.3 | 35 | 2.5 | 225 | B-7 | 1.0 | 40 | 2.0 | 225 |
A-8 | 2.0 | 65 | 2.5 | 215 | B-8 | 2.5 | 90 | 2.0 | 215 |
A-9 | 1.2 | 50 | 2.3 | 220 | B-9 | 1.8 | 65 | 1.8 | 220 |
A-10 | 1.2 | 50 | 2.3 | 220 | B-10 | 1.8 | 65 | 1.8 | 220 |
A-11 | 1.2 | 50 | 2.3 | 220 | B-11 | 1.8 | 65 | 1.8 | 220 |
A-12 | 0.3 | 65 | 2.5 | 215 | B-12 | 1.0 | 90 | 2.0 | 215 |
A-13 | 2.0 | 65 | 2.0 | 215 | B-13 | 2.5 | 90 | 1.5 | 215 |
A-14 | 0.3 | 65 | 2.5 | 225 | B-14 | 1.0 | 90 | 2.0 | 225 |
A-15 | 0.3 | 65 | 2.0 | 215 | B-15 | 1.0 | 90 | 1.5 | 215 |
A-16 | 0.3 | 65 | 2.0 | 225 | B-16 | 1.0 | 90 | 1.5 | 225 |
A-17 | 2.0 | 65 | 2.0 | 225 | B-17 | 2.5 | 90 | 1.5 | 225 |
A-18 | 1.2 | 50 | 2.3 | 220 | B-18 | 1.8 | 65 | 1.8 | 220 |
A-19 | 0.3 | 35 | 2.5 | 215 | B-19 | 1.0 | 40 | 2.0 | 215 |
A-20 | 0.3 | 35 | 2.0 | 215 | B-20 | 1.0 | 40 | 1.5 | 215 |
Sum of Squares | DF* | Mean Square | F-Ratio | p-Value | Sum of Squares | DF | Mean Square | F-Ratio | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VB | A* | 363,545 | 4 | 90,886 | 123.65 | <0.01 | 3I1P | 7,891,128 | 5 | 1,578,225 | 35.98 | <0.01 |
2C1P | R* | 2.31 | 9 | 0.25 | 115.00 | <0.01 | 1BB | 57.83 | 4 | 14.45 | 39.10 | <0.01 |
A | 28,372,838 | 1 | 28,372,838 | 134.66 | <0.01 | 703,483 | 1 | 703,483 | 84.49 | <0.01 | ||
2CP | R | 2.50 | 6 | 0.41 | 723.67 | <0.01 | 1B2CE | 44.15 | 3 | 14.71 | 58.83 | <0.01 |
A | 1,617,766 | 2 | 808,883 | 55.08 | <0.01 | 135,246 | 2 | 67,623 | 38.70 | <0.01 | ||
BE | R | 25.01 | 7 | 3.57 | 382.44 | <0.01 | 11DBE | 26.54 | 3 | 8.8497 | 62.24 | <0.01 |
A | 5,578,546 | 1 | 5,578,546 | 171.11 | <0.01 | 109,070 | 2 | 54,535 | 240.22 | <0.01 | ||
2BP | R | 449.97 | 3 | 149.99 | 839.29 | <0.01 | 12DBP | 5,359 | 3 | 1,786 | 176.64 | <0.01 |
A | 174,573 | 2 | 87,286 | 58.73 | <0.01 | 1,562,157 | 5 | 312,431 | 47.35 | <0.01 | ||
3C2M1P | R | 60.00 | 5 | 12.00 | 675.49 | <0.01 | 1B3CP | 31.74 | 10 | 3.17 | 122.00 | <0.01 |
A | 313,435 | 1 | 313,435 | 133.11 | <0.01 | 512,151 | 10 | 51,215 | 57.34 | <0.01 | ||
12DCE | R | 370.90 | 8 | 46.36 | 207.03 | <0.01 | DIM | 308.94 | 6 | 51 | 133.18 | <0.01 |
A | 336,637 | 6 | 56,106 | 185.06 | <0.01 | 1,205,161 | 3 | 401,720 | 19.31 | <0.01 | ||
2BB | R | 127.72 | 7 | 18.24 | 114.85 | <0.01 | 13DBP | 1.63 | 3 | 0.54 | 79.58 | <0.01 |
A | 1,122,779 | 2 | 561,389 | 56.16 | <0.01 | <0.0001 | 9 | <0.0001 | 20.92 | <0.01 | ||
12DCP | R | 144.53 | 5 | 28.90 | 159.55 | <0.01 | 14DBB | 3,483 | 2 | 1,741 | 153.26 | <0.01 |
A | 252,402 | 1 | 252,402 | 176.19 | <0.01 | 12,128 | 7 | 1,732 | 8.42 | <0.01 | ||
4B1B | R | 10.91 | 3 | 3.63 | 66.17 | <0.01 | ||||||
A | 0.0003 | 4 | <0.0001 | 36.66 | <0.01 |
DoE for Method A | DoE for Method B | ||||
---|---|---|---|---|---|
No. Run | Flow Rate | Initial Temp. | No. Run | Flow Rate | Initial Temp. |
A-1 | 1.7 | 45 | B-1 | 1.8 | 90 |
A-2 | 1.7 | 40 | B-2 | 1.8 | 65 |
A-3 | 2.0 | 40 | B-3 | 2.5 | 65 |
A-4 | 2.0 | 45 | B-4 | 2.5 | 90 |
A-5 | 1.3 | 35 | B-5 | 1.0 | 40 |
A-6 | 1.3 | 40 | B-6 | 1.0 | 65 |
A-7 | 1.7 | 40 | B-7 | 1.8 | 65 |
A-8 | 2.0 | 35 | B-8 | 2.5 | 40 |
A-9 | 1.7 | 40 | B-9 | 1.8 | 65 |
A-10 | 1.7 | 40 | B-10 | 1.8 | 65 |
A-11 | 1.7 | 35 | B-11 | 1.8 | 40 |
A-12 | 1.3 | 45 | B-12 | 1.0 | 90 |
Sum of Squares | DF* | Mean Square | F-Ratio | p-Value | Sum of Squares | DF | Mean Square | F-Ratio | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VB | A* | 39,784 | 3 | 13,261.43 | 10.4579 | <0.01 | 3I1P | 5,270,439.51 | 4 | 1,317,609 | 56.0824 | <0.01 |
2C1P | R* | 0.3267 | 1 | 0.3267 | 26.6667 | <0.01 | 1BB | 2.1687 | 2 | 1.0844 | 7.0698 | 0.014 |
A | 5,078,587 | 3 | 1,692,862 | 10.3662 | <0.01 | 171,839 | 3 | 57,279 | 52.615 | <0.01 | ||
2CP | R | 3.1395 | 4 | 0.7849 | 16.018 | <0.01 | 1B2CE | 1.5 | 1 | 1.5 | 5.1546 | 0.047 |
A | 658,727 | 3 | 219,575. | 14.451 | <0.01 | 23,564.55 | 1 | 23,564 | 48.6432 | <0.01 | ||
BE | R | 1.1267 | 1 | 1.1267 | 29.9778 | <0.01 | 11DBE | 1.9267 | 1 | 1.9267 | 6.0397 | 0.034 |
A | 125,017 | 3 | 41,672 | 13.1523 | <0.01 | 4,647.75 | 3 | 1,549 | 4.2898 | 0.044 | ||
2BP | R | 27.9528 | 3 | 9.3176 | 29.3893 | <0.01 | 12DBP | 1,631.06 | 3 | 543.6883 | 52.3332 | <0.01 |
A | <0.01 | 3 | <0.01 | 41.9238 | <0.01 | 6,255,223.87 | 4 | 1,563,805 | 12.6797 | <0.01 | ||
3C2M1P | R | 5.5787 | 3 | 1.8596 | 14.2526 | <0.01 | 1B3CP | 3.1758 | 2 | 1.5879 | 11.8351 | <0.01 |
A | 49,069 | 3 | 16,356 | 32.7338 | <0.01 | 496,361.17 | 2 | 248,180 | 12.5135 | <0.01 | ||
12DCE | R | 38.805 | 3 | 12.935 | 4.3709 | 0.042 | DIM | 53.0399 | 2 | 26.5199 | 10.9916 | <0.01 |
A | 21,604 | 2 | 10,802 | 16.9309 | <0.01 | 1,008,620.08 | 1 | 1,008,620 | 8.8133 | 0.014 | ||
2BB | R | 7.935 | 1 | 7.935 | 13.79 | <0.01 | 13DBP | 0.0158 | 2 | 0.0079 | 52.7139 | <0.01 |
A | 370,632 | 3 | 123,544 | 97.5273 | <0.01 | 150,401.39 | 2 | 75,200 | 4.538 | 0.048 | ||
12DCP | R | 17.2294 | 3 | 5.7431 | 10.4585 | <0.01 | 14DBB | 2185.18 | 3 | 728.3925 | 12.1323 | <0.01 |
A | 42,511 | 3 | 14,170 | 23.6012 | <0.01 | 172,456.65 | 2 | 86,228 | 8.2038 | <0.01 | ||
4B1B | R | 0.8388 | 2 | 0.4194 | 13.9608 | <0.01 | ||||||
A | 113,294 | 3 | 37,764 | 13.383 | <0.01 |
Specificity | Sensitivity (ppm) | Linearity | Accuracy (%) | Precision (%RSD) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Name | Resolution | LOD* | LOQ* | R* | Slope | y-Intercept | Low | Mid | High | Repeat- Ability | LOQ Level |
Acceptance Criteria | ≥1.5 | ≤0.3 ppm | ≤1.0 ppm | ≥0.995 | - | - | ≥85.0 % | ≥85.0 % | ≥85.0 % | ≤10 %RSD | ≤10 %RSD |
VB | - | 0.09 | 0.29 | 0.9989 | 137.91 | 15.699 | 90.84 | 97.90 | 92.57 | 4.01 | 4.35 |
2C1P | 1.5 | 0.01 | 0.03 | 0.9990 | 1215.68 | 109.155 | 87.97 | 97.64 | 92.75 | 5.45 | 3.35 |
2CP | 5.4 | 0.03 | 0.10 | 0.9993 | 402.58 | 29.440 | 86.79 | 93.95 | 90.08 | 4.51 | 3.47 |
BE | 4.6 | 0.01 | 0.04 | 0.9997 | 304.53 | 37.785 | 90.72 | 95.23 | 89.52 | 3.69 | 2.11 |
2BP | 17.4 | 0.05 | 0.16 | 0.9997 | 170.84 | 4.359 | 90.73 | 96.36 | 91.21 | 2.99 | 1.80 |
3C2M1P | 5.2 | 0.03 | 0.09 | 0.9994 | 298.47 | −1.804 | 95.29 | 98.51 | 93.85 | 1.94 | 1.80 |
12DCE | 18.4 | 0.04 | 0.13 | 0.9996 | 212.38 | 13.247 | 99.58 | 99.16 | 93.33 | 3.20 | 6.43 |
2BB | 12.6 | 0.01 | 0.04 | 0.9996 | 529.32 | 8.433 | 100.64 | 103.81 | 98.26 | 2.07 | 1.61 |
12DCP | 12.2 | 0.04 | 0.14 | 0.9975 | 192.29 | 24.495 | 98.07 | 97.78 | 90.49 | 3.33 | 3.31 |
4B1B | 2.8 | 0.02 | 0.06 | 0.9996 | 347.26 | 58.163 | 97.93 | 97.02 | 91.62 | 2.91 | 1.34 |
1BB | 8.2 | 0.02 | 0.05 | 0.9994 | 304.80 | 38.029 | 98.91 | 99.47 | 93.24 | 2.04 | 1.93 |
1B2CE | 8.3 | 0.05 | 0.16 | 0.9998 | 153.73 | 6.450 | 100.21 | 96.61 | 92.26 | 4.48 | 4.31 |
11DBE | 5.9 | 0.05 | 0.18 | 0.9993 | 158.29 | −2.456 | 101.25 | 99.50 | 95.67 | 3.42 | 3.81 |
3I1P | - | 0.07 | 0.25 | 0.9997 | 619.84 | 19.912 | 96.77 | 92.01 | 96.52 | 3.36 | 2.28 |
12DBP | 27.8 | 0.07 | 0.25 | 0.9988 | 321.55 | −15.625 | 94.64 | 93.67 | 93.67 | 6.60 | 3.97 |
1B3CP | 5.3 | 0.10 | 0.33 | 0.9988 | 122.00 | 4.4667 | 95.70 | 97.30 | 95.51 | 5.41 | 1.82 |
DIM | 20.6 | 0.07 | 0.24 | 0.9991 | 318.22 | −5.9208 | 98.81 | 100.12 | 98.83 | 4.54 | 1.01 |
13DBP | 11.7 | 0.11 | 0.38 | 0.9999 | 100.11 | −0.7792 | 101.14 | 102.47 | 99.88 | 2.93 | 1.68 |
14DBB | 63.4 | 0.07 | 0.29 | 0.9993 | 55.283 | 3.3083 | 96.09 | 97.97 | 93.34 | 3.38 | 2.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Yoo, W.; Jeong, J.H. Analytical Method Development for 19 Alkyl Halides as Potential Genotoxic Impurities by Analytical Quality by Design. Molecules 2022, 27, 4437. https://doi.org/10.3390/molecules27144437
Lee K, Yoo W, Jeong JH. Analytical Method Development for 19 Alkyl Halides as Potential Genotoxic Impurities by Analytical Quality by Design. Molecules. 2022; 27(14):4437. https://doi.org/10.3390/molecules27144437
Chicago/Turabian StyleLee, Kyoungmin, Wokchul Yoo, and Jin Hyun Jeong. 2022. "Analytical Method Development for 19 Alkyl Halides as Potential Genotoxic Impurities by Analytical Quality by Design" Molecules 27, no. 14: 4437. https://doi.org/10.3390/molecules27144437
APA StyleLee, K., Yoo, W., & Jeong, J. H. (2022). Analytical Method Development for 19 Alkyl Halides as Potential Genotoxic Impurities by Analytical Quality by Design. Molecules, 27(14), 4437. https://doi.org/10.3390/molecules27144437