Perspectives for Uses of Propolis in Therapy against Infectious Diseases
Abstract
:1. Introduction
2. Propolis Composition
3. Plant Resins and Honeybee Immunity
4. Safety: Current Pharmaceutical Drugs vs. Propolis
5. Antibacterial Activity
6. Antifungal Activity
7. Antiviral Activity
8. Synergy with Other Antimicrobial Substances
8.1. Propolis and Honey
8.2. Propolis and Antibiotics
8.3. Propolis and Antifungal Drugs
8.4. Propolis and Antiviral Drugs
9. Gaps in Studies about Antimicrobial Activity of Propolis
10. Propolis Uses in Therapy against Infectious Diseases: Clinical Trials
10.1. Standardized Propolis Extracts
10.2. Dentistry Clinical Therapy
10.3. COVID-19
11. Propolis Production and Beekeeping: Environmental and Social-Economic Benefits
12. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmcognosy Rev. 2021, 6, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, K. Paleomedicine and the evolutionary context of medicinal plant use. Rev. Bras. Farmacogn. 2021, 31, 1–15. [Google Scholar] [CrossRef]
- Powell, J.M. Ethnobotany. In New Guinea Vegetation; Paijmans, K., Ed.; Australia National University Press: Canberra, Australia, 1976; pp. 106–183. [Google Scholar]
- Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid.-Based Complementary Altern. Med. 2015, 2015, 206439. [Google Scholar] [CrossRef] [PubMed]
- Kuropatnicki, A.; Szliszka, E.; Krol, W. Historical aspects of propolis research in modern times. Evid.-Based Complementary Altern. Med. 2013, 2013, 964149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagh, V.D. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv. Pharmacol. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef] [Green Version]
- Sforcin, J.M.; Orsi, R.O.; Bankova, V. Effec of propolis, some isolated compounds and its source plant on antibody production. J. Ethnopharmacol. 2005, 98, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef]
- Da Silva, M.V.; Moura, N.G., Jr.; Motoyama, A.B.; Ferreira, V.M. A review of the potential therapeutic and cosmetic use of propolis in topical formulations. J. Appl. Pharm. Sci. 2019, 10, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef]
- Zulhendri, F.; Chandrasekaran, K.; Kowacz, M.; Ravalia, M.; Kripal, K.; Fearnley, J.; Perera, C. Antiviral, Antibacterial, Antifungal, and Antiparasitic Properties of Propolis: A Review. Foods 2021, 10, 1360. [Google Scholar] [CrossRef] [PubMed]
- Šturm, L.; Ulrih, N.P. Advances in the Propolis Chemical Composition between 2013 and 2018: A Review. eFood 2020, 1, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Kasote, D.; Bankova, V.; Viljoen, A.V. Propolis: Chemical diversity and challenges in quality control. Phytochem. Rev. 2022, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.B.; Putarov, T.; Orsi, R.O. Pollen spectrum of propolis samples from São Paulo state, Brazil. Acta Sci. Anim. Sci. 2013, 45, 297–300. [Google Scholar] [CrossRef]
- Salatino, A.; Salatino, M.L.F. Scientific note: Often quoted, but not factual data about propolis composition. Apidologie 2021, 52, 312–314. [Google Scholar] [CrossRef]
- Avelino, L.O.; Santos, F.D.A.R.D. The presence of Fabaceae in the pollen profile of propolis produced in northeastern Brazil. Acta Bot. Bras. 2018, 32, 602–614. [Google Scholar] [CrossRef]
- Wieczorek, P.P.; Hudz, N.; Yezerska, O.; Horčinová-Sedláčková, V.; Shanaida, M.; Korytniuk, O.; Jasicka-Misiak, I. Chemical Variability and Pharmacological Potential of Propolis as a Source for the Development of New Pharmaceutical Products. Molecules 2022, 27, 1600. [Google Scholar] [CrossRef]
- Nina, N.; Quispe, C.; Jimenez-Aspee, F.; Theoduloz, C.; Gimenea, A.; Schmeda-Hirschmann, G. Chemical profiling and antioxidant activity of Bolivian propolis. J. Sci. Food Agric. 2016, 96, 2142–2153. [Google Scholar] [CrossRef]
- Salatino, A.; Salatino, M.L.F.; Negri, G. How diverse is the chemistry and plant origin of Brazilian propolis? Apidologie 2021, 52, 1075–1097. [Google Scholar] [CrossRef]
- BRASIL: Normative Instruction n. 3., Attachment VI.; Technical Regulation of Identity and Quatlity of Propolis. Official Diary fo the Federative Republic of Brazil. Agriculture Ministry, Brasília. 2001. (In Portuguese). Available online: http://iberpharm.com.br/www/arquivos/IN03-19-01-2001.pdf (accessed on 26 April 2022).
- Custodio, A.R.; Ferreira, M.M.C.; Negri, G.; Salatino, A. Clustering of comb and propolis waxes based on the distribution of aliphatic constituents. J. Braz. Chem. Soc. 2003, 14, 354–357. [Google Scholar] [CrossRef] [Green Version]
- Ishida, V.F.C.; Negri, G.; Salatino, A.; Bandeira, M.F.C.L. A new type of Brazilian propolis: Prenylated benzophenones in propolis from Amazon and effects against cariogenic bacteria. Food Chem. 2011, 125, 966–972. [Google Scholar] [CrossRef]
- Cuesta-Rubio, O.; Frontana-Uribe, B.A.; Ramírez-Apan, T.; Cárdenas, J. Polyisoprenylated Benzophenones In Cuban Propolis; Biological Activity Of Nemorosone §. Z. Nat. C 2002, 57, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Rufatto, L.C.; dos Santos, D.A.; Marinho, F.; Henriques, J.A.P.; Ely, M.R.; Moura, S. Red propolis: Chemical composition and pharmacological activity. Asian Pac. J. Trop. Biomed. 2017, 7, 591–598. [Google Scholar] [CrossRef]
- Kumazawa, S.; Murase, M.; Momose, N.; Fukumoto, S. Analysis of antioxidant prenylflavonoids in different parts of Macaranga tanarius, the plant origin of Okinawan propolis. Asian Pac. J. Trop. Med. 2014, 7, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Duke, C.C.; Tran, V.H.; Duke, R.K.; Abu-Mellal, A.; Plunkett, G.T.; King, D.I.; Hamid, K.; Wilson, K.; Barrett, R.; Bruhl, J.J. A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes. Phytochemistry 2017, 134, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, S.; Eapen, B.; Chundi, S.M.; Akhalil, A.; Siheri, W.; Clements, C.; Fearnley, J.; Watson, D.G.; Edrada-Ebel, R. New anti-trypanosomal active prenylated compounds from African propolis. Phytochem. Lett. 2014, 10, 35–39. [Google Scholar] [CrossRef]
- Sarikahya, N.B.; Gören, A.C.; Okkali, G.S.; Çöven, F.O.; Orman, B.; Kirci, D.; Yücel, B.; Kisla, D.; Demirci, B.; Altun, M.; et al. Chemical composition and biological activities of propolis samples from different geographical regions of Turkey. Phytochem. Lett. 2021, 44, 129–136. [Google Scholar] [CrossRef]
- Schmidt, E.M.; Stock, D.; Chada, F.J.G.; Finger, D.; Sawaya, A.C.H.F.; Eberlin, M.N.; Felsner, M.L.; Quináia, S.P.; Monteiro, M.C.; Torres, Y.R. A Comparison between Characterization and Biological Properties of Brazilian Fresh and Aged Propolis. BioMed Res. Int. 2014, 2014, 257617. [Google Scholar] [CrossRef] [Green Version]
- Tran, V.H.; Duke, R.K.; Abu-Mellal, A.; Duke, C.C. Propolis with high flavonoid content collected by honey bees from Acacia paradoxa. Phytochemistry 2012, 81, 126–132. [Google Scholar] [CrossRef]
- Petrova, A.; Popova, M.; Kuzmanova, C.; Tsvetkova, I.; Haydenski, H.; Muli, E.; Bankova, V. New biologically active compounds from Kenyan propolis. Fitoterapia 2010, 81, 509–514. [Google Scholar] [CrossRef]
- Inui, S.; Shimamura, Y.; Masuda, S.; Shirafuji, K.; Moli, R.T.; Kumazawa, S. A New Prenylflavonoid Isolated from Propolis Collected in the Solomon Islands. Biosci. Biotechnol. Biochem. 2012, 76, 1038–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Katircioglu, H.; Mercan, H. Antimiocrobial activity and chemical compositions of Turkish propolis from different regions. Afr. J. Biotechnol. 2006, 5, 1151–1153. [Google Scholar]
- Mohammadzadeh, S.; Shariatpanahi, M.; Hamedi, M.; Ahmadkhaniha, R.; Samadi, N.; Ostad, S.N. Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food Chem. 2007, 103, 1097–1103. [Google Scholar] [CrossRef]
- Siheri, W.; Alenezi, S.; Tusiimire, J.; Watson, D.G. The Chemical and Biological Properties of Propolis. In Bee Products-Chemical and Biological Properties; Alvarez-Suarez, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 137–178. [Google Scholar] [CrossRef]
- Amarante, J.F.; Ribeiro, M.F.; Costa, M.M.; Menezes, F.G.; Silva, T.M.S.; Amarante, T.A.B.; Gradela, A.; Moura, L.M.D. Chemical composition and antimicrobial activity of two extract of propolis against isolates of Staphylococcus spp. and multiresistant bacterials. Pesqui. Vet. Bras. 2019, 29, 734–743. [Google Scholar] [CrossRef] [Green Version]
- Do Nascimento, T.G.N.; Arruda, R.E.S.; Almeida, E.T.C.; Oliveira, J.M.S.; Basílio-Júnior, I.D.; Porto, I.C.C.M.; Sabino, A.R.; Tonholo, J.; Gray, A.; Eber, R.E.; et al. Comprehensive multavariate correlations between climatic effect, metabolite-profile, antioxidante capacity and antibacterial activity of Brazilian red propolis metabolites during seasonal study. Sci. Rep. 2019, 9, 18293. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2018, 33, 13–40. [Google Scholar] [CrossRef] [Green Version]
- Rubin, J.E.; Ball, K.R.; Chirino-Trejo, M. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus intermedius isolated from various animals. Can. Vet. J. 2011, 52, 153–157. [Google Scholar]
- Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 2016, 15, 87–120. [Google Scholar] [CrossRef]
- Salas, A.L.; Mercado, M.I.; Orqueda, M.E.; Uriburu, F.M.C.; García, M.E.; Pérez, M.J.; Alvarez, M.D.L.A.; Ponessa, G.I.; Maldonado, L.M.; Zampini, I.C.; et al. Zuccagnia-type Propolis from Argentina: A potential functional ingredient in food to pathologies associated to metabolic syndrome and oxidative stress. J. Food Sci. 2020, 85, 2578–2588. [Google Scholar] [CrossRef]
- Ferreira, J.M.; Fernandes-Silva, C.C.; Salatino, A.; Negri, G.; Message, D. New propolis type from north-east Brazil: Chemical composition, antioxidant activity and botanical origin. J. Sci. Food Agric. 2017, 97, 3552–3558. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, I.C.G.; Porto, I.C.C.M.; Nascimento, T.G.; de Souza, N.S.; Oliveira, J.M.S.; Arruda, R.E.S.; Mousinho, K.C.; dos Santos, A.F.; Basílio Júnior, I.D.; Parolia, A.; et al. Brazilian red própolis: Phytochemical screening, antioxidante activity and effect agains câncer cells. BMC Complementary Altern. Med. 2015, 15, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awale, S.; Shrestha, S.P.; Tezuka, Y.; Ueda, J.-Y.; Matsushige, A.K.; Kadota, S. Neoflavonoids and Related Constituents from Nepalese Propolis and Their Nitric Oxide Production Inhibitory Activity. J. Nat. Prod. 2005, 68, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [CrossRef]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Papachroni, D.; Graikou, K.; Kosalec, I.; Damianakos, H.; Ingram, V.; Chinou, I. Phytochemical analysis and biological evaluation of selected African propolis samples form Cameroon and Congo. Nat. Prod. Commun. 2015, 10, 67–70. [Google Scholar]
- Vera, N.; Solorzano, E.; Ordoñes, R.; Maldonado, L.; Bedascarrasbure, E.; Isla, M.I. Chemical composition of Argentinian propolis collected in extreme regions and its relation with antimicrobial and antioxidant activities. Nat. Prod. Commun. 2011, 6, 823–827. [Google Scholar]
- Salas, A.; Zampini, I.C.; Maldonado, L.; Isla, M.I. Development of a bioproduct for medicinal use with extracts of Zuccagnia-type propolis. Nat. Prod. Commun. 2018, 13, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Przybylek, I.; Karpinski, T. Antibacterial properties of propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Liu, H.; Li, J.; Zhang, W.; Jiang, B.; Xuan, H. Australian propolis ethanol extract exerts antibacterial activity against methicillin-resistant Staphylococcus aureus by mechanisms of disrupting cell structure, reversing resistance, and resisting biofilm. Braz. J. Microbiol. 2021, 52, 1651–1664. [Google Scholar] [CrossRef]
- Massaro, C.F.; Simpson, J.B.; Powell, D.; Brooks, P. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia. Naturwissenschaften 2015, 102, 68. [Google Scholar] [CrossRef]
- Monzote, L.; Cuesta-Rubio, O.; Fernandez, M.C.; Hernandez, I.M.; Fraga, J.; Pérez, K.; Kerstens, M.; Maes, L.; Cos, P. In vitro antimicrobial assessment of Cuban propolis extracts. Memórias Do Inst. Oswaldo Cruz 2012, 107, 978–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamplona-Zomenhan, L.C.; Pamplona, B.C.; Da Silva, C.B.; Marcucci, M.C.; Mimica, L.M.J. Evaluation of the in vitro antimicrobial activity of an ethanol extract of Brazilian classified propolis on strains of Staphylococcus aureus. Braz. J. Microbiol. 2011, 42, 1259–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, B.-C.; De Lourenço, C.; Alves, D.; Machado, D.; Lancellotti, M.; Sawaya, A. Antimicrobial and cytotoxic activity of red propolis: An alert for its safe use. J. Appl. Microbiol. 2015, 119, 677–687. [Google Scholar] [CrossRef]
- Dantas-Silva, R.P.; Machado, B.A.S.; Barreto, G.A.; Costa, S.S.; Andrade, L.N.; Amaral, R.G.; Carvalho, A.A.; Padilha, F.F.; Barbosa, J.D.; Umsza-Guez, M.A. Antioxidant, antimicrobial, antiparasitic, and cytotoxic properties of various Brazilian propolis extracts. PLoS ONE 2017, 12, e0172585. [Google Scholar] [CrossRef] [PubMed]
- Astani, A.; Zimmermann, S.; Hassan, E.; Reichling, J.; Sensch, K.H.; Schnitzler, P. Antimicrobial activity of propolis special extract GH 2002 against multidrug-resistant clinical isolates. Pharmazie 2013, 68, 695–701. [Google Scholar] [CrossRef]
- Bouchelaghem, S.; Das, S.; Naorem, R.S.; Czuni, L.; Papp, G.; Kocsis, M. Evaluation of Total Phenolic and Flavonoid Contents, Antibacterial and Antibiofilm Activities of Hungarian Propolis Ethanolic Extract against Staphylococcus aureus. Molecules 2022, 27, 574. [Google Scholar] [CrossRef]
- Samieerad, F.; Gheibi, N. Physicochemical and antimicrobial assessment of Iranian Propolis gathered in Qazvin province. Funct. Foods Health Dis. 2020, 10, 82. [Google Scholar] [CrossRef]
- Scazzocchio, F.; D’Auria, F.; Alessandrini, D.; Pantanella, F. Multifactorial aspects of antimicrobial activity of propolis. Microbiol. Res. 2006, 161, 327–333. [Google Scholar] [CrossRef]
- Wojtyczka, R.D.; Dzidzic, A.; Idzik, D.; Kepa, M.; Kubina, R.; Kabala-Dzik, A.; Smoen-Dzirba, J.S.; Stojko, J.; Sajewicz, M.; Wasik, T. Susceptibility of Staphylococcus aureus clinical isolates to propolis extract alone or in combination with antimicrobial drugs. Molecules 2013, 18, 9623. [Google Scholar] [CrossRef] [Green Version]
- Togan, T.; Evren, E.; Ciftci, Ö.; Narci, H.; Özcan, M.M.; Arslan, H. The antibacterial effect of propolis against clinical isolates. Sci.-Afric. J. Sci. Issues 2015, 2, 551–553. [Google Scholar]
- Suleman, T.; Van Vuuren, S.; Sandasi, M.; Viljoen, A.M. Antimicrobial activity and chemometric modelling of South African propolis. J. Appl. Microbiol. 2015, 119, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-W.; Ye, S.-R.; Ting, C.; Yu, Y.-H. Antibacterial activity of propolins from Taiwanese green propolis. J. Food Drug Anal. 2018, 26, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Wang, Z.; Chen, Y.; Cao, J.; Tian, W.; Ma, B.; Dong, Y. Active components and biological functions of royal jelly. J. Funct. Foods 2021, 82, 104514. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef] [PubMed]
- Scorza, C.A.; Gonçalves, V.C.; Scorza, F.A.; Fiorini, A.C.; Almeida, A.C.G.; Fonseca, M.C.M.; Finsterer, J. Propolis and coronavírus disease 2019 (CIVID-19): Lessons from nature. Complementary Ther. Clin. Pract. 2020, 41, 101227. [Google Scholar] [CrossRef]
- Erler, S.; Moritz, R.F.A. Pharmacophagy and pharmacophory: Mechnisms of self-medication and disease prevention in the honeybee colony (Apis mellifera). Apidologie 2016, 47, 389–411. [Google Scholar] [CrossRef] [Green Version]
- Cotter, S.; Kilner, R.M. Personal immunity versus social immunity. Behav. Ecol. 2010, 21, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Simone-Finstrom, M.D.; Spivak, M. Increased Resin Collection after Parasite Challenge: A Case of Self-Medication in Honey Bees? PLoS ONE 2012, 7, e34601. [Google Scholar] [CrossRef] [Green Version]
- Spivak, M.; Goblirsch, M.; Simone-Finstrom, M. Social-medication in bees: The line between individual and social regulation. Curr. Opin. Insect Sci. 2019, 33, 49–55. [Google Scholar] [CrossRef]
- Roode, J.C.; Lefèvre, T.; Hunter, M.D. Self-medication in animals. Science 2013, 340, 150–151. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J.K. Self-medication in insects: Current evidence and future perspectives. Ecol. Entomol. 2014, 39, 273–280. [Google Scholar] [CrossRef]
- Roode, J.C.; Hunter, M.D. Self-medication in insects: When altered behavior of infected insects are a defense instead of a parasite manipulation. Curr. Opin. Insect Sci. 2019, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Clark, L. Starlings as herbalists: Countering parasites and pathogens. Parasitol. Today 1990, 6, 358–360. [Google Scholar] [CrossRef]
- Suárez-Rodríguez, M.; López-Rull, I.; Garcia, C.M. Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: New ingredients for an old recipe? Biol. Lett. 2012, 9, 20120931. [Google Scholar] [CrossRef] [Green Version]
- McLendon, K.; Preuss, C.V. Atropine. National Library of Medicine. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470551/ (accessed on 20 April 2022).
- Meyler, W.J. Side effects of ergotamine. Cephalalgia 1996, 16, 5–10. [Google Scholar] [CrossRef]
- Liles, N.W.; Page, E.E.; Liles, A.L.; Vesely, S.K.; Raskob, G.E.; George, J.N. Diversity and severity of adverse reactions to quinine: A systematic review. Am. J. Hematol. 2016, 91, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Li, G.-Z.; Hu, Y.-H.; Li, D.-Y.; Zhang, Y.; Guo, H.-L.; Li, Y.-M.; Chen, F.; Xu, J. Vincristine-induced peripheral neuropathy: A mini-review. NeuroToxicology 2020, 81, 161–171. [Google Scholar] [CrossRef]
- Finkelstein, Y.; Aks, S.E.; Hutson, J.R.; Juurlink, D.N.; Hguyen, P.; Dubnov-Raz, G.; Pollak, U.; Koren, G.; Bentur, Y. Colchicine poisoning: The dark side of an ancient drug. Clin. Toxicol. 2010, 48, 407–414. [Google Scholar] [CrossRef]
- Bessone, F. Non-steroidal anti-inflammatory drugs: What is the actual risk of liver damage? World J. Gastroenterol. 2010, 16, 5651–5661. [Google Scholar] [CrossRef]
- Zoubek, M.E.; Lucena, M.I.; Andrade, R.J.; Stephens, C. Systematic review: Ibuprofen-induced liver injury. Aliment. Pharmacol. Ther. 2020, 51, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, F.B.; Ferreira, J.D.F.; Silveira, D.; Fonseca-Bazzo, Y.M. Avaliação da atividade anti-inflamatória de própolis de abelha Apis mellifera: Uma revisão. Res. Soc. Dev. 2021, 10, e250101421817. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.; Kaur, P. Antibiotics resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018, 9, 1–21. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Momattin, H.; Al-Ali, A.Y.; Eljaaly, K.; Tirupathi, R.; Haradwala, M.B.; Areti, S.; Alhumaid, S.; Rabaan, A.A.; Al Mutair, A.; et al. Antibiotics in the pipeline: A literature review (2017–2020). Infection 2022, 50, 553–564. [Google Scholar] [CrossRef]
- Cunha, B.A. Antibiotic side effects. Med. Clin. N. Am. 2001, 85, 149–185. [Google Scholar] [CrossRef]
- Mohsen, S.; Dickinson, J.Á.; Somayaji, R. Update on the adverse effects of antimicrobial therapies in community practice. Can. Fam. Physician 2020, 66, 651–659. [Google Scholar]
- Tamma, P.D.; Avdic, E.; Li, D.X.; Dzintars, K.; Cosgrove, S.E. Association of Adverse Events With Antibiotic Use in Hospitalized Patients. JAMA Intern. Med. 2017, 177, 1308–1315. [Google Scholar] [CrossRef] [Green Version]
- Cecchini, M.; Langer, J.; Slawomirski, L. Antimicrobial Resistance in G7 Countries and Beyond: Economic Issues, Policies and Options for Aaction. OECD. 2015. Available online: Antimicrobial-Resistance-in-G7-Countries-and-Beyond.pdf (oecd.org) (accessed on 26 April 2022).
- O’Neill, J. Tackling Drug-Resistant Infectious Globally: Final Report and Recommendations. Review on Antimicrobial Resistance. Available online: https://apo-nid63983.pdf (accessed on 8 July 2022).
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Rocha, B.A.; Bueno, P.C.P.; Vaz, M.M.D.O.L.L.; Nascimento, A.P.; Ferreira, N.U.; Moreno, G.D.P.; Rodrigues, M.R.; Costa-Machado, A.R.D.M.; Barizon, E.A.; Campos, J.C.L.; et al. Evaluation of a Propolis Water Extract Using a Reliable RP-HPLC Methodology and In Vitro and In Vivo Efficacy and Safety Characterisation. Evid.-Based Complementary Altern. Med. 2013, 2013, 670451. [Google Scholar] [CrossRef] [Green Version]
- Ripari, N.; Sartori, A.A.; da Silva Honorio, M.; Conte, F.L.; Tasca, K.I.; Santiago, K.B.; Sforcin, J.M. Propolis antiviral and immunomodulatory activity: A review and perspectives for COVID-19 treatment. J. Pharm. Pharmacol. 2021, 73, 281–299. [Google Scholar] [CrossRef]
- Burdock, G. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Chen, R.; Lin, J.; Hong, J.; Han, D.; Zhang, A.D.; Lan, R.; Fu, L.; Wu, Z.; Lin, J.; Zhang, W.; et al. Potential toxicity of quercetin: The repression of mitochondrial copy number via decreased POLG expression and excessive TFAM expression in irradiated murine bone marrow. Toxicol. Rep. 2014, 1, 450–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castaldo, S.; Capasso, F. Propolis, an old remedy used in modern medicine. Fitoterapia 2002, 73, S1–S6. [Google Scholar] [CrossRef]
- Salatino, A.; Salatino, M.L.F. Why do honeybees exploit so few plant species as propolis sources? MOJ Food Process. Technol. 2017, 4, 158–160. [Google Scholar] [CrossRef] [Green Version]
- Braakhuis, A. Evidence on the Health Benefits of Supplemental Propolis. Nutrients 2019, 11, 2705. [Google Scholar] [CrossRef] [Green Version]
- Basista-Sołtys, K. Allergy to propolis in beekeepers—A literature review. Occup. Med. Health Aff. 2013, 1, 1–3. [Google Scholar] [CrossRef]
- Lieberman, H.D.; Fogelman, J.P.; Ramsay, D.L.; Cohen, D.E. Allergic contact dermatitis to propolis in a violin maker. J. Am. Acad. Dermatol. 2002, 46, S30–S31. [Google Scholar] [CrossRef]
- Cho, E.; Lee, J.D.; Cho, S.H. Systemic contact dermatitis from propolis ingestion. Ann. Dermatol. 2011, 23, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Veien, N.K. Ingested food in systemic allergic contact dermatitis. Clin. Dermatol. 1997, 15, 547–555. [Google Scholar] [CrossRef]
- Navarro-Triviño, F.J.; Ruiz-Villaverde, R. Allergic contact dermatitis of head and neck by propolis contained in a shampoo. Contact Dermat. 2020, 82, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Belluco, P.E.; Belluco, R.Z.F.; Reis, C.M.S. Allergic contact cheilitis caused by propolis: A case report. Einstein 2022, 20, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Walgrave, S.E.; Warshaw, E.M.; Glesne, L.A. Allergic contact dermatitis from propolis. Dermatitis 2005, 16, 209–215. [Google Scholar] [PubMed]
- Hausen, B.M.; Evers, P.; Stüwe, H.T.; König, W.A.; Wollenweber, E. Propolis allergy (IV) Studies with further sensitizers from propolis and constituents common to propolis, poplar buds and balsam of Peru. Contact Dermat. 1992, 26, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Gardana, C.; Barbieri, A.; Simonetti, P.; Guglielmetti, S. Biotransformation strategy to reduce allergens in propolis. Appl. Environ. Microbiol. 2012, 78, 4654–4658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyman, G.S.A.; Tang, M.; Inerot, A.; Osmancevic, A.; Malmberg, P.; Hagvall, L. Contact allergy to beeswax and propolis among patients with cheilitis or facial dermatitis. Contact Dermat. 2019, 81, 110–116. [Google Scholar] [CrossRef]
- Liew, K.Y.; Kamise, H.I.; Ong, H.M.; Yong, P.Y.A.; Islam, F.; Tan, J.W.; Tham, C.L. Anti-allergic properties of propolis: Evidence from preclinical and clinical studies. Front. Pharmacol. 2022, 12, 785371. [Google Scholar] [CrossRef]
- Tani, H.; Hasumi, K.; Tatefuji, T.; Hashimoto, K.; Koshino, H.; Takahashi, S. Inhibitory activity of Brazilian green propolis components and their derivatives on the release of cys-leukotrienes. Bioorganic Med. Chem. 2010, 18, 151–157. [Google Scholar] [CrossRef]
- Bankova, V. Recent trends and important developments in propolis research. Evid.-Based Complementary Altern. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Adelman, J.; Passos, M.; Breyer, D.H.; Rocha dos Santos, M.H.; Lenz, C.; Leite, N.F.; Lancas, F.M.; Fontans, J.D. Exotic flora dependence of na unusual Brazilian propois: The pinocembrin biomarker by capillary tecniques. J. Pharm. Biomed. 2007, 43, 174–178. [Google Scholar] [CrossRef]
- Agüero, M.B.; Gonzales, M.; Lima, B.; Svetaz, L.; Sánchez, M.; Zacchino, S.; Feresin, G.E.; Semeda-Hirschmann, G.; Palermo, J.; Wunderlin, D.; et al. Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinioideae) exudates: Phytochemical characterization and antifungal activity. J. Agric. Food Chem. 2010, 58, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Bonfim, A.P.; Sakita, K.M.; Faria, D.R.; Arita, G.S.; Vendramini, F.A.V.R.; Capoci, I.R.G.; Braga, A.G.; Dos Santos, R.S.; Bruschi, M.L.; Becker, T.C.A.; et al. Preclinical approaches in vulvovaginal candidiasis treatment with mucoadhesive thermoresponsive systems containing propolis. PLoS ONE 2020, 15, e0243197. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Yang, S.; Cheng, Y.J.; Chen, F.; Pan, S.; Fan, G. Antifungal activity and action mode of pinocembrin from propolis against Penicillium italicum. Food Sci. Biotechnol. 2012, 21, 1533–1539. [Google Scholar] [CrossRef]
- Amoros, M.; Lurton, E.; Boustie, J.; Girre, L.; Sauvager, F.; Cormier, M. Comparison of the Anti-Herpes Simplex Virus Activities of Propolis and 3-Methyl-but-2-enyl Caffeate. J. Nat. Prod. 1994, 57, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Huleihel, M.; Isanu, V. Anti-herpes simplex vírus effect of aqueous extract of propolis. Isr. Med. Assoc. J. 2002, 4 (Suppl. 11), 923–927. [Google Scholar] [PubMed]
- Shimizu, T.; Takeshita, Y.; Takamori, Y.; Kai, H.; Sawamura, R.; Yoshida, H.; Watanabe, W.; Tsutsumi, A.; Park, Y.K.; Yasukawa, K.; et al. Efficacy of Brazilian Propolis against Herpes Simplex Virus Type 1 Infection in Mice and Their Modes of Antiherpetic Efficacies. Evid.-Based Complementary Altern. Med. 2011, 2011, 976196. [Google Scholar] [CrossRef] [Green Version]
- Mazia, R.S.; Pereira, R.R.D.A.; de Francisco, L.M.B.; Natali, M.R.M.; Filho, B.P.D.; Nakamura, C.V.; Bruschi, M.L.; Ueda-Nakamura, T. Formulation and Evaluation of a Mucoadhesive Thermoresponsive System Containing Brazilian Green Propolis for the Treatment of Lesions Caused by Herpes Simplex Type I. J. Pharm. Sci. 2016, 105, 113–121. [Google Scholar] [CrossRef]
- Nolkemper, S.; Reichling, J.; Sensch, K.H.; Schnitzler, P. Mechanism of herpes simplex virus type 2 suppression by propolis extracts. Phytomedicine 2010, 17, 132–138. [Google Scholar] [CrossRef]
- Schnitzler, P.; Neuner, A.; Nolkemper, S.; Zundel, C.; Nowack, H.; Sensch, K.H.; Reichling, J. Antiviral activity and mode of action of propolis extracts and selected compounds. Phytother. Res. 2010, 24, S24–S28. [Google Scholar] [CrossRef]
- Bankova, V.; Galabov, A.; Antonova, D.; Vilhelmova, N.; Di Perri, B. Chemical composition of Propolis Extract ACF® and activity against herpes simplex virus. Phytomedicine 2014, 21, 1432–1438. [Google Scholar] [CrossRef]
- Demir, S.; Atayoglu, A.T.; Galeotti, F.; Garzarella, E.U.; Zaccaria, V.; Volpi, N.; Karagoz, A.; Sahin, F. Antiviral Activity of Different Extracts of Standardized Propolis Preparations against HSV. Antivir. Ther. 2020, 25, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Sartori, G.; Pesarico, A.P.; Pinton, S.; Dobrachinski, F.; Roman, S.S.; Pauletto, F.; Rodrigues, L.C.; Prigol, M. Protective effect of brown Brazilian propolis against acute vaginal lesions caused by herpes simplex virus type 2 in mice: Involvement of antioxidant and anti-inflammatory mechanisms. Cell Biochem. Funct. 2012, 30, 1–10. [Google Scholar] [CrossRef]
- Serkedjieva, J.; Manolova, N.; Bankova, V. Anti-influenza Virus Effect of Some Propolis Constituents and Their Analogues (Esters of Substituted Cinnamic Acids). J. Nat. Prod. 1992, 55, 294–297. [Google Scholar] [CrossRef]
- Governa, P.; Cusi, M.G.; Borgonetti, V.; Sforcin, J.M.; Terrosi, C.; Baini, G.; Miraldi, E.; Biagi, M. Beyond the Biological Effect of a Chemically Characterized Poplar Propolis: Antibacterial and Antiviral Activity and Comparison with Flurbiprofen in Cytokines Release by LPS-Stimulated Human Mononuclear Cells. Biomedicines 2019, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Shvarzbeyn, J.; Huleihel, M. Effect of propolis and caffeic acid phenethyl ester (CAPE) on NFκB activation by HTLV-1 Tax. Antivir. Res. 2011, 90, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Búfalo, M.; Figueiredo, A.; de Sousa, J.; Candeias, J.; Bastos, J.; Sforcin, J. Anti-poliovirus activity of Baccharis dracunculifoliaand propolis by cell viability determination and real-time PCR. J. Appl. Microbiol. 2009, 107, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Harish, Z.; Rubinstein, A.; Golodner, M.; Elmaliah, M.; Mizrachi, Y. Suppression of HIV-1 replicatin by propolis and its immunoregulatory effect. Drugs Under Exp. Clin. Res. 1997, 23, 89–96. [Google Scholar]
- Ito, J.; Chang, F.-R.; Wang, H.-K.; Park, Y.K.; Ikegaki, M.; Kilgore, N.; Lee, K.-H. Anti-AIDS Agents. 48. Anti-HIV Activity of Moronic Acid Derivatives and the New Melliferone-Related Triterpenoid Isolated from Brazilian Propolis. J. Nat. Prod. 2001, 64, 1278–1281. [Google Scholar] [CrossRef]
- Sberna, G.; Biagi, M.; Marafini, G.; Nardacci, R.; Biava, M.; Colavita, F.; Piselli, P.; Miraldi, E.; D’Offizi, G.; Capobianchi, M.R.; et al. In vitro evaluation of antiviral efficacy of a standardized hydroalcoholic extract of poplar type propolis against SARS-CoV-2. Front. Microbiol. 2022, 13, 799546. [Google Scholar] [CrossRef]
- Berretta, A.A.; Silveira, M.A.D.; Capcha, J.M.C.; De Jong, D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease. Biomed. Pharmacother. 2020, 131, 1–16. [Google Scholar] [CrossRef]
- Ali, A.M.; Kunugi, H. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules 2021, 26, 1232. [Google Scholar] [CrossRef] [PubMed]
- Güler, H.I.; Tatar, G.; Yildiz, O.; Belduz, A.O.; Kolayli, S. Investigation of potential inibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study. Sci. Prepr. 2021, 203, 3557–3564. [Google Scholar] [CrossRef] [Green Version]
- Osés, S.M.; Marcos, P.; Azofra, P.; De Pablo, A.; Fernández-Muíño, M.Á.; Sancho, M.T. Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: Needs for Analytical Harmonization. Antioxidants 2020, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Refaat, H.; Mady, F.M.; Sarhan, H.A.; Rateb, H.; Alaaeldin, E. Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int. J. Pharmacol. 2021, 592, 120028. [Google Scholar] [CrossRef]
- Fatriansyah, J.F.; Rizqillah, R.K.; Yandi, M.Y.; Fadilah Sahlan, M. Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2. J. King Saud Univ.-Sci. 2022, 34, 101707. [Google Scholar] [CrossRef] [PubMed]
- Miyata, R.; Sahlan, M.; Ishikawa, Y.; Hashimoto, H.; Honda, S.; Kumazawa, S. Propolis componentes and biological activities from stingless bees collected on South Sulawasi, Indonesia. Hayati J. Biosci. 2020, 27, 82–88. [Google Scholar] [CrossRef]
- Gonsales, G.Z.; Orsi, R.D.O.; Funari, S.R.C.; Júnior, A.F.; Rodrigues, P. Antibacterial activity of propolis collected in different regions of Brazil. J. Venom. Anim. Toxins Incl. Trop. Dis. 2006, 12, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Molan, P.C. The evidence supporting the use of honey as a wound dressing. Low. Extrem. Wounds 2006, 5, 4054. [Google Scholar] [CrossRef] [Green Version]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Lu, J.; Müller, P.; Turnbull, L.; Burke, C.; Schlothauer, R.C.; Carter, D.; Whitchurch, C.; Harry, E.J. Antibiotic-specific differences in the response of Staphylococcus aureus to treatment with antimicrobials combined with manuka honey. Front. Microbiol. 2015, 5, 779. [Google Scholar] [CrossRef] [Green Version]
- Packer, J.M.; Irish, J.; Herbert, B.R.; Hill, C.; Padula, M.; Blair, S.E.; Carter, D.A.; Harry, E.J. Specific non-peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome. Int. J. Antimicrob. Agents 2012, 40, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.A.; Blair, S.; Cokcetin, N.N.; Bouzo, D.; Brooks, P.; Schothauer, R.; Harry, E. Therapeutic Manuka Honey: No Longer So Alternative. Front. Microbiol. 2016, 7, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiol. 2018, 4, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, O.; Dolan, A.; Athman, R.; Power, R.; Gethin, G.; Cowman, S.; Humphreys, H. Comparison of the antimicrobial activity of Ulmo honey from Chile and manuka honey against methcicillin-resistant Staphylococcus aureus, Escherichia colia and Pseudomonas aeruginosa. BMC Complementary Altern. Med. 2010, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Mama, M.; Teshome, T.; Detamo, J. Antibacterial Activity of Honey against Methicillin-Resistant Staphylococcus aureus: A Laboratory-Based Experimental Study. Int. J. Microbiol. 2019, 2019, 7686130. [Google Scholar] [CrossRef] [Green Version]
- Freitas, A.S.; Cunha, A.; Oliveira, R.; Almeida-Aguiar, C. Propolis antibacterial and antioxidant synergisms with gentamicin and honey. J. Appl. Microbiol. 2022, 132, 2733–2745. [Google Scholar] [CrossRef]
- Hamouda, S.M.; El Rahman, A.; Gerges, A.E.; Abdul-Hafeez, M.M. Egyptian fennel honey and/or propolis against MRSA harboring both mecA & icaA genes. Int. J. Complementary Altern. Med. 2018, 11, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Al-Waili, N.; Al-Ghamdi, A.; Ansari, M.J.; Al-Attal, Y.; Salom, K. Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int. J. Med. Sci. 2012, 9, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Ramata-Stunda, A.; Petriņa, Z.; Valkovska, V.; Borodušķis, M.; Gibnere, L.; Gurkovska, E.; Nikolajeva, V. Synergistic Effect of Polyphenol-Rich Complex of Plant and Green Propolis Extracts with Antibiotics against Respiratory Infections Causing Bacteria. Antibiotics 2022, 11, 160. [Google Scholar] [CrossRef]
- Krol, W.; Scheller, S.; Shani, S.; Pietsz, G.; Czuba, Z. Synergistic effect of ethanolic extract of propolis and antibiotibcs on the growth of Staphylococcus aureus. Arzneimittelforschung 1993, 43, 607–609. [Google Scholar]
- Hossain, S.; Yousaf, M.; Liu, Y.; Chang, D.; Zhou, X. An Overview of the Evidence and Mechanism of Drug–Herb Interactions Between Propolis and Pharmaceutical Drugs. Front. Pharmacol. 2022, 13, 876183. [Google Scholar] [CrossRef] [PubMed]
- Kalia, P.; Kumar, N.R.; Harjai, K. Studies on the therapeutic effect of propolis along with standard antibacterial drug in Salmonella enterica serovar Typhimurium infecte BALB/c mice. BMC Complementary Altern. Med. 2016, 16, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morschhäuser, J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet. Biol. 2010, 47, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Perea, S.; Patterson, T.F. Antifungal resistance in pathogenic fungi. Clin. Infect. Dis. 2002, 35, 1073–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Stepanovic, S.; Antic, N.; Dakic, I.; Svabic-Vlahovic, M. In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs. Microbiol. Res. 2003, 158, 353–357. [Google Scholar] [CrossRef]
- Pippi, B.; Lana, A.J.D.; Moraes, R.C.; Güez, C.M.; Machado, M.; Oliveira, L.F.S.; von Poser, G.L.; Fuentefria, A.M. In vitro evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on Candida spp. J. Appl. Microbiol. 2015, 118, 839–850. [Google Scholar] [CrossRef]
- Yildirim, A.; Duran, G.G.; Duran, N.; Jenedi, K.; Bolgul, B.S.; Miraloglu, M.; Muz, M. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2. Med. Sci. Monit. 2016, 22, 422–430. [Google Scholar] [CrossRef]
- Kwiecińska-Piróg, J.; Przekwas, J.; Majkut, M.; Skowron, K.; Gospodarek-Komkowska, E. Biofilm Formation Reducing Properties of Manuka Honey and Propolis in Proteus mirabilis Rods Isolated from Chronic Wounds. Microorganisms 2020, 8, 1823. [Google Scholar] [CrossRef]
- Salas, A.L.; Alberto, M.R.; Zampini, I.C.; Cuello, A.S.; Maldonado, L.; Ríos, J.L.; Schmeda-Hirschmann, G.; Isla, M.I. Biological activities of polyphenols-enriched propolis from Argentina arid regions. Phytomedicine 2016, 23, 27–31. [Google Scholar] [CrossRef]
- Barud, H.D.S.; de Araújo Júnior, A.M.; Saska, S.; Mestieri, L.B.; Campos, J.A.D.B.; De Freitas, R.M.; Ferreira, N.U.; Nascimento, A.P.; Miguel, F.G.; de Oliveira Lima Leite Vaz, M.M.; et al. Antimicrobial Brazilian Propolis (EPP-AF) Containing Biocellulose Membranes as Promising Biomaterial for Skin Wound Healing. Evid.-Based Complementary Altern. Med. 2013, 2013, 703024. [Google Scholar] [CrossRef] [PubMed]
- Soroy, L.; Bagus, S.; Yongkie, I.P.; Djoko, W. The effect of a unique propolis compound (PropoelixTM) on clinical outcomes in patients with dengue hemorrhagic fever. Infect. Drug Resist. 2014, 7, 323–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sposito, C.; Garzarella, E.U.; Bocchino, B.; D’Avino, M.; Caruso, G.; Buonomo, A.R.; Sacchi, R.; Galeotti, F.; Tenore, G.C.; Zaccaria, V.; et al. A standardized polyphenol mixture extracted from poplar-type propolis for remission of symptoms of uncomplicated upper respiratory tract infection (URTI): A monocentric, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 2021, 80, 153368. [Google Scholar] [CrossRef] [PubMed]
- Zaccaria, V.; Garzarella, E.U.; Di Giovanni, C.; Galeotti, F.; Gisone, L.; Campoccia, D.; Volpi, N.; Arciola, C.R.; Daglia, M. Multi Dynamic Extraction: An Innovative Method to Obtain a Standardized Chemically and Biologically Reproducible Polyphenol Extract from Poplar-Type Propolis to Be Used for Its Anti-Infective Properties. Materials 2019, 12, 3746. [Google Scholar] [CrossRef] [Green Version]
- Refaat, H.; Naguib, Y.W.; Elsayed, M.M.A.; Sarhan, H.A.A.; Alaaeldin, E. Modified Spraying Technique and Response Surface Methodology for the Preparation and Optimization of Propolis Liposomes of Enhanced Anti-Proliferative Activity against Human Melanoma Cell Line A375. Pharmaceutics 2019, 11, 558. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, O.; Grey, J.; Mitchell, K.; Lan, J. Supercritical antisolvent fractionation of propolis tincture. J. Supercrit. Fluids 2004, 29, 97–106. [Google Scholar] [CrossRef]
- Tsibranska, H.; Peev, G.A.; Tylkowski, B. Fractionation of biologically active compounds extracted from propolis by nanoriltration. Membr. Sci. Technol. 2011, 348, 124–130. [Google Scholar] [CrossRef]
- Petelinc, T.; Polak, T.; Demšar, L.; Jamnik, P. Fractionation of Phenolic Compounds Extracted from Propolis and Their Activity in the Yeast Saccharomyces cerevisiae. PLoS ONE 2013, 8, e56104. [Google Scholar] [CrossRef]
- Monroy, Y.M.; Rodrigues, R.A.F.; Rodrigues, M.V.N.; Sartoratto, A.; Cabral, F.A. Supercritical extraction from red propolis and fractionation of its hydroalcoholic and ethanolic extracts using CO2 as anti-solvent/Extração supercrítica da própolis vermelha e fracionamento de seus extratos hidroalcoólicos e etanolicos usando CO2 como anti-solvente. Braz. J. Dev. 2022, 8, 8032–8046. [Google Scholar] [CrossRef]
- Ciolino, H.P.; Yeh, G.C. The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor. Br. J. Cancer 1999, 79, 1340–1346. [Google Scholar] [CrossRef] [Green Version]
- Touaibia, M.; Guay, M. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), A Potent 5-Lipoxygenase Inhibitor from Honeybee Hives. J. Chem. Educ. 2011, 88, 473–475. [Google Scholar] [CrossRef]
- Shi, H.; Xie, D.; Yang, R.; Cheng, Y. Synthesis of Caffeic Acid Phenethyl Ester Derivatives, and Their Cytoprotective and Neuritogenic Activities in PC12 Cells. J. Agric. Food Chem. 2014, 62, 5046–5053. [Google Scholar] [CrossRef] [PubMed]
- Uto, Y.; Hirata, A.; Fujita, T.; Takubo, S.; Nagasawa, H.; Hori, H. First Total Synthesis of Artepillin C Established by o,o‘-Diprenylation of p-Halophenols in Water. J. Org. Chem. 2002, 67, 2355–2357. [Google Scholar] [CrossRef]
- Yashiro, K.; Hanaya, K.; Shoji, M.; Sugai, T. New synthesis of artepillin C, a prenylated phenol, utilizing lipase-catalyzed regioselective deacetylation as the key step. Biosci. Biotechnol. Biochem. 2015, 79, 1926–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Wang, L.; Li, X.; Zhang, Q.; Li, W.; Lin, A.; Xu, J.; Wu, X.; Xie, W. A practical synthetic route to artepillin C and drupanin. Asian J. Org. Chem. Commun. 2021, 10, 1691–1694. [Google Scholar] [CrossRef]
- Tolba, M.; Azab, S.S.; Khalifa, A.; Abdel-Rahman, S.Z.; Abdel-Naim, A.B. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: A review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects. IUBMB Life 2013, 65, 699–709. [Google Scholar] [CrossRef]
- Erdemli, H.; Akyol, S.; Armutcu, F.; Akyol, O. Antiviral Properties of Caffeic Acid Phenethyl Ester and Its Potential Application. J. Intercult. Ethnopharmacol. 2015, 4, 344–347. [Google Scholar] [CrossRef]
- Braz, A.J.S.; Fagundes, D.D.S.; Espíndola, L.C.P. O uso da própolis como coadjuvante ao tratamento periodontal. Res. Soc. Dev. 2021, 10, e182101724341. [Google Scholar] [CrossRef]
- Fiorini, A.C.; Scorza, C.A.; de Almeida, A.-C.G.; Fonseca, M.C.; Finsterer, J.; Fonseca, F.L.; Scorza, F.A. Antiviral activity of Brazilian Green Propolis extract against SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2) infection: Case report and review. Clinics 2021, 76, e2357. [Google Scholar] [CrossRef]
- Silveira, M.A.D.; De Jong, D.; Berretta, A.A.; Galvão, E.B.d.S.; Ribeiro, J.C.; Cerqueira-Silva, T.; Amorim, T.C.; da Conceição, L.F.M.R.; Gomes, M.M.D.; Teixeira, M.B.; et al. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomed. Pharmacother. 2021, 138, 111526. [Google Scholar] [CrossRef]
- FAO–Food and Agriculture Organization of the United Nations. Declining Bee Populations Pose Threat to Global Food Security and Nutrition. 2019. Available online: https://www.fao.org/news/story/en/item/1194910/icode/Https (accessed on 6 June 2022).
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of Bee Pollination and Its Economic Value for Crop Production. Insects 2021, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.T.; de Souza, C.F.; Lima, M.M.; Rocha, B.M.S.; Gouvea, W.S.; Gabriel, A.V.A.; de Oliveira, E.R.; Gandra, J.R.; Marques, O.F.C.; Neves, N.F.; et al. Use of beekeeping as a source of income for small producers. Realização 2020, 7, 121–130. [Google Scholar] [CrossRef]
- Ollerton, J. Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 353–376. [Google Scholar] [CrossRef] [Green Version]
- DiDonato, S.; Gareau, B.J. Be(e)coming pollinators: Beekeeping and perceptions of environmentalism in Massachusetts. PLoS ONE 2022, 17, e0263281. [Google Scholar] [CrossRef] [PubMed]
- Salatino, A.; Pereira, L.R.L.; Salatino, M.L.F. The emerging market of propolis of stingless bees in tropical countries. MOJ Food Process. Technol. 2019, 7, 27–29. [Google Scholar] [CrossRef]
Bacteria Species | |||
---|---|---|---|
Propolis Origin | Escherichia coli * | Staphylococcus aureus | References |
Africa (Cameroon, Congo) | Inactive | 10,000–20,000 | [49] |
Argentina | - | 50–800 | [50,51] |
Australia | - | 1200 | [52] |
Australia | - | 900 | [53] |
Australia | - | 400 | [54] |
Australia | - | 2000 | [54] |
Brazil | - | 612 | [52] |
Brazilian brown | Inactive | inactive | [55] |
Brazilian green | - | 85–5700 | [56] |
Brazilian green | Inactive | 250–500 | [55] |
Brazilian red | 12.5–200 | 24–100 | [57] |
Brazilian red | - | 280 | [39] |
Brazilian red | 125 | [25] | |
Brazilian red | Inactive | 62–125 | [55] |
Bulgaria | - | 125 | [52] |
Chile | - | 1,445 | [52] |
Cuba | Inactive | 4.4–58.2 | [58] |
Czech Republic | - | 600 | [52] |
Czech Republic | - | 130–500 | [59] |
Czech Republic | - | 600–1200 | [48] |
Germany | - | 750 | [52] |
Germany | - | 1200 | [48] |
Greece | - | 393 | [52] |
Hungary | - | 100–400 | [60] |
India | - | 500 | [52] |
Iran | - | 2500 | [61] |
Ireland | - | 545 | [52] |
Ireland | - | 80–600 | [48] |
Italy | - | 620–2500 | [62] |
Morocco | - | 360 | [52] |
Oman | - | 81 | [52] |
Poland | - | 555 | [52] |
Poland | - | 390–780 | [63] |
Russia | - | 256 | [64] |
Slovak Republic | - | 255 | [52] |
South Africa, Cape | 781 | 49 | [65] |
South Africa, Cape | 781 | 6 | [65] |
South Africa, Natal | 781 | 195 | [65] |
South Africa, Pretoria | 781 | 24 | [65] |
Taiwan | - | 10 | [52] |
Taiwan | Inactive | 10 | [66] |
Turkey | - | 8 | [52] |
Turkey | - | 560 | [64] |
Virus * | Propolis Type | Dose | Mechanism | Reference |
---|---|---|---|---|
HSV-1 | Poplar | 72 µg mL−1 | Inhibitory of synthesis of virus DNA | [120] |
HSV-1 | - | LC50: 0.5% propolis extract | Inhibition of absorption by VERO cells and replication | [121] |
HSV-1 | Brazilian green | 10 mg kg−1 | Reduction in virus titer in infected mice | [122] |
HSV-1 | Brazilian green | - | Damage to virus structure | [123] |
HSV-2 | Czech | 4 µg mL−1 | Damage to virus envelope | [124] |
HSV-2 | Czech | 4 µg mL−1 | Inhibition of absorption by RC-37 cells | [125] |
HSV1/2 | Poplar | 100 µg mL−1 | Inhibition of absorption by RC-37 cells | [126] |
HSV1/2 | Poplar | 25–200 µg mL−1 | Inhibition of viral replication | [127] |
HSV-2 | Brazilian brown | 50 mg kg−1 in mice | Anti-inflammatory and antioxidant effects | [128] |
H3N2 | Poplar | 50 µg mL−1 | Inhibition of viral replication | [129] |
H1N1 | Bulgarian | 100 µg mL−1 | Inhibition of viral replication | [12] |
H7N7 | Bulgarian, Brazilian, Egyptian, Mongolian | 4–35 µg kg−1 in DBA/2 mice | Increase in IFN-γ and Th1 activation | [34] |
H1N1 | Poplar | 35 µg mL−1 | Stimulus of secretion of IL-6 and IL-1β | [130] |
HTLV-1 | Poplar and CAPE | - | Prevention of TAX oncogene and activation of NF-κB | [131] |
PV-1 | Brazilian green | - | Damage to viral cycle | [132] |
HIV | Brazilian | - | Inhibition of reverse transcriptase | [10] |
HIV | Brazilian | - | - | [133] |
HIV | Poplar | - | Replication suppression | [134] |
SARS-CoV-2 | Poplar | 12.5–25 µg mL−1 | Inhibition of replication | [135] |
Microorganism | Locality | Reference |
---|---|---|
Bacillus megaterium | Portugal | [152] |
B. subtilis | Portugal | [152] |
B. cereus | Portugal | [152] |
MSSA | Portugal | [152] |
MRSA | Portugal | [152] |
MRSA | Egypt | [153] |
Escherichia coli | Saudi Arabia | [154] |
Staphylococcus aureus | Saudi Arabia | [154] |
Candida albicans | Saudi Arabia | [154] |
E. coli | Egypt | [154] |
S. aureus | Egypt | [154] |
C. albicans | Egypt | [154] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salatino, A. Perspectives for Uses of Propolis in Therapy against Infectious Diseases. Molecules 2022, 27, 4594. https://doi.org/10.3390/molecules27144594
Salatino A. Perspectives for Uses of Propolis in Therapy against Infectious Diseases. Molecules. 2022; 27(14):4594. https://doi.org/10.3390/molecules27144594
Chicago/Turabian StyleSalatino, Antonio. 2022. "Perspectives for Uses of Propolis in Therapy against Infectious Diseases" Molecules 27, no. 14: 4594. https://doi.org/10.3390/molecules27144594
APA StyleSalatino, A. (2022). Perspectives for Uses of Propolis in Therapy against Infectious Diseases. Molecules, 27(14), 4594. https://doi.org/10.3390/molecules27144594