Mesoporous Silica Modified with 2-Phenylimidazo[1,2-a] pyridine-3-carbaldehyde as an Effective Adsorbent for Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Synthesis of 2-phenylimidazo[1,2-a] pyridine-3-carbaldehyde
2.3. Preparation of Amine-Functionalized Silica SiNH2
2.4. Fabrication of the SiN-imd-py Adsorbent
2.5. Batch Adsorption Experiment
2.6. Computational Methods
3. Results and Discussion
3.1. Characterization
3.1.1. Elemental Analysis
3.1.2. FTIR
3.1.3. Scanning Electron Microscope (SEM)
3.1.4. Thermogravimetric Analysis (TGA)
3.1.5. N2 Physisorption Studies
3.2. Adsorption Studies
3.2.1. Effect of pH
3.2.2. Effect of Contact Time and Adsorption Mechanism
3.2.3. Influence of Initial Concentration
3.2.4. Adsorption Isotherms
3.2.5. Thermodynamic Studies
3.2.6. Adsorption Selectivity for Cu(II)
3.2.7. Desorption and Recycling
3.2.8. Comparison with Similar Adsorbents
3.3. Adsorption Mechanism
3.3.1. Active Sites Study
3.3.2. Cu(II) Complexation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Töre, G.Y.; Özkoç, B. Recent developments in aquatic macrophytes for environmental pollution control: A case study on heavy metal removal from lake water and agricultural return wastewater with the use of duckweed (Lemnacea). In Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 75–127. [Google Scholar] [CrossRef]
- Guo, L.-C.; Lv, Z.; Ma, W.; Xiao, J.; Lin, H.; He, G.; Li, X.; Zeng, W.; Hu, J.; Zhou, Y.; et al. Contribution of heavy metals in PM2.5 to cardiovascular disease mortality risk, a case study in Guangzhou, China. Chemosphere 2022, 297, 134102. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Bin Emran, T.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, A.; Kumar, P.S.; Hoang, T.K.; Sekar, K.; Chong, K.Y.; Khoo, K.S.; Ng, H.S.; Show, P.L. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere 2022, 303, 135146. [Google Scholar] [CrossRef] [PubMed]
- Sorouraddin, S.M.; Farajzadeh, M.A.; Okhravi, T. Cyclohexylamine as extraction solvent and chelating agent in extraction and preconcentration of some heavy metals in aqueous samples based on heat-induced homogeneous liquid-liquid extraction. Talanta 2017, 175, 359–365. [Google Scholar] [CrossRef]
- Fadila, C.; Othman, M.; Adam, M.; Takagi, R.; Yoshioka, T.; Khongnakorn, W.; Rahman, M.; Jaafar, J.; Ismail, A. Adsorptive membrane for heavy metal removal: Material, fabrication, and performance. Mater. Today Proc. 2022; in press. [Google Scholar] [CrossRef]
- Pan, S.; Shen, J.; Deng, Z.; Zhang, X.; Pan, B. Metastable nano-zirconium phosphate inside gel-type ion exchanger for enhanced removal of heavy metals. J. Hazard. Mater. 2022, 423, 127158. [Google Scholar] [CrossRef]
- Zhou, Q.; Liao, L.; Zhou, H.; Li, D.; Tang, D.; Yu, F. Innovative strategies in design of transition metal-based catalysts for large-current-density alkaline water/seawater electrolysis. Mater. Today Phys. 2022, 26, 100727. [Google Scholar] [CrossRef]
- Tighadouini, S.; Radi, S.; Roby, O.; Hammoudan, I.; Saddik, R.; Garcia, Y.; Almarhoon, Z.M.; Mabkhot, Y.N. Kinetics, thermodynamics, equilibrium, surface modelling, and atomic absorption analysis of selective Cu(ii) removal from aqueous solutions and rivers water using silica-2-(pyridin-2-ylmethoxy)ethan-1-ol hybrid material. RSC Adv. 2022, 12, 611–625. [Google Scholar] [CrossRef]
- Wieszczycka, K.; Wojciechowska, I.; Filipowiak, K.; Buchwald, T.; Nowicki, M.; Dudzinska, P.; Strzemiecka, B.; Voelkel, A. Novel iminepyridinium -modified silicas as super-adsorbents for metals ions. Appl. Surf. Sci. 2022, 596, 153555. [Google Scholar] [CrossRef]
- Mandal, S.; Calderon, J.; Marpu, S.B.; Omary, M.A.; Shi, S.Q. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. J. Contam. Hydrol. 2021, 243, 103869. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Tan, Q.; Gao, M.; Chen, G.; Huang, X.; Xu, X.; Li, L.; Wang, J.; Zhang, Y.; et al. Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption. J. Adv. Res. 2022; in press. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, B.; Liu, Y.; Wang, C.; Chen, Y. Adsorption behavior and mechanism of mixed heavy metal ions by zeolite adsorbent prepared from lithium leach residue. Microporous Mesoporous Mater. 2022, 329, 111553. [Google Scholar] [CrossRef]
- Es-Sahbany, H.; Hsissou, R.; El Hachimi, M.; Allaoui, M.; Nkhili, S.; Elyoubi, M. Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Mater. Today Proc. 2021, 45, 7290–7298. [Google Scholar] [CrossRef]
- Baskaran, K.; Ali, M.; Gingrich, K.; Porter, D.L.; Chong, S.; Riley, B.J.; Peak, C.W.; Naleway, S.E.; Zharov, I.; Carlson, K. Sol-gel derived silica: A review of polymer-tailored properties for energy and environmental applications. Microporous Mesoporous Mater. 2022, 336, 111874. [Google Scholar] [CrossRef]
- Tighadouini, S.; Radi, S.; Garcia, Y. Selective chemical adsorption of Cd(ii) on silica covalently decorated with a β-ketoenol-thiophene-furan receptor. Mol. Syst. Des. Eng. 2020, 5, 1037–1047. [Google Scholar] [CrossRef]
- Yanovska, E.; Savchenko, I.; Sternik, D.; Kychkiruk, O.; Ol’Khovik, L.; Buriachenko, I. In Situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Poly[N-(4-carboxyphenyl)methacrylamide] on Toxic Metal Ions. Nanoscale Res. Lett. 2017, 12, 313. [Google Scholar] [CrossRef]
- Tighadouini, S.; Radi, S.; Ferbinteanu, M.; Garcia, Y. Highly Selective Removal of Pb(II) by a Pyridylpyrazole-β-ketoenol Receptor Covalently Bonded onto the Silica Surface. ACS Omega 2019, 4, 3954–3964. [Google Scholar] [CrossRef]
- Rigoletto, M.; Calza, P.; Gaggero, E.; Laurenti, E. Hybrid materials for the removal of emerging pollutants in water: Classification, synthesis, and properties. Chem. Eng. J. Adv. 2022, 10, 100252. [Google Scholar] [CrossRef]
- Bilgiç, A.; Çimen, A. Removal of chromium(VI) from polluted wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline. RSC Adv. 2019, 9, 37403–37414. [Google Scholar] [CrossRef]
- Li, B.; Ni, L.-S.; Yong, G.-P. Three new coordination compounds based on a new 3-position substituted imidazo[1,2-a]pyridine ligand: Syntheses, crystal structures and photoluminescent properties. Polyhedron 2018, 154, 21–26. [Google Scholar] [CrossRef]
- Kanthecha, D.A.; Bhatt, B.S.; Patel, M.N. Synthesis, characterization and biological activities of imidazo[1,2-a]pyridine based gold(III) metal complexes. Heliyon 2019, 5, e01968. [Google Scholar] [CrossRef]
- Rakhtshah, J.; Yaghoobi, F. Catalytic application of new manganese Schiff-base complex immobilized on chitosan-coated magnetic nanoparticles for one-pot synthesis of 3-iminoaryl-imidazo[1,2-a]pyridines. Int. J. Biol. Macromol. 2019, 139, 904–916. [Google Scholar] [CrossRef]
- Wang, W.; Wu, G.; Zhu, T.; Yang, Y.; Zhang, Y. Synthesis of -thiazole Schiff base modified SBA-15 mesoporous silica for selective Pb(II) adsorption. J. Taiwan Inst. Chem. Eng. 2021, 125, 349–359. [Google Scholar] [CrossRef]
- Xue, X.; Li, F. Removal of Cu(II) from aqueous solution by adsorption onto functionalized SBA-16 mesoporous silica. Microporous Mesoporous Mater. 2008, 116, 116–122. [Google Scholar] [CrossRef]
- Rivero, P.; García-Suárez, V.M.; Pereñiguez, D.; Utt, K.; Yang, Y.; Bellaiche, L.; Park, K.; Ferrer, J.; Barraza-Lopez, S. Systematic pseudopotentials from reference eigenvalue sets for DFT calculations. Comput. Mater. Sci. 2015, 98, 372–389. [Google Scholar] [CrossRef]
- Yan, X.; Rahman, S.; Rostami, M.; Tabasi, Z.A.; Khan, F.; Alodhayb, A.; Zhang, Y. Carbon Quantum Dot-Incorporated Chitosan Hydrogel for Selective Sensing of Hg2+ Ions: Synthesis, Characterization, and Density Functional Theory Calculation. ACS Omega 2021, 6, 23504–23514. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, UK, 2013. [Google Scholar]
- Viewing Molecular Orbital Calculations with GaussView: A Lab for First- or Second-Year Undergraduate Students. Available online: https://www.ionicviper.org/lab-experiment/viewing-molecular-orbital-calculations-gaussview-lab-first-or-second-year-undergradua (accessed on 25 May 2010).
- Tighadouini, S.; Roby, O.; Radi, S.; Lakbaibi, Z.; Saddik, R.; Mabkhot, Y.N.; Almarhoon, Z.M.; Garcia, Y. A Highly Efficient Environmental-Friendly Adsorbent Based on Schiff Base for Removal of Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study. Molecules 2021, 26, 17. [Google Scholar] [CrossRef]
- Kruse, H.; Goerigk, L.; Grimme, S. Why the Standard B3LYP/6-31G* Model Chemistry Should Not Be Used in DFT Calculations of Molecular Thermochemistry: Understanding and Correcting the Problem. J. Org. Chem. 2012, 77, 10824–10834. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Halim, S.A. Novel SnZr oxides nanomaterials synthesized by ultrasonic-assisted co-precipitation method: Application in biodiesel production and DFT study. J. Mol. Liq. 2021, 339, 116652. [Google Scholar] [CrossRef]
- Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S. Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements. J. Phys. Chem. A 2001, 105, 8111–8116. [Google Scholar] [CrossRef]
- Zhou, Y.; Luan, L.; Tang, B.; Niu, Y.; Qu, R.; Liu, Y.; Xu, W. Fabrication of Schiff base decorated PAMAM dendrimer/magnetic Fe3O4 for selective removal of aqueous Hg(II). Chem. Eng. J. 2020, 398, 125651. [Google Scholar] [CrossRef]
- Halilu, A.; Hayyan, M.; Aroua, M.K.; Yusoff, R.; Hizaddin, H.F. In Situ Electrosynthesis of Peroxydicarbonate Anion in Ionic Liquid Media Using Carbon Dioxide/Superoxide System. ACS Appl. Mater. Interfaces 2019, 11, 25928–25939. [Google Scholar] [CrossRef]
- Tighadouini, S.; Roby, O.; Mortada, S.; Lakbaibi, Z.; Radi, S.; Al-Ali, A.; Faouzi, M.E.A.; Ferbinteanu, M.; Garcia, Y.; Al-Zaqri, N.; et al. Crystal structure, physicochemical, DFT, optical, keto-enol tautomerization, docking, and anti-diabetic studies of (Z)-pyrazol β-keto-enol derivative. J. Mol. Struct. 2022, 1247, 131308. [Google Scholar] [CrossRef]
- Chamorro, E.; Pérez, P.; Domingo, L.R. On the nature of Parr functions to predict the most reactive sites along organic polar reactions. Chem. Phys. Lett. 2013, 582, 141–143. [Google Scholar] [CrossRef]
- Matta, C.F. On the connections between the quantum theory of atoms in molecules (QTAIM) and density functional theory (DFT): A letter from Richard F. W. Bader to Lou Massa. Struct. Chem. 2017, 28, 1591–1597. [Google Scholar] [CrossRef]
- Savin, A.; Silvi, B.; Colonna, F. Topological analysis of the electron localization function applied to delocalized bonds. Can. J. Chem. 1996, 74, 1088–1096. [Google Scholar] [CrossRef]
- Savin, P.-D.A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The Electron Localization Function. Angew. Chem. Int. Ed. Engl. 1997, 36, 1808–1832. [Google Scholar] [CrossRef]
- Jacobsen, H. Localized-orbital locator (LOL) profiles of transition-metal hydride and dihydrogen complexes. Can. J. Chem. 2009, 87, 965–973. [Google Scholar] [CrossRef]
- Schmider, H.; Becke, A. Chemical content of the kinetic energy density. J. Mol. Struct. theochem. 2000, 527, 51–61. [Google Scholar] [CrossRef]
- Radi, S.; Tighadouini, S.; Bacquet, M.; Degoutin, S.; Garcia, Y. New Hybrid Material Based on a Silica-Immobilised Conjugated β-Ketoenol–Bipyridine Receptor and Its Excellent Cu(II) Adsorption Capacity. Anal. Methods 2016, 8, 6923–6931. [Google Scholar] [CrossRef]
- Radi, S.; Tighadouini, S.; Bacquet, M.; Degoutin, S.; Dacquin, J.-P.; Eddike, D.; Tillard, M.; Mabkhot, Y.N. β-Keto-Enol Tethered Pyridine and Thiophene: Synthesis, Crystal Structure Determination and Its Organic Immobilization on Silica for Efficient Solid-Liquid Extraction of Heavy Metals. Molecules 2016, 21, 888. [Google Scholar] [CrossRef]
- Radi, S.; Toubi, Y.; Attayibat, A.; Bacquet, M. New Polysiloxane-Chemically Immobilized C,C-Bipyrazolic Receptor for Heavy Metals Adsorption. J. App. Polym. Sci. 2011, 121, 1393–1399. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Largitte, L.; Pasquier, R. A Review of the Kinetics Adsorption Models and Their Application to the Adsorption of Lead by an Activated Carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Radi, S.; El Abiad, C.; Moura, N.M.; Faustino, M.A.; Neves, M.G.P. New Hybrid Adsorbent Based on Porphyrin Functionalized Silica for Heavy Metals Removal: Synthesis, Characterization, Isotherms, Kinetics and Thermodynamics Studies. J. Hazard. Mater. 2019, 370, 80–90. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1368. [Google Scholar] [CrossRef]
- Ali, O.; Mohamed, S. Adsorption of copper ions and alizarin red S from aqueous solutions onto a polymeric nanocomposite in single and binary systems. Turk. J. Chem. 2017, 41, 967–986. [Google Scholar] [CrossRef]
- Milonjic, S. A consideration of the correct calculation of thermodynamic parameters of adsorption. J. Serb. Chem. Soc. 2007, 72, 1363–1368. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, B.; Niu, Y.; Chen, H.; Liu, Y.; Wang, A.; Bai, L. Synthesis of silica supported thiosemicarbazide for Cu(II) and Zn(II) adsorption from ethanol: A comparison with aqueous solution. Fuel 2021, 286, 119287. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, X.; Sun, J.; Wu, G.; Wang, J.; Zhang, D. Synthesis of pyridyl Schiff base functionalized SBA-15 mesoporous silica for the removal of Cu(II) and Pb(II) from aqueous solution. J. Sol. Gel. Sci. Technol. 2019, 94, 658–670. [Google Scholar] [CrossRef]
- G. In situ synthesis of nanocomposite materials based on modified-mesoporous silica MCM-41 and methyl methacrylate for copper(II) adsorption from aqueous solution. J. Iran. Chem. Soc. 2019, 16, 1491–1500. [Google Scholar] [CrossRef]
- He, S.; Zhao, C.; Yao, P.; Yang, S. Chemical modification of silica gel with multidentate ligands for heavy metals removal. Desalin. Water Treat. 2016, 57, 1722–1732. [Google Scholar] [CrossRef]
- Moftakhar, M.K.; Dousti, Z.; Yaftian, M.R.; Ghorbanloo, M. Investigation of heavy metal ions adsorption behavior of silica-supported Schiff base ligands. Desalin. Water Treat. 2016, 57, 27396–27408. [Google Scholar] [CrossRef]
- Radi, S.; Tighadouini, S.; El Massaoudi, M.; Bacquet, M.; Degoutin, S.; Revel, B.; Mabkhot, Y.N. Thermodynamics and kinetics of heavy metals adsorption on silica particles chemically modified by conjugated β-ketoenol furan. J. Chem. Eng. Data 2015, 60, 2915. [Google Scholar] [CrossRef]
- Dong, C.; Fu, R.; Sun, C.; Qu, R.; Ji, C.; Niu, Y.; Zhang, Y. Comparison studies of adsorption properties for copper ions in fuel ethanol and aqueous solution using silica-gel functionalized with 3-amino-1,2-propanediol. Fuel 2018, 226, 331–337. [Google Scholar] [CrossRef]
- Morcali, M.H.; Zeytuncu, B.; Baysal, A.; Akman, S.; Yucel, O. Adsorption of copper and zinc from sulfate media on a commercial sorbent. J. Environ. Chem. Eng. 2014, 2, 1655–1662. [Google Scholar] [CrossRef]
- El Massaoudi, M.; Radi, S.; Bacquet, M.; Degoutin, S.; Adarsh, N.N.; Robeyns, K.; Garcia, Y. A novel environment-friendly hybrid material based on a modified silica gel with a bispyrazole derivative for the removal of Zn(II), Pb(II), Cd(II) and Cu(II) traces from aqueous solutions. Inorg. Chem. Front. 2017, 4, 1821. [Google Scholar]
- Weinhold, F.; Landis, C.R. Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2001, 2, 91–104. [Google Scholar] [CrossRef]
- Hammoudan, I.; Chtita, S.; Riffi-Temsamani, D. QTAIM and IRC studies for the evaluation of activation energy on the C=P, C=N and C=O Diels-Alder reaction. Heliyon 2020, 6, e04655. [Google Scholar] [CrossRef]
Element | SiNH2 % | SiN-imd-py % |
---|---|---|
H | 3.67 | 5.55 |
N | 9.02 | 16.56 |
C | 23.97 | 49.45 |
Silica Derivatives | Specific Surface SBET (m2 g−1) | Pore Volume (cm3 g−1) |
---|---|---|
Free silica | 305.21 | 0.770 |
SiNH2 | 283.08 | 0.690 |
SiN-Imd-Py | 231.41 | 0.541 |
Metal | qe (exp) (mg g−1) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
k1 (min−1) | qe (mg g−1) | R² | k2 (g/mg min) | qe (mg g−1) | R² | ||
Cu(II) | 97.17 | 0.1605 | 44.9477 | 0.9372 | 0.005208 | 104.0582 | 0.9989 |
Metal | Langmuir model | Freundlich model | ||||
qe (mg g−1) | KL (L mg−1) | R2 | KF (mg g−1) | N | R2 | |
Cu(II) | 103.5196 | 0.1477 | 0.9983 | 30.8057 | 3.7432 | 0.9605 |
Dubinin–Radushkevich (D-R) model | Temkin model | |||||
β (mol2 Kj−2) | E (Kj mol−1) | R2 | At (L mg1) | bt (J mol−1) | R2 | |
Cu(II) | 4.37 × 10−7 | 1069.65 | 0.6369 | 4.5038 | 152.3262 | 0.9829 |
Métal | Adsorbents | ΔH° (kJ mol−1) | ΔS° (Jk−1mol−1) | ΔG° (kJ mol−1) | ||
---|---|---|---|---|---|---|
298 K | 308 K | 318 K | ||||
Cu(II) | SiN-imd-py SiPy [9] | 3.778 8.1364 | 14.142 29.163 | −0.452 −0.558 | −0.593 −0.850 | −0.735 −1.141 |
SG-GPTS-ATS [52] | 48.99 | 221.86 | −14.91 | −17.12 | −19.32 |
Cycle | qe (mg g−1) of Cu(II) Adsorbed on SiN-imd-py |
---|---|
1 | 97.17 |
2 | 92.18 |
3 | 90.02 |
4 | 89.07 |
5 | 88.43 |
Silica Gel-Ligand | Reference | Metal Ion (mg g−1) |
---|---|---|
2-Phenylimidazo[1,2-a] pyridine-3-carbaldehyde Pyridin-2-ylmethanol Porphyrin | This work [9] [48] | 97.17 90.25 19.08 |
N-propyl-2-pyridylimine | [53] | 35.63 |
Methyl methacrylate | [54] | 41.36 |
Dithiocarbamate | [55] | 25.00 |
(E)-4-(furan-2-ylmethyleneamino) phenol (E)-2-(furan-2-ylmethyleneamino) phenol | [30] [30] | 36.20 79.36 |
3-Hydroxysalicylaldiminepropyltriethoxy-silane | [56] | 5.72 |
Furan ketonenol | [57] | 31.82 |
3-amino-1,2-propanediol Commercial Lewatit (L-207) Bis(pyrazole)butane | [58] [59] [60] | 31.18 68.09 20.24 |
2N | 9N | 11N | |
---|---|---|---|
P(-) | −0.064 | 0.084 | 0.293 |
E(2) Energy in (kcal/mol) | |||||
---|---|---|---|---|---|
EC of Cu, N9, O39, O42, O45 | LPN(9)-LP*Cu(38) | LPO(39)-RY*Cu(38) | LPO(42)-RY*Cu(38) | LPO(45)-LP*Cu(38) | |
C1 | Cu[core]4S(0.10)3d(4.96)4p(0.11) N9[core]2S(1.37)2p(4.39)3S(0.01)3p(0.15)3d(0.01)4p(0.02)5p(0.01) O39[core]2S(1.72)2p(5.21)3p(0.01) O42[core]2S(1.71)2p(5.21)3p(0.01) O45[core]2S(1.72)2p(5.21)3p(0.01) | 20.78 | 35.07 | 11.92 | 565.01 |
C2 | Cu[core]4S(0.20)3d(9.84)4p(0.10) N9[core]2S(1.36)2p(4.39)3S(0.01)3p(0.10)3d(0.02)4p(0.01) O39[core]2S(1.72)2p(5.21)3p(0.01) O42[core]2S(1.72)2p(5.21)3p(0.01) O45[core]2S(1.72)2p(5.21)3p(0.01) | 20.1 | 30.2 | 10.1 | 555.32 |
CP | Bonding | d (Å) | ρ | ∇²ρ | Lag | ELF | LOL | |
---|---|---|---|---|---|---|---|---|
Complex1 | 85 | 9N-Cu | 1.983 | 0.832 | 0.135 | 0.510 | 0.102 | 0.252 |
89 | 39O-Cu | 2.171 | 0.389 | 0.232 | 0.532 | 0.549 | 0.194 | |
78 | 42O-Cu | 2.155 | 0.461 | 0.316 | 0.710 | 0.544 | 0.193 | |
76 | 45O-Cu | 2.241 | 0.451 | 0.302 | 0.678 | 0.553 | 0.194 | |
Complex2 | 84 | 9N-Cu | 1.995 | 0.808 | 0.495 | 0.129 | 0.100 | 0.250 |
88 | 39O-Cu | 2.169 | 0.383 | 0.231 | 0.517 | 0.550 | 0.194 | |
79 | 42O-Cu | 2.179 | 0.439 | 0.293 | 0.656 | 0.540 | 0.193 | |
75 | 45O-Cu | 2.249 | 0.453 | 0.304 | 0.684 | 0.553 | 0.194 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saddik, R.; Hammoudan, I.; Tighadouini, S.; Roby, O.; Radi, S.; Al-Zaben, M.I.; Ben Bacha, A.; Masand, V.H.; Almarhoon, Z.M. Mesoporous Silica Modified with 2-Phenylimidazo[1,2-a] pyridine-3-carbaldehyde as an Effective Adsorbent for Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study. Molecules 2022, 27, 5168. https://doi.org/10.3390/molecules27165168
Saddik R, Hammoudan I, Tighadouini S, Roby O, Radi S, Al-Zaben MI, Ben Bacha A, Masand VH, Almarhoon ZM. Mesoporous Silica Modified with 2-Phenylimidazo[1,2-a] pyridine-3-carbaldehyde as an Effective Adsorbent for Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study. Molecules. 2022; 27(16):5168. https://doi.org/10.3390/molecules27165168
Chicago/Turabian StyleSaddik, Rafik, Imad Hammoudan, Said Tighadouini, Othmane Roby, Smaail Radi, Maha I. Al-Zaben, Abir Ben Bacha, Vijay H. Masand, and Zainab M. Almarhoon. 2022. "Mesoporous Silica Modified with 2-Phenylimidazo[1,2-a] pyridine-3-carbaldehyde as an Effective Adsorbent for Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study" Molecules 27, no. 16: 5168. https://doi.org/10.3390/molecules27165168
APA StyleSaddik, R., Hammoudan, I., Tighadouini, S., Roby, O., Radi, S., Al-Zaben, M. I., Ben Bacha, A., Masand, V. H., & Almarhoon, Z. M. (2022). Mesoporous Silica Modified with 2-Phenylimidazo[1,2-a] pyridine-3-carbaldehyde as an Effective Adsorbent for Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study. Molecules, 27(16), 5168. https://doi.org/10.3390/molecules27165168