Antifungal Effects and Active Components of Ligusticum chuanxiong
Abstract
:1. Introduction
2. Results
2.1. Toxicity Determination of Extracts of CX
2.2. Bioassay of Extracts of CX In Vivo
2.2.1. Control Effect on Blumeria graminis
2.2.2. Control Effect on Fusarium graminearum
2.2.3. Control Effect on Botrytis cinerea
2.2.4. Control Effect on Colletotrichum gloeosporioides
2.3. Tracking Results of Antifungal Activity of Different Fractions of CX Extract by Silica Gel Column Chromatography
2.4. Separation and Purification and Tracking Results of Active Compounds by HPLC in CX Extract
2.5. Chemical Structure Identification of Active Compounds from CX
2.5.1. Compound CQ2
2.5.2. Compound CQ4
2.6. Antifungal Activity of Active Compounds Ingredients
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Extracts of CX
4.3. Toxicity Determination of Extracts of CX
4.4. Bioassay of Extracts of CX In Vivo
4.4.1. Control Effect on Blumeria graminis
4.4.2. Control Effect on Fusarium graminearum
4.4.3. Control Effect on Botrytis cinerea
4.4.4. Control Effect on Colletotrichum gloeosporioides
4.4.5. Data Processing and Analysis
4.5. Isolation, Purification and Structure Identification of Active Compounds from CX
4.5.1. Macroporous Resin Separation
4.5.2. Petroleum Ether Extraction and Silica Gel Column Chromatography
4.5.3. HPLC Preparation
4.5.4. Compound Structure Identification
4.5.5. Determination of Compound Activity
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.F.; Xu, Z. The research progress on botanical fungicides. J. South. Agric. 2018, 12, 40–42,45. [Google Scholar]
- Gao, Y.C. Study on the Antibacterial Effect of Polygonum orientale Essential Oils against Three Plant Pathogens. Ph.D. Thesis, Shanxi University, Taiyuan, China, 2020. [Google Scholar]
- Ni, L.; Shi, W.Y.; Yan, J.; Yan, J.; Wu, L.H. Content of Total Flavonoids and its antifungal effect Elsholtzia splendens. Bull. Sci. Technol. 2010, 26, 546–549. [Google Scholar]
- Wang, Y.; Sun, Y.; Zhou, M.X.; Wang, M.M.; Han, L.R.; Feng, J.T.; Zhang, X. Antiungal activities screening of 14 small molecular organic acids. J. Hebei Agric. Univ. 2018, 200, 26–32. [Google Scholar]
- Yang, T.; Shi, H.; Li, C.L.; Li, J.H.; Wang, L.H.; Li, G.Y.; Zhang, Z.H. Antifungal activitiy of 13 terpenoids against Colletotrichum gloeosporioides and Alternaria sp. Plant Prot. 2017, 43, 192–195. [Google Scholar]
- Zhang, X.J.; Zhang, Y.L.; Zuo, D.D. Research Progress on chemical constituents and pharmacological effects of Ligusticum chuanxiong. Hort. Inf. Tradit. Chin. Med. 2020, 37, 128–133. [Google Scholar]
- Han, W. Research Progress on chemical constituents and pharmacological effects of Ligusticum chuanxiong. Chin. Mod. Tradit. Med. 2017, 19, 1341–1349. [Google Scholar]
- Zhang, Y.L.; Yin, C.P. Fungistasis of extracts from 18 kinds of Chinese Herbs against plant pathogens. J. Jiangxi Plant Prot. 2010, 33, 75–78. [Google Scholar]
- Lee, I.S.; Huong, D.T.L.; Lee, M.S.; Kim, J.W.; Na, D.S.; Kim, Y.H. NFAT transcription Factor Inhibitory Cnostituents from Cnidium officinale. Nat. Prod. Sci. 2002, 8, 94–96. [Google Scholar]
- Naito, T.; Katsuhara, T.; Niitsu, K.; Ikeya, Y.; Okada, M.; Mitsuhashi, H. Two Phthalides from Ligusticum. chuangxiong. Phytochemistry 1992, 31, 639–642. [Google Scholar] [CrossRef]
- Zhang, J.L.; Yu, D.Q.; Zhou, Z.H. Studies on the Chemical Constituents of the Root and Rhizoma of Ligusticum jeholense. J. Pharm. 1996, 31, 33–37. [Google Scholar]
- Awat, W.; Florian, T.; Schevenels, Y.; Ratsami, L. Chemical Constituents and Their Biolocal Activities from The Roots of Diospyros filipendula. Nat. Prod. Res. 2019, 3, 46–47. [Google Scholar]
- Li, Q.; Wu, X.K. New Progress in Research on Chemical constituents and Pharmacological Action of Ligusticum. chuanxiong Hort. Chem. Eng. 2020, 34, 62–64, +44. [Google Scholar]
- Yao, S.Y.; Zhang, K.X.; Ma, Q.; Jin, Y.S. Preclinical research progress of Ligustilide. Pharm. Care Res. 2019, 19, 106–110. [Google Scholar] [CrossRef]
- Xie, J.; Huang, G.; Jin, C.Z. Application of chuanxiong and other Chinese herbal medicine extracts in Restraining Citrus pathogens and Citrus fresh-keeping. Chin. Agron. Bull. 2014, 30, 226–231. [Google Scholar]
- Cheng, X.M.; Peng, Y.J.; Yang, Y.; Xu, H.; Bu, F.W. Identification of the pathogen causing fruit penicilliosis on kiwifruit and the inhibition effect of Chinese herb extracts on the pathogen. Plant Prot. 2018, 44, 186–189. [Google Scholar]
- Tang, J.; Feng, S.; Hou, R.T.; Yang, Z.L. Study on the bacteriostatic and insecticidal effect of Ligusticum chuanxiong extract. Li Shizhen Med. Mater. Med. Res. 2008, 2437–2439. [Google Scholar]
- Zhang, L.J.; Liu, J.Y.; Yao, K.; Wang, X.Y.; Gao, S.; Liu, J.Y.; Sun, L.P. Research progress on pharmacological effects of lactone compounds of Ligusticum. chuanxiong. Chin. J. Pharm. 2015, 50, 1081–1084. [Google Scholar]
- Yang, Y.; Dou, G.J.; Yu, Z.Y.; He, H.; Wang, C.Q.; Li, L.; Zhou, J.; Liu, D.J.; Shi, J.Y.; Li, G.R. Z-Ligustilide Exerted Hormetic Effect on Growth and Detoxification Enzymes of Spodoptera Litura Larvae. Evid.-Based Complementary Altern. Med. 2018, 2018, 7104513. [Google Scholar]
- Chen, H.W.; Wu, J.W.; Zhuang, Y.Q.; Yang, H.F.; Wu, Q.Y.; Xu, C.; Miao, K.; Yao, K.B. Control efficacy of different fungicides on Fusarium head blight and deoxynivaleno in wheat grain L. Plant Prot. 2021, 47, 307–317. [Google Scholar]
- Zhang, T.; Wang, G.Q. Research advances in extraction of antimicrobial activity components from the plant materials. Guangdong Agric. Sci. 2011, 38, 59–62. [Google Scholar]
- Chen, X.L.; Pan, R.Q.; Gai, Y.P.; Yi, S.; Xiao, X.; Jiang, Z.D.; Xu, H.H. Antifungal activities in methanol extracts of 31 plant species against Phytophthora litchii and Colletotrichum gloeosporioides. Guangdong Agric. Sci. 2012, 39, 1–3. [Google Scholar]
- Wang, M.H.; Shen, H.M.; Zhou, X.M. Plant Chemical Protection Experiment; Peking University Press: Beijing, China, 2014; pp. 113–115. [Google Scholar]
- Wang, J.F.; Yan, X.J.; Yang, D.B.; Yan, H.Z. Toxcity Analysis of cyclopropanol against wheat powdery mildew as Alternative Triadimefon. Crop Mag. 2011, 28–31. [Google Scholar]
- Xie, D.; Cai, X.; Yang, C.; Xie, L.; Qin, G.; Zhang, M.; Huang, Y.; Gong, G.; Chang, X.; Chen, H. Studies on the control effect of Bacillus subtilis on wheat powdery mildew. Pest Manag. Sci. 2021, 77, 4375–4382. [Google Scholar] [CrossRef]
- GB/T 17980-22-2000; Pesticide-Guidelines for the Field Eficacy Trials (1)-Fungicides Against Cereal Powdery Mildew. Standards Press of China: Beijing, China, 2000; pp. 90–93.
- NY/T 1464.15_2007; Guidelines on Efficacy of Pesticides Part 15: Fungicides Against Fusarium Head Blight of Wheat. Standards Press of China: Beijing, China, 2007; pp. 1–4.
- Yang, X.N.; Wang, M.; Shen, R.P.; Liu, F. Microtiter Method to Test the Sensitivity of Botrytis cinerea to Fungicides. Chin. Agric. Sci. 2012, 45, 3075–3082. [Google Scholar]
- Zhang, S.; Liu, Y.C.; Yang, T.X. Toxicity Determination and Field Control Effects of Different Fungicides to Yam Anthracnose. Pesticides 2013, 52, 142–144. [Google Scholar]
- Gai, Z.X. Studies on the Infection Process and Main Physiological and Biochemical Changes of Colletotrichum gloeosporioides in Citrus; Chongqing Southwest University: Chongqing, China, 2016; pp. 12–13. [Google Scholar]
Plant Pathogen | Toxicity Regression Equation | Correlation Coefficient | EC50 (mg/L) | Confidence Interval (mg/L) |
---|---|---|---|---|
Fusarium graminearum | y = 1.1737x + 5.0210 | 0.9800 | 959.64 | (670,1370) |
Botrytis cinerea | y = 4.0417x + 8.5684 | 0.9909 | 130.95 | (110,160) |
Colletotrichum gloeosporioides | y = 0.8628x + 5.1074 | 0.8606 | 750.78 | (310,1810) |
Sclerotinia sclerotiorum | y = 2.8467x + 6.7523 | 0.9536 | 242.36 | (210,280) |
Fusarium oxysporum | y = 1.2462x + 5.1013 | 0.9804 | 826.49 | (570,1210) |
Fusarium lateritium | y = 0.8047x + 5.2308 | 0.9180 | 516.55 | (310,850) |
Alternaria alternata | y = 2.1608x + 6.0327 | 0.9624 | 332.73 | (270,420) |
Pythium aphanidermatum | y = 0.8966x + 5.4595 | 0.9471 | 307.29 | (130,720) |
Didymella glomerata | y = 1.5346x + 5.5024 | 0.9385 | 470.53 | (300,750) |
Phytophthora infestans | y = 1.1329x + 5.3577 | 0.9810 | 534.05 | (370,770) |
Treatment | Concentration | Protective Activity | Curative Activity | ||||
---|---|---|---|---|---|---|---|
(mg/L) | 7 d (%) | 9 d (%) | 11 d (%) | 7 d (%) | 9 d (%) | 11 d (%) | |
Extracts of CX | 4000 | 68.45 b | 64.71 b | 53.37 b | 55.77 b | 42.31 b | 36.64 b |
2000 | 66.71 b | 62.97 b | 51.42 b | 22.00 c | 21.37 c | 15.52 c | |
1000 | 52.46 c | 50.50 c | 49.15 b | 19.85 cd | 15.38 d | 11.62 d | |
500 | 48.39 cd | 47.37 cd | 48.54 b | 15.79 de | 12.55 e | 4.31 e | |
250 | 46.10 d | 43.86 d | 42.34 c | 14.98 e | 10.46 e | 1.71 ef | |
Prothioconazole | 100 | 92.31 a | 84.53 a | 80.32 a | 88.62 a | 76.35 a | 70.46 a |
Treatment | Concentration | Protective Effect | Curative Effect | ||||
---|---|---|---|---|---|---|---|
(mg/L) | 7 d (%) | 9 d (%) | 11 d (%) | 7 d (%) | 9 d (%) | 11 d (%) | |
CX | 1000 | 31.26 c | 9.12 c | 7.14 c | 25.01 c | 3.96 c | 2.38 c |
4000 | 50.01 b | 39.98 b | 11.90 b | 36.39 b | 32.82 b | 7.14 b | |
Tebuconazole | 86 | 71.88 a | 81.99 a | 88.10 a | 54.56 a | 87.50 a | 80.95 a |
Treatment | Concentration | Protective Effect | Curative Effect | ||||
---|---|---|---|---|---|---|---|
(mg/L) | 3 d (%) | 5 d (%) | 7 d (%) | 3 d (%) | 5 d (%) | 7 d (%) | |
2000 | 100.00 a | 100.00 a | 100.00 a | 100.00 a | 100.00 a | 100.00 a | |
CX | 1000 | 100.00 a | 100.00 a | 100.00 a | 100.00 a | 75.00 b | 45.47 b |
500 | 100.00 a | 62.51 b | 55.56 b | 100.00 a | 57.13 c | 9.11 c | |
Pyraclostrobin | 100 | 100.00 a | 100.00 a | 100.00 a | 100.00 a | 100.00 a | 100.00 a |
Treatment | Protective Effect | Curative Al Effect | |||
---|---|---|---|---|---|
Concentration (mg/L) | Average Diameters of Lesions (cm) | Inhibitory Rate (%) | Mean Diameter of Spot (cm) | Inhibitory Rate (%) | |
CX | 4000 | 0.83 | 48.04 b | 0.93 | 41.67 b |
2000 | 1.03 | 39.22 c | 1.18 | 26.04 c | |
1000 | 1.28 | 24.51 d | 1.47 | 8.33 d | |
Tebuconazole | 86 | 0.52 | 69.61 a | 0.54 | 66.15 a |
CK | - | 1.70 | - | 1.60 | - |
Samples | Concentration (mg/L) | Spore Germination Inhibition Rate (%) | |
---|---|---|---|
silica gel column chromatography | FrD1 | 400 | 72.35 |
FrD2 | 0.00 | ||
FrD3 | 74.69 | ||
FrD4 | 22.82 | ||
FrD5 | 0.00 | ||
FrD6 | 74.04 | ||
FrD7 | 21.56 | ||
HPLC | CQ1 | 62.25 | 92.85 |
CQ2 | 0.00 | ||
CQ3 | 93.64 | ||
CQ4 | 0.00 | ||
CQ5 | 95.86 |
No. | CQ2 a | CQ4 a | ||
---|---|---|---|---|
δH | δC | δH | δC | |
1 | 171.4 | 167.8 | ||
2 | / | |||
3 | 4.91 (dd, 3.7, 7.6) | 82.6 | 148.7 | |
3a | 161.6 | 124.1 | ||
4 | 2.44 (m) | 20.9 | 2.57 (t, 9.4) | 18.6 |
5 | 2.44 (m) | 22.5 | 2.43 (m) | 18.6 |
6 | 5.89 (dt, 3.4, 8.9) | 128.5 | 5.97 (m) | 130.0 |
7 | 6.20 (dt, 2.0, 9.7) | 116.9 | 6.24 (d, 9.5) | 117.2 |
7a | 124.6 | 147.2 | ||
8 | 1.86 (m); 1.51 (m) | 32.0 | 5.20 (t, 8.0) | 113.1 |
9 | 1.35 (m) | 26.8 | 2.34 (q, 7.6) | 28.2 |
10 | 1.35 (m) | 22.4 | 1.47 (m) | 22.5 |
11 | 0.89 (t, 7.1) | 14.0 | 0.93 (t, 7.4) | 13.9 |
Treatments | MIC (mg/L) | |||
---|---|---|---|---|
Fusarium graminearum | Botryis cinerea | Colletotrichum gloeosporioides | Fusarium oxysporum | |
Senkyunolide A | 7.81 | 250 | 250 | 250 |
Ligustilide | 62.25 | 125 | 500 | 250 |
pyraclostrobine | 40 | 2 | 1.25 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhao, Y.; Qin, G.; Bi, Y.; Yue, G.; Zhang, M.; Chang, X.; Qiu, X.; Luo, L.; Yang, C. Antifungal Effects and Active Components of Ligusticum chuanxiong. Molecules 2022, 27, 4589. https://doi.org/10.3390/molecules27144589
Chen H, Zhao Y, Qin G, Bi Y, Yue G, Zhang M, Chang X, Qiu X, Luo L, Yang C. Antifungal Effects and Active Components of Ligusticum chuanxiong. Molecules. 2022; 27(14):4589. https://doi.org/10.3390/molecules27144589
Chicago/Turabian StyleChen, Huabao, Yingchun Zhao, Guangwei Qin, Yan Bi, Guizhou Yue, Min Zhang, Xiaoli Chang, Xiaoyan Qiu, Liya Luo, and Chunping Yang. 2022. "Antifungal Effects and Active Components of Ligusticum chuanxiong" Molecules 27, no. 14: 4589. https://doi.org/10.3390/molecules27144589
APA StyleChen, H., Zhao, Y., Qin, G., Bi, Y., Yue, G., Zhang, M., Chang, X., Qiu, X., Luo, L., & Yang, C. (2022). Antifungal Effects and Active Components of Ligusticum chuanxiong. Molecules, 27(14), 4589. https://doi.org/10.3390/molecules27144589