Qualitative and Quantitative Analysis of Ejiao-Related Animal Gelatins through Peptide Markers Using LC-QTOF-MS/MS and Scheduled Multiple Reaction Monitoring (MRM) by LC-QQQ-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Species-Specific Peptide Markers
2.2. Comparison with Reported Markers
2.3. De Novo Sequencing Identification of the Newly Found Donkey-Specific Markers
2.4. Quantitative Analysis of Commercial Ejiao Products
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Sample Preparation
3.3. LC-QTOF-MS/MS Analysis
3.4. LC-QQQ-MS/MS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yang, H.; Shen, Y.; Xu, Y.; Maqueda, A.S.; Zheng, J.; Wu, Q.; Tam, J.P. A novel strategy for the discrimination of gelatinous Chinese medicines based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detection. Int. J. Nanomed. 2015, 10, 4947–4955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Pharmacopoeia Commission of the People’s Republic of China. Chinese Pharmacopoeia; Chinese Medical Science and Technology Press: Beijing, China, 2020; Volume 1.
- Kumeta, Y.; Maruyama, T.; Asama, H.; Yamamoto, Y.; Hakamatsuka, T.; Goda, Y. Species identification of Asini Corii Collas (donkey glue) by PCR amplification of cytochrome b gene. J. Nat. Med. 2014, 68, 181–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; He, H.; Yang, L.; Li, X.; Li, D.; Luo, S. Therapeutic effect of Colla corii asini on improving anemia and hemoglobin compositions in pregnant women with thalassemia. Int. J. Hematol. 2016, 104, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Chen, H.; Zhu, Q.; Wang, Y.; Wang, S.; Qian, J.; Wang, Y.; Qu, H. Identification of bioactive ingredients with immuno-enhancement and anti-oxidative effects from Fufang-Ejiao-Syrup by LC-MS(n) combined with bioassays. J. Pharm. Biomed. Anal. 2016, 117, 363–371. [Google Scholar] [CrossRef]
- Wu, H.; Ren, C.; Yang, F.; Qin, Y.; Zhang, Y.; Liu, J. Extraction and identification of collagen-derived peptides with hematopoietic activity from Colla Corii Asini. J. Ethnopharmacol. 2016, 182, 129–136. [Google Scholar] [CrossRef]
- Wang, D.; Liu, M.; Cao, J.; Cheng, Y.; Zhuo, C.; Xu, H.; Tian, S.; Zhang, Y.; Zhang, J.; Wang, F.J.B.; et al. Effect of Colla corii asini (E’jiao) on D-galactose induced aging mice. Biol. Pharm. Bull. 2012, 35, 2128–2132. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shi, F.; Gong, L.; Hang, B.; Li, D.; Chi, L. Species-specific identification of collagen components in Colla corii asini using a nano-liquid chromatography tandem mass spectrometry proteomics approach. Int. J. Nanomed. 2017, 12, 4443–4454. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Huang, Y.; Xu, H.; Zheng, Y.; Liu, Y.; Han, S.; Yang, M.; Xie, Y.; Wang, K.; Duan, J.A.; et al. A strategy for identifying species-specific peptide biomarkers in deer-hide gelatin using untargeted and targeted mass spectrometry approaches. Anal. Chim. Acta 2019, 1092, 32–41. [Google Scholar] [CrossRef]
- Stachniuk, A.; Sumara, A.; Montowska, M.; Fornal, E. LC-QTOF-MS identification of rabbit-specific peptides for authenticating the species composition of meat products. Food Chem. 2020, 329, 127185. [Google Scholar] [CrossRef]
- Fornal, E.; Montowska, M. Species-specific peptide-based liquid chromatography-mass spectrometry monitoring of three poultry species in processed meat products. Food Chem. 2019, 283, 489–498. [Google Scholar] [CrossRef]
- Stachniuk, A.; Sumara, A.; Montowska, M.; Fornal, E. Liquid Chromatography-Mass Spectrometry Bottom-up Proteomic Methods in Animal Species Analysis of Processed Meat for Food Authentication and the Detection of Adulterations. Mass Spectrom. Rev. 2021, 40, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Montowska, M.; Fornal, E. Label-free quantification of meat proteins for evaluation of species composition of processed meat products. Food Chem. 2017, 237, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Pease, B.N.; Huttlin, E.L.; Jedrychowski, M.P.; Talevich, E.; Harmon, J.; Dillman, T.; Kannan, N.; Doerig, C.; Chakrabarti, R.; Gygi, S.P.; et al. Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J. Proteome Res. 2013, 12, 4028–4045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Wang, J.; Wang, X.; Zhu, J.; Liu, Q.; Shi, Z.; Chambers, M.C.; Zimmerman, L.J.; Shaddox, K.F.; Kim, S.; et al. Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513, 382–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumazawa, Y.; Taga, Y.; Takashima, M.; Hattori, S. A novel LC–MS method using collagen marker peptides for species identification of glue applicable to samples with multiple animal origins. Herit. Sci. 2018, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Y.; Li, H.; Zhao, W.; Guo, W.; Wang, S. Simultaneous determination of heat stable peptides for eight animal and plant species in meat products using UPLC-MS/MS method. Food Chem. 2018, 245, 125–131. [Google Scholar] [CrossRef]
- Prandi, B.; Varani, M.; Faccini, A.; Lambertini, F.; Suman, M.; Leporati, A.; Tedeschi, T.; Sforza, S. Species specific marker peptides for meat authenticity assessment: A multispecies quantitative approach applied to Bolognese sauce. Food Control 2019, 97, 15–24. [Google Scholar] [CrossRef]
- Van Vlierberghe, K.; Gavage, M.; Dieu, M.; Renard, P.; Arnould, T.; Gillard, N.; Coudijzer, K.; De Loose, M.; Gevaert, K.; Van Poucke, C. Selection of universal peptide biomarkers for the detection of the allergen hazelnut in food trough a comprehensive, high resolution mass spectrometric (HRMS) based approach. Food Chem. 2020, 309, 125679. [Google Scholar] [CrossRef]
- Watson, A.D.; Gunning, Y.; Rigby, N.M.; Philo, M.; Kemsley, E.K. Meat Authentication via Multiple Reaction Monitoring Mass Spectrometry of Myoglobin Peptides. Anal. Chem. 2015, 87, 10315–10322. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.L.; Wei, F.; Chen, J.; Li, M.H.; Zhang, L.; Zhao, Y.Y.; Xiao, X.Y.; Ma, S.C.; Lin, R.C. Using the Doubly Charged Selected Ion Coupled with MS/MS Fragments Monitoring (DCSI-MS/MS) Mode for the Identification of Gelatin Species. J. Anal. Methods Chem. 2014, 2014, 764397. [Google Scholar] [CrossRef]
- Sha, X.M.; Zhang, L.J.; Tu, Z.C.; Zhang, L.Z.; Hu, Z.Z.; Li, Z.; Li, X.; Huang, T.; Wang, H.; Zhang, L.; et al. The identification of three mammalian gelatins by liquid chromatography-high resolution mass spectrometry. Lwt 2018, 89, 74–86. [Google Scholar] [CrossRef]
- Cheng, X.L.; Wei, F.; Xiao, X.Y.; Zhao, Y.Y.; Shi, Y.; Liu, W.; Zhang, P.; Ma, S.C.; Tian, S.S.; Lin, R.C. Identification of five gelatins by ultra performance liquid chromatography/time-of-flight mass spectrometry (UPLC/Q-TOF-MS) using principal component analysis. J. Pharm. Biomed. Anal. 2012, 62, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Deng, G.; Duan, X.; Zhou, X.; Huang, Y. Marker peptide combination for source identification of gelatins obtained from Equidae hides by LC–MS/MS detection. Polym. Test. 2020, 88. [Google Scholar] [CrossRef]
- Chen, X.L. Research on Key Technologies for Quality Control of Colloids. Ph.D. Thesis, Beijing University of Chinese Medicine, Beijing, China, 2014. [Google Scholar]
- Wang, F.; Fan, Y.; Ye, M.; Cao, X.J.; Tong, X.X.; Peng, C.; Guo, J.L. Screening and identification of E-jiao specific peptides based on bioinformatics and mass spectrometry. Chin. Mater. Med. 2019, 21, 1256–1261, 1266. [Google Scholar]
- Shi, F.; Hang, B.J.; Chi, L.L.; Li, X.; Xu, L.H.; Wei, F.; Cheng, X.L.; Gong, L.P.; Ma, S.C. Discovery of donkey skin characteristic peptide and its application in the identification of donkey-hide gelatin. Chin. J. Pharm. Anal. 2017, 37, 2272–2278. [Google Scholar]
- Wu, W.J.; Li, L.F.; Cheng, H.Y.; Fung, H.Y.; Kong, H.Y.; Wong, T.L.; Zhang, Q.W.; Liu, M.; Bao, W.R.; Huo, C.Y.; et al. Qualitative and Quantitative Analysis of Edible Bird’s Nest Based on Peptide Markers by LC-QTOF-MS/MS. Molecules 2022, 27, 2945. [Google Scholar] [CrossRef]
Marker Ion ID | m/z | Retention Time (min) | Charge a | Donkey | Horse | Cattle | Pig | |
---|---|---|---|---|---|---|---|---|
Donkey | DM1 | 518.2695 | 18.92 | 4 | ✚ b | - b | - | - |
DM2 | 675.6632 | 23.36 | 3 | ✚ | - | - | - | |
DM3 | 761.3672 | 24.24 | 3 | ✚ | - | - | - | |
DM4 | 766.6952 | 23.36 | 3 | ✚ | - | - | - | |
DM5 | 774.0218 | 23.36 | 3 | ✚ | - | - | - | |
DM6 | 784.3392 | 23.36 | 3 | ✚ | - | - | - | |
DM7 | 854.0603 | 27.08 | 3 | ✚ | - | - | - | |
Horse | HM1 | 386.2108 | 10.36 | 2 | - | ✚ | - | - |
Cattle | CM1 | 596.8454 | 18.90 | 2 | - | - | ✚ | - |
CM2 | 604.8556 | 17.84 | 2 | - | - | ✚ | - | |
CM3 | 766.8957 | 18.34 | 2 | - | - | ✚ | - | |
Pig | PM1 | 419.2446 | 14.04 | 2 | - | - | - | ✚ |
PM2 | 490.5942 | 14.40 | 3 | - | - | - | ✚ | |
PM3 | 693.8432 | 26.70 | 2 | - | - | - | ✚ | |
PM4 | 713.6902 | 17.79 | 3 | - | - | - | ✚ | |
PM5 | 773.9237 | 18.51 | 2 | - | - | - | ✚ | |
PM6 | 774.9121 | 17.79 | 2 | - | - | - | ✚ |
No. | m/z | Charge | Donkey | Horse | Cattle | Pig | References |
---|---|---|---|---|---|---|---|
1 | 393.2 | 2 | ✚ c | ✚ | ✚ | - c | [24] |
2 | 469.244 | 2 | ✚ | ✚ | - | - | [25] |
3 | 469.25 a | 2 | ✚ | ✚ | - | - | [2] |
4 | 523.2746 | 2 | ✚ | ✚ | ✚ | ✚ | [1] |
5 | 539.774 | 2 | ✚ | ✚ | - | - | [25] |
6 | 539.8 a | 2 | ✚ | ✚ | - | - | [2] |
7 | 570.2882 | 2 | ✚ | ✚ | ✚ | ✚ | [26] |
8 | 570.2891 | 2 | ✚ | ✚ | ✚ | ✚ | [8] |
9 | 618.35 a | 2 | ✚ | ✚ | - | - | [2] |
10 | 618.795 | 2 | ✚ | ✚ | - | - | [25] |
11 | 631.8045 | 2 | - | - | - | - | [1] |
12 | 649.3408 | 3 | ✚ | ✚ | - | - | [22] |
13 | 660.3151 | 2 | - | - | - | - | [1] |
14 | 661.5864 | 4 | - | - | - | - | [22] |
15 | 664.8349 | 2 | ✚ | ✚ | ✚ | ✚ | [1] |
16 | 680.3351 | 2 | - | - | - | - | [1] |
17 | 690.6957 | 3 | - | - | - | - | [22] |
18 | 724.8451 | 2 | - | - | - | - | [22] |
19 | 733.3581 | 2 | ✚ | ✚ | - | - | [22] |
20 | 751.3628 | 2 | - | - | - | - | [22] |
21 | 765.8 | 2 | - | - | - | - | [21] |
22 | 765.8556 | 2 | ✚ | ✚ | - | - | [23] |
23 | 765.867 | 2 | ✚ | ✚ | - | - | [25] |
24 | 765.9142 | 2 | ✚ | ✚ | - | - | [22] |
25 | 766.4 | 2 | ✚ | ✚ | - | - | [27] |
26 | 767.7234 b | 3 | - | - | - | - | [22] |
27 | 802.9325 | 2 | ✚ | ✚ | - | - | [22] |
28 | 806.1683 | 4 | - | - | - | - | [22] |
29 | 902.4576 | 2 | ✚ | ✚ | - | - | [22] |
30 | 910.4554 | 2 | - | - | - | - | [22] |
31 | 921.4649 | 2 | ✚ | ✚ | - | - | [22] |
32 | 1073.08 | 2 | - | - | - | - | [22] |
No. a | m/z | RT (min) | Charge | Horse | Cattle | Pig |
---|---|---|---|---|---|---|
1 | 427.7377 | 10.96 | 2 | ✚ | - | - |
2 | 434.7462 | 10.56 | 2 | ✚ | - | - |
3 | 469.2702 | 13.12 | 2 | ✚ | - | - |
4 | 492.5830 | 12.15 | 3 | ✚ | - | - |
5 | 552.6176 | 12.69 | 3 | ✚ | - | - |
6 | 746.8774 | 13.75 | 3 | ✚ | - | - |
No. a | Precursor Ion (m/z) | Retention Time (min) | Charge | Fragmentor (V) | Quantitative Product Ion (m/z) | Collision Energy (eV) | Qualitative Product Ion (m/z) | Collision Energy (eV) | Species |
---|---|---|---|---|---|---|---|---|---|
1 | 766.6 | 6.8 | 3 | 140 | 535.2 | 30 | 478.2 | 30 | Donkey |
2 | 761.4 | 7.2 | 3 | 160 | 598.3 | 20 | 478.2 | 30 | Donkey |
3 | 469.3 | 2.8 | 2 | 110 | 712.3 | 10 | 783.4 | 15 | Donkey |
4 | 618.4 | 2.8 | 2 | 130 | 779.4 | 20 | 850.4 | 20 | Donkey |
5 | 386.3 | 2.0 | 2 | 90 | 499.3 | 3 | 556.3 | 5 | Horse |
6 | 604.8 | 4.8 | 2 | 130 | 910.5 | 25 | 570.3 | 20 | Cattle |
7 | 596.8 | 5.3 | 2 | 140 | 447.8 | 15 | 570.3 | 20 | Cattle |
8 | 490.5 | 3.2 | 2 | 80 | 566.2 | 5 | 807.5 | 10 | Pig |
9 | 773.9 | 5.0 | 2 | 180 | 977.6 | 30 | 556.3 | 35 | Pig |
Marker No. | Linear Regression a | R2 | LOD b (mg) | LOQ b (mg) | Analyte | Repeatability | Recovery % (RSD, n = 3) | |||
---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (n = 6) | Inter-Day (n = 3) | Low | Middle | High | ||||||
donkey-specific marker 4 DM4 | y = 44.607x + 49.776 | 0.9992 | 0.05 | 0.16 | Home-made donkey-hide gelatin | 2.3% | 3.9% | 86 (3.3%) | 92 (3.1%) | 89 (4.5%) |
Commercial Ejiao sample | 1.6% | 3.8% | 88 (4.7%) | 89 (3.9%) | 93 (4.3%) | |||||
horse-specific marker 1 HM1 | y = 124.66x + 151.13 | 0.9961 | 0.02 | 0.08 | Home-made horse-hide gelatin | 0.7% | 2.5% | 97 (1.1%) | 99 (2.3%) | 102 (1.4%) |
Commercial Ejiao sample | 0.8% | 2.3% | 98 (2.5%) | 105 (1.7%) | 114 (1.6%) | |||||
cattle-specific marker 2 CM2 | y = 106.14x + 157.72 | 0.9927 | 0.02 | 0.08 | Home-made cattle-hide gelatin | 1.2% | 3.3% | 89 (3.5%) | 93 (3.7%) | 99 (4.1%) |
Commercial Ejiao sample | 1.3% | 2.8% | 96 (4.2%) | 87 (3.3%) | 109 (3.5%) | |||||
pig-specific marker 2 PM2 | y = 299.07x + 162.53 | 0.9991 | 0.03 | 0.09 | Home-made pig-hide gelatin | 0.9% | 3.9% | 104 (4.1%) | 112 (3.7%) | 118 (3.2%) |
Commercial Ejiao sample | 1.7% | 4.1% | 99 (3.0%) | 103 (4.9%) | 112 (4.5%) |
Sample No. | Result (%) mg/mg | ||||||
---|---|---|---|---|---|---|---|
Donkey (CP) a | Donkey (DM4) a | Horse (HM1) | Cattle (CM2) | Pig (PM2) | Donkey (CP) b | Identification | |
1 | 54.0 | 62.3 | / c | / | / | NA c | NA |
2 | 56.1 | 80.1 | / | / | / | NA | NA |
3 | 60.5 | 84.2 | / | / | / | NA | NA |
4 | 55.3 | 57.8 | / | / | / | NA | NA |
5 | 0.2 | / | 0.2 | 52.3 | / | NA | NA |
6 | / | / | / | 59.9 | / | NA | NA |
7 | / | / | / | 43.5 | / | NA | NA |
8 | 0.2 | / | 1.6 | 6.2 | 0.0 | NA | NA |
9 | 61.4 | 89.4 | / | / | / | NA | NA |
10 | 57.3 | 91.2 | / | / | / | NA | NA |
11 | 74.2 | 66.3 | / | / | / | NA | NA |
12 | 53.3 | 57.4 | / | / | / | NA | NA |
13 | 70.9 | 69.9 | / | / | / | NA | NA |
14 | / | / | / | 54.3 | / | NA | NA |
15 | / | / | / | 39.0 | / | NA | NA |
16 | 75.7 | 77.3 | / | / | / | NA | NA |
17 | 66.0 | 78.8 | / | / | / | NA | NA |
18 | 71.5 | 67.1 | / | / | / | NA | NA |
19 | / | / | / | 49.0 | / | NA | NA |
20 | / | / | / | 29.0 | / | NA | NA |
21 | / | / | / | 47.4 | / | NA | NA |
22 | / | / | / | 63.3 | / | NA | NA |
23 | / | / | / | 45.5 | / | NA | NA |
24 | 66.5 | 69.0 | / | / | / | NA | NA |
25 | 76.2 | 70.4 | / | / | / | NA | NA |
26 | 69.5 | 57.0 | / | / | / | NA | NA |
27 | 12.6 | 2.1 | 18.5 | / | 47.4 | 2.8 | ✓ c |
28 | / | / | / | 49.3 | / | NA | NA |
29 | / | / | / | 40.2 | 0.1 | NA | NA |
30 | / | / | / | 67.4 | / | NA | NA |
31 | 66.8 | 74.5 | / | / | / | NA | NA |
32 | 66.7 | 72.9 | / | / | / | NA | NA |
33 | 0.5 | / | 0.6 | 31.5 | / | NA | NA |
34 | / | / | / | 46.3 | / | NA | NA |
35 | 48.6 | 78.9 | / | / | / | NA | NA |
36 | 70.8 | 63.3 | 4.1 | / | / | NA | NA |
37 | 19.3 | / | 26.3 | / | 33.5 | 5.5 | × c |
38 | / | / | / | 73.4 | / | NA | NA |
39 | 59.9 | 91.9 | / | / | / | NA | NA |
40 | 44.3 | 70.2 | / | / | / | NA | NA |
41 | 72.1 | 64.6 | / | / | / | NA | NA |
42 | / | / | / | 42.2 | / | NA | NA |
43 | / | / | / | 44.9 | / | NA | NA |
44 | 31.9 | 6.4 | 40.4 | 38.7 | / | 11.2 | ✓ |
45 | / | / | / | 47.8 | / | NA | NA |
46 | 70.1 | 66.5 | / | / | / | NA | NA |
47 | 70.7 | 57.4 | / | / | / | NA | NA |
48 | 98.3 | 98.8 | / | / | / | NA | NA |
49 | / | / | / | 47.0 | / | NA | NA |
50 | 69.9 | 88.0 | / | / | / | NA | NA |
51 | 13.4 | / | 21.4 | / | 42.7 | 2.2 | ✓ |
52 | 96.3 | 96.1 | / | / | / | NA | NA |
53 | / | / | / | 44.4 | / | NA | NA |
54 | 68.2 | 55.5 | / | / | / | NA | NA |
55 | 50.8 | 61.8 | / | / | / | NA | NA |
56 | 74.8 | 70.7 | / | / | / | NA | NA |
57 | 53.7 | 72.1 | / | / | / | NA | NA |
58 | / | / | / | 46.9 | / | NA | NA |
59 | / | / | / | 65.7 | / | NA | NA |
60 | / | / | / | 82.9 | / | NA | NA |
61 | / | / | / | 62.7 | / | NA | NA |
62 | 80.5 | 69.6 | / | / | / | NA | NA |
63 | 51.4 | 71.7 | / | / | / | NA | NA |
64 | / | / | / | 70.8 | / | NA | NA |
65 | / | / | / | 56.3 | / | NA | NA |
66 | / | / | / | 69.4 | / | NA | NA |
67 | 72.7 | 71.9 | / | / | / | NA | NA |
68 | 79.9 | 75.9 | / | / | / | NA | NA |
69 | / | / | / | 53.0 | / | NA | NA |
70 | / | / | / | 59.3 | / | NA | NA |
71 | 78.5 | / | 107.7 | / | / | 14.7 | × |
72 | 70.8 | 77.8 | / | / | / | NA | NA |
73 | / | / | / | 41.7 | / | NA | NA |
74 | 61.2 | 70.9 | / | / | / | NA | NA |
75 | 53.8 | 60.3 | / | / | / | NA | NA |
76 | 50.2 | 71.8 | / | / | / | NA | NA |
77 | / | / | 0.3 | 54.1 | / | NA | NA |
78 | / | / | / | 45.7 | / | NA | NA |
79 | / | / | / | 60.3 | / | NA | NA |
80 | / | / | / | 65.0 | / | NA | NA |
81 | 83.9 | 73.8 | / | / | / | NA | NA |
82 | / | / | / | 71.0 | / | NA | NA |
83 | 57.6 | 87.9 | / | / | / | NA | NA |
84 | 85.3 | 76.2 | / | / | / | NA | NA |
85 | 77.8 | 71.4 | / | / | / | NA | NA |
86 | 53.2 | 57.6 | / | / | / | NA | NA |
87 | / | / | / | 52.4 | / | NA | NA |
88 | / | / | / | 29.1 | / | NA | NA |
89 | / | / | / | 47.9 | / | NA | NA |
90 | / | / | / | 43.7 | / | NA | NA |
91 | 75.0 | 68.2 | / | / | / | NA | NA |
92 | 80.6 | 68.2 | / | / | / | NA | NA |
93 | 59.9 | 56.3 | / | / | / | NA | NA |
94 | 67.7 | 74.7 | / | / | / | NA | NA |
95 | 0.9 | / | 1.3 | 47.5 | / | NA | NA |
96 | / | / | / | 40.9 | / | NA | NA |
97 | / | / | / | 46.5 | / | NA | NA |
98 | / | / | / | 44.3 | / | NA | NA |
99 | 69.7 | 53.4 | / | / | / | NA | NA |
100 | 79.6 | 5.7 | 105.9 | / | / | 26.2 | ✓ |
101 | 71.8 | 6.3 | 99.3 | / | / | 21.8 | ✓ |
102 | 60.9 | 71.4 | / | / | / | NA | NA |
103 | 52.4 | / | 78.5 | / | / | 12.7 | × |
104 | 34.3 | / | 46.5 | / | / | 10.5 | × |
105 | 63.2 | 3.9 | 107.8 | / | / | 8.9 | × |
106 | 3.0 | / | 24.1 | / | / | / | ✓ |
107 | 93.6 | 92.8 | / | / | / | NA | NA |
108 | / | / | / | / | / | NA | NA |
109 | 62.8 | 90.4 | / | / | / | NA | NA |
110 | 20.2 | 32.6 | / | / | / | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.-J.; Li, L.-F.; Fung, H.-Y.; Cheng, H.-Y.; Kong, H.-Y.; Wong, T.-L.; Zhang, Q.-W.; Liu, M.; Bao, W.-R.; Huo, C.-Y.; et al. Qualitative and Quantitative Analysis of Ejiao-Related Animal Gelatins through Peptide Markers Using LC-QTOF-MS/MS and Scheduled Multiple Reaction Monitoring (MRM) by LC-QQQ-MS/MS. Molecules 2022, 27, 4643. https://doi.org/10.3390/molecules27144643
Wu W-J, Li L-F, Fung H-Y, Cheng H-Y, Kong H-Y, Wong T-L, Zhang Q-W, Liu M, Bao W-R, Huo C-Y, et al. Qualitative and Quantitative Analysis of Ejiao-Related Animal Gelatins through Peptide Markers Using LC-QTOF-MS/MS and Scheduled Multiple Reaction Monitoring (MRM) by LC-QQQ-MS/MS. Molecules. 2022; 27(14):4643. https://doi.org/10.3390/molecules27144643
Chicago/Turabian StyleWu, Wen-Jie, Li-Feng Li, Hau-Yee Fung, Hui-Yuan Cheng, Hau-Yee Kong, Tin-Long Wong, Quan-Wei Zhang, Man Liu, Wan-Rong Bao, Chu-Ying Huo, and et al. 2022. "Qualitative and Quantitative Analysis of Ejiao-Related Animal Gelatins through Peptide Markers Using LC-QTOF-MS/MS and Scheduled Multiple Reaction Monitoring (MRM) by LC-QQQ-MS/MS" Molecules 27, no. 14: 4643. https://doi.org/10.3390/molecules27144643
APA StyleWu, W.-J., Li, L.-F., Fung, H.-Y., Cheng, H.-Y., Kong, H.-Y., Wong, T.-L., Zhang, Q.-W., Liu, M., Bao, W.-R., Huo, C.-Y., Guo, S., Liu, H., Zhou, X., Gao, D.-F., & Han, Q.-B. (2022). Qualitative and Quantitative Analysis of Ejiao-Related Animal Gelatins through Peptide Markers Using LC-QTOF-MS/MS and Scheduled Multiple Reaction Monitoring (MRM) by LC-QQQ-MS/MS. Molecules, 27(14), 4643. https://doi.org/10.3390/molecules27144643