Synthesis and Investigation of the Analgesic Potential of Enantiomerically Pure Schiff Bases: A Mechanistic Approach
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization of the Schiff Bases
2.2. Pharmacological Activities
2.2.1. Acetic-Acid-Induced Writhing Method
2.2.2. Formalin-Induced Paw-Licking Time
2.2.3. Tail Immersion Method and Possible Involvement of Opioidergic System
2.2.4. Hot Plate Test for the Assessment of Analgesic Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methodology
4.3. General Procedure for the Synthesis and Characterization of Chiral Schiff Bases
4.3.1. Synthesis of (S,E)-N,N-dimethyl-4-(((1-phenylethyl)imino)methyl)aniline (H1)
4.3.2. Synthesis of (S,E)-N-(4-methylbenzylidene)-1-phenylethanamine (H2)
4.3.3. Synthesis of (S,E)-N-(4-nitrobenzylidene)-1-phenylethanamine (H3)
4.3.4. Synthesis of (R,E)-N,N-dimethyl-4-(((1-phenylethyl)imino)methyl)aniline (H4)
4.3.5. Synthesis of (R,E)-N-(4-methylbenzylidene)-1-phenylethanamine (H5)
4.3.6. Synthesis of (R,E)-N-(4-nitrobenzylidene)-1-phenylethanamine (H6)
4.4. Pharmacological Activities
4.4.1. Animals, Dosing and Grouping
4.4.2. Acute Toxicity Study
4.4.3. Acetic-Acid-Writhing Test
4.4.4. Formalin Test
4.4.5. Tail Immersion Test
4.4.6. Hot Plate Test
4.4.7. Molecular-Level Mechanisms for Opioid Receptor Involvement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef]
- Whitley, G.A.; Hemingway, P.; Law, G.R.; Siriwardena, A.N. The complexity of pain management in children. J. Paramed. Pract. 2019, 11, 466–468. [Google Scholar] [CrossRef]
- Kumar, K.H.; Elavarasi, P. Definition of pain and classification of pain disorders. J. Adv. Clin. Res. Insights 2016, 3, 87–90. [Google Scholar] [CrossRef]
- Dureja, G.P.; Iyer, R.N.; Das, G.; Ahdal, J.; Narang, P. Evidence and consensus recommendations for the pharmacological management of pain in India. J. Pain Res. 2017, 10, 709. [Google Scholar] [CrossRef]
- Raffaeli, W.; Tenti, M.; Corraro, A.; Malafoglia, V.; Ilari, S.; Balzani, E.; Bonci, A. Chronic Pain: What Does It Mean? A Review on the Use of the Term Chronic Pain in Clinical Practice. J. Pain Res. 2021, 14, 827–835. [Google Scholar] [CrossRef]
- Arnold, L.M.; Choy, E.; Clauw, D.J.; Goldenberg, D.L.; Harris, R.E.; Helfenstein, M., Jr.; Jensen, T.S.; Noguchi, K.; Silverman, S.L.; Ushida, T.; et al. Fibromyalgia and Chronic Pain Syndromes: A White Paper Detailing Current Challenges in the Field. Clin. J. Pain 2016, 32, 737–746. [Google Scholar] [CrossRef]
- Caraceni, A.; Shkodra, M. Cancer Pain Assessment and Classification. Cancers 2019, 11, 510. [Google Scholar] [CrossRef]
- Van Oudenhove, L.; Kragel, P.A.; Dupont, P.; Ly, H.G.; Pazmany, E.; Enzlin, P.; Rubio, A.; Delon-Martin, C.; Bonaz, B.; Aziz, Q.; et al. Common and distinct neural representations of aversive somatic and visceral stimulation in healthy individuals. Nat. Commun. 2020, 11, 5939. [Google Scholar] [CrossRef]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Prim. 2017, 3, 17002. [Google Scholar] [CrossRef]
- Dutta, D.; Bhattacharyya, N.K.; Biswas, J. A review on synthesis and biological activity of Schiff Bases. Indian J. Chem. 2007, 60B, 1478–1489. [Google Scholar]
- Mumtaz, A.; Mahmud, T.; Elsegood, M.; Weaver, G. Synthesis and characterization of new Schiff base transition metal complexes derived from drug together with biological potential study. J. Nucl. Med. Radiat. 2016, 7, 2. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Mohamed, I.M.A. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Al-Salahi, R.A.; Al-Omar, M.A.; Amr, A.E.-G.E. Synthesis of chiral macrocyclic or linear pyridine carboxamides from pyridine-2, 6-dicarbonyl dichloride as antimicrobial agents. Molecules 2010, 15, 6588–6597. [Google Scholar] [CrossRef] [PubMed]
- Arunadevi, A.; Raman, N. Biological response of Schiff base metal complexes incorporating amino acids—A short review. J. Coord. Chem. 2020, 73, 2095–2116. [Google Scholar] [CrossRef]
- Kareem, E.K.; Drea, A.A.-A.; Lateef, S.M. Investigation study of transition state for synthesis new schiff base ligands of isatin derivatives. Int. J. Chem. Sci 2016, 14, 513–528. [Google Scholar]
- Aggarwal, S.; Paliwal, D.; Kaushik, D.; Gupta, G.K.; Kumar, A. Pyrazole Schiff Base Hybrids as Anti-Malarial Agents: Synthesis, In Vitro Screening and Computational Study. Comb. Chem. High. Throughput Screen. 2018, 21, 194–203. [Google Scholar] [CrossRef]
- Shokrollahi, S.; Amiri, A.; Fadaei-Tirani, F.; Schenk-Joss, K. Promising anti-cancer potency of 4,5,6,7-tetrahydrobenzo[d]thiazole-based Schiff-bases. J. Mol. Liq. 2020, 300, 112262. [Google Scholar] [CrossRef]
- Ejidike, I.P.; Ajibade, P.A. Transition metal complexes of symmetrical and asymmetrical Schiff bases as antibacterial, antifungal, antioxidant, and anticancer agents: Progress and prospects. Rev. Inorg. Chem. 2015, 35, 191–224. [Google Scholar] [CrossRef]
- Afify, E.A.; Alkreathy, H.M.; Ali, A.S.; Alfaifi, H.A.; Khan, L.M. Characterization of the Antinociceptive Mechanisms of Khat Extract (Catha edulis) in Mice. Front. Neurol. 2017, 8, 69. [Google Scholar] [CrossRef]
- Groh, A.; Mease, R.; Krieger, P. Pain processing in the thalamocortical system. e-Neuroforum 2017, 23, 117–122. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Rai, G. Experimental evaluation of analgesic and anti-inflammatory potential of Oyster mushroom Pleurotus florida. Indian J. Pharmacol. 2013, 45, 66. [Google Scholar] [CrossRef] [PubMed]
- Dzoyem, J.; McGaw, L.; Kuete, V.; Bakowsky, U. Anti-inflammatory and anti-nociceptive activities of African medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa; Elsevier: Amsterdam, The Netherlands, 2017; pp. 239–270. [Google Scholar]
- Muhammad, N. In-vivo models for management of pain. Pharmacol. Pharm. 2014, 2014, 51014. [Google Scholar]
- Mishra, D.; Ghosh, G.; Kumar, P.S.; Panda, P.K. An experimental study of analgesic activity of selective COX-2 inhibitor with conventional NSAIDs. Asian J. Pharm. Clin. Res. 2011, 4, 78–81. [Google Scholar]
- Harte, S.E.; Meyers, J.B.; Donahue, R.R.; Taylor, B.K.; Morrow, T.J. Mechanical conflict system: A novel operant method for the assessment of nociceptive behavior. PLoS ONE 2016, 11, e0150164. [Google Scholar] [CrossRef] [PubMed]
- Matera, C.; Flammini, L.; Quadri, M.; Vivo, V.; Ballabeni, V.; Holzgrabe, U.; Mohr, K.; De Amici, M.; Barocelli, E.; Bertoni, S. Bis (ammonio) alkane-type agonists of muscarinic acetylcholine receptors: Synthesis, in vitro functional characterization, and in vivo evaluation of their analgesic activity. Eur. J. Med. Chem. 2014, 75, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Milind, P.; Monu, Y. Laboratory models for screening analgesics. Int. Res. J. Pharm. 2013, 4, 15–19. [Google Scholar]
- Quintans-Júnior, L.J.; Guimarães, A.G.; Santana, M.T.d.; Araújo, B.E.; Moreira, F.V.; Bonjardim, L.R.; Araújo, A.A.; Siqueira, J.S.; Antoniolli, Â.R.; Botelho, M.A. Citral reduces nociceptive and inflammatory response in rodents. Rev. Bras. Farmacogn. 2011, 21, 497–502. [Google Scholar] [CrossRef]
- Urien, L.; Gaillard, S.; Lo Re, L.; Malapert, P.; Bohic, M.; Reynders, A.; Moqrich, A. Genetic ablation of GINIP-expressing primary sensory neurons strongly impairs Formalin-evoked pain. Sci. Rep. 2017, 7, 743493. [Google Scholar] [CrossRef]
- Shoaib, M.; Shah, S.W.A.; Ali, N.; Shah, I.; Ullah, S.; Ghias, M.; Tahir, M.N.; Gul, F.; Akhtar, S.; Ullah, A.; et al. Scientific investigation of crude alkaloids from medicinal plants for the management of pain. BMC Complement. Altern. Med. 2016, 16, 178. [Google Scholar] [CrossRef]
- Gunn, A.; Bobeck, E.N.; Weber, C.; Morgan, M.M. The Influence of Non-Nociceptive Factors on Hot-Plate Latency in Rats. J. Pain 2011, 12, 222–227. [Google Scholar] [CrossRef]
- Pathan, H.; Williams, J. Basic opioid pharmacology: An update. Br. J. Pain 2012, 6, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, M.-Q.; Naganawa, M.; Gao, H.; Pracitto, R.; Shirali, A.; Lin, S.-f.; Teng, J.-K.; Ropchan, J.; Huang, Y. Novel kappa opioid receptor agonist as improved PET radiotracer: Development and in vivo evaluation. Mol. Pharm. 2019, 16, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Khadsan, R.; Tambatkar, G.; Meshram, Y. Synthesis of Schiff Bases Via Eco-Friendly and Energy Efficient Greener Methodologies Synthesis of Schiff Bases Via Eco-Friendly and Energy Efficient Greener Methodologies. Orient. J. Chem. 2010, 26, 681. [Google Scholar]
- Kang, P.; Lee, K.M.; Lee, W.K.; Lee, K.H.; Lee, B.; Cho, J.; Hur, N.H. One-pot solvent-free reductive amination with a solid ammonium carbamate salt from CO 2 and amine. RSC Adv. 2014, 4, 46203–46207. [Google Scholar] [CrossRef]
- Hussain, H.; Ahmad, S.; Shah, S.W.A.; Ullah, A.; Ali, N.; Almehmadi, M.; Ahmad, M.; Khalil, A.A.K.; Jamal, S.B.; Ahmad, H.; et al. Attenuation of Scopolamine-Induced Amnesia via Cholinergic Modulation in Mice by Synthetic Curcumin Analogs. Molecules 2022, 27, 2468. [Google Scholar] [CrossRef] [PubMed]
- Rezaee-Asl, M.; Sabour, M.; Nikoui, V.; Ostadhadi, S.; Bakhtiarian, A. The Study of Analgesic Effects of Leonurus cardiaca L. Mice By Formalin Tail Flick Hot Plate Tests. Int. Sch. Res. Not. 2014, 2014, 687697. [Google Scholar]
- Dubuisson, D.; Dennis, S.G. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1977, 4, 161–174. [Google Scholar] [CrossRef]
- Khanavi, M.; Delnavazi, M.-R.; Nikoui, V.; Ostadhadi, S.; Bakhtiarian, A. Evaluation of analgesic effects of hydroalcoholic extract of Marrubium parviflorum by formalin test in mice. Asian J. Plant. Sci. 2012, 11, 96–99. [Google Scholar] [CrossRef]
- Imam, M.Z.; Sumi, C.D. Evaluation of antinociceptive activity of hydromethanol extract of Cyperus rotundus in mice. BMC Complement. Altern. Med. 2014, 14, 24589067. [Google Scholar] [CrossRef]
- Kaplancıklı, Z.A.; Altıntop, M.D.; Turan, G.; Özdemir, A.; Can, Ö.D. Synthesis and analgesic activity of some acetamide derivatives. J. Enzym. Inhib. Med. Chem. 2012, 27, 275–280. [Google Scholar] [CrossRef]
Sample/Dose | 1st Phase | 2nd Phase | |||
---|---|---|---|---|---|
Licking Time (s) | Percentage | Licking Time (s) | Percentage | ||
Control | 35.12 ± 1.22 | - | 61.47 ± 1.39 | - | |
H1 | 12.5 | 17.77 ± 1.07 ** | 49.40 | 20.95 ± 2.21 * | 65.92 |
25 | 14.07 ± 2.21 *** | 59.94 | 16.01 ± 1.42 *** | 73.95 | |
H2 | 12.5 | 15.01 ± 1.79 ** | 57.26 | 17.92 ± 1.59 *** | 70.85 |
25 | 10.72 ± 1.35 *** | 69.48 | 13.2 ± 2.05 *** | 78.53 | |
H3 | 12.5 | 14.77 ± 1.49 *** | 57.94 | 21.77 ± 1.89 * | 64.58 |
25 | 14.73 ± 2.26 *** | 58.06 | 17.23 ± 1.76 ** | 71.97 | |
H4 | 12.5 | 18.78 ± 2.67 * | 46.53 | 22.28 ± 1.69 * | 63.75 |
25 | 17.08 ± 1.62 ** | 51.37 | 19.07 ± 1.46 ** | 68.98 | |
H5 | 12.5 | 16.47 ± 1.46 *** | 53.10 | 21.81 ± 1.95 * | 64.52 |
25 | 13.61 ± 2.23 *** | 61.25 | 17.53 ± 1.15 *** | 71.48 | |
H6 | 12.5 | 16.78 ± 1.92 ** | 52.22 | 26.05 ± 2.72 * | 57.62 |
25 | 13.93 ± 1.35 *** | 60.34 | 21.33 ± 1.84 * | 65.30 | |
Indomethacin | 10 | 26.48 ± 1.33 * | 24.60 | 13.21 ± 1.39 *** | 78.50 |
Sample/Dose | Latency Response (s) | % Response at 90 Min | |||||||
---|---|---|---|---|---|---|---|---|---|
0 Min | 30 Min | 60 Min | 90 Min | 120 Min | 150 Min | 180 Min | |||
Control | 1.21 ± 0.027 | 1.39 ± 0.031 | 1.26 ± 0.034 | 1.28 ± 0.023 | 1.33 ± 0.031 | 1.27 ± 0.041 | 1.22 ± 0.042 | - | |
H1 | 12.5 | 1.23 ± 0.028 | 1.67 ± 0.027 | 2.21 ± 0.031 | 2.51 ± 0.041 * | 2.32 ± 0.036 | 2.16 ± 0.035 | 1.74 ± 0.029 | 49.00 |
25 | 1.21 ± 0.027 | 1.39 ± 0.023 | 2.54 ± 0.035 | 2.72 ± 0.028 ** | 2.11 ± 0.035 | 2.01 ± 0.036 | 1.65 ± 0.027 | 52.94 | |
H2 | 12.5 | 1.19 ± 0.025 | 1.43 ± 0.021 | 2.45 ± 0.028 | 2.83 ± 0.038 ** | 2.42 ± 0.042 | 1.78 ± 0.028 | 1.65 ± 0.031 | 54.77 |
25 | 1.21 ± 0.027 | 1.87 ± 0.031 | 2.87 ± 0.041 | 3.76 ± 0.049 *** | 2.69 ± 0.029 | 2.52 ± 0.038 | 2.06 ± 0.036 | 65.96 | |
H3 | 12.5 | 1.11 ± 0.029 | 1.54 ± 0.028 | 2.33 ± 0.039 | 2.73 ± 0.035 ** | 2.11 ± 0.035 | 1.74 ± 0.031 | 1.33 ± 0.034 | 53.11 |
25 | 1.32 ± 0.031 | 2.81 ± 0.025 | 2.77 ± 0.027 | 3.15 ± 0.028 *** | 2.79 ± 0.037 | 2.41 ± 0.029 | 1.86 ± 0.028 | 59.37 | |
H4 | 12.5 | 1.23 ± 0.031 | 1.98 ± 0.025 | 2.63 ± 0.043 | 2.10 ± 0.041 ** | 2.01 ± 0.044 | 1.43 ± 0.024 | 1.38 ± 0.031 | 39.05 |
25 | 1.15 ± 0.029 | 2.53 ± 0.022 | 2.27 ± 0.029 | 2.54 ± 0.043 *** | 3.16 ± 0.042 | 2.64 ± 0.029 | 2.14 ± 0.023 | 49.61 | |
H5 | 12.5 | 1.21 ± 0.028 | 2.11 ± 0.029 | 2.34 ± 0.041 | 2.28 ± 0.036 *** | 2.12 ± 0.035 | 1.84 ± 0.026 | 1.53 ± 0.037 | 43.86 |
25 | 1.21 ± 0.027 | 2.85 ± 0.026 | 3.01 ± 0.032 | 3.16 ± 0.052 *** | 2.51 ± 0.029 | 2.54 ± 0.029 | 2.11 ± 0.034 | 59.49 | |
H6 | 12.5 | 1.12 ± 0.025 | 2.14 ± 0.031 | 2.04 ± 0.032 | 2.23 ± 0.037 * | 2.18 ± 0.034 | 1.73 ± 0.026 | 1.54 ± 0.038 | 42.60 |
25 | 1.23 ± 0.025 | 2.10 ± 0.021 | 2.21 ± 0.039 | 2.71 ± 0.042 *** | 2.29 ± 0.026 | 2.56 ± 0.024 | 2.41 ± 0.021 | 52.77 | |
Tramadol | 10 | 1.29 ± 0.027 | 4.51 ± 0.036 | 6.67 ± 0.039 | 8.22 ± 0.034 *** | 8.11 ± 0.042 | 7.31 ± 0.023 | 5.89 ± 0.034 | 84.43 |
Morphine | 5 | 1.31 ± 0.031 | 5.09 ± 0.033 | 7.01 ± 0.051 | 8.67 ± 0.029 *** | 8.33 ± 0.044 | 7.94 ± 0.027 | 6.22 ± 0.061 | 85.23 |
Sample/Dose | Latency Response (s) | |||||||
---|---|---|---|---|---|---|---|---|
0 Min | 30 Min | 60 Min | 90 Min | 120 Min | 150 Min | 180 Min | ||
Control | 1.21 ± 0.027 | 1.39 ± 0.031 | 1.26 ± 0.034 | 1.28 ± 0.023 | 1.33 ± 0.031 | 1.27 ± 0.041 | 1.22 ± 0.042 | |
H1 + Naloxone | 12.5 | 1.13 ± 0.026 | 1.35 ± 0.022 | 1.89 ± 0.031 | 1.91 ± 0.042 | 1.92 ± 0.036 | 1.56 ± 0.031 | 1.44 ± 0.029 |
25 | 1.20 ± 0.025 | 1.18 ± 0.013 | 2.04 ± 0.031 | 1.72 ± 0.024 | 1.61 ± 0.035 | 1.51 ± 0.034 | 1.35 ± 0.022 | |
H2 + Naloxone | 12.5 | 1.7 ± 0.022 | 1.21 ± 0.024 | 1.45 ± 0.026 | 2.03 ± 0.036 | 1.42 ± 0.042 | 1.28 ± 0.024 | 1.15 ± 0.03 |
25 | 1.20 ± 0.025 | 1.27 ± 0.023 | 1.64 ± 0.042 | 2.01 ± 0.044 | 2.09 ± 0.029 | 1.50 ± 0.035 | 1.46 ± 0.034 | |
H3 + Naloxone | 12.5 | 1.01 ± 0.026 | 1.24 ± 0.022 | 2.03 ± 0.035 | 1.73 ± 0.033 | 1.15 ± 0.035 | 1.14 ± 0.032 | 1.03 ± 0.033 |
25 | 1.32 ± 0.028 | 1.41 ± 0.021 | 1.77 ± 0.022 | 2.05 ± 0.022 | 1.79 ± 0.037 | 1.41 ± 0.025 | 1.26 ± 0.022 | |
H4 + Naloxone | 12.5 | 1.20 ± 0.029 | 1.28 ± 0.023 | 1.63 ± 0.042 | 1.80 ± 0.040 | 1.71 ± 0.044 | 1.43 ± 0.022 | 1.38 ± 0.032 |
25 | 1.12 ± 0.027 | 1.23 ± 0.02 | 1.77 ± 0.026 | 1.84 ± 0.042 | 1.96 ± 0.042 | 1.64 ± 0.027 | 1.14 ± 0.024 | |
H5 + Naloxone | 12.5 | 1.18 ± 0.024 | 1.76 ± 0.027 | 1.84 ± 0.37 | 1.98 ± 0.034 | 1.72 ± 0.035 | 1.24 ± 0.024 | 1.33 ± 0.036 |
25 | 1.19 ± 0.026 | 1.45 ± 0.022 | 2.01 ± 0.034 | 2.16 ± 0.051 | 1.51 ± 0.029 | 1.24 ± 0.021 | 1.11 ± 0.033 | |
H6 + Naloxone | 12.5 | 1.12 ± 0.023 | 1.24 ± 0.029 | 1.64 ± 0.028 | 1.83 ± 0.032 | 1.18 ± 0.034 | 1.53 ± 0.022 | 1.44 ± 0.032 |
25 | 1.21 ± 0.024 | 1.30 ± 0.021 | 1.61 ± 0.036 | 1.71 ± 0.042 | 1.29 ± 0.024 | 1.26 ± 0.023 | 1.1 ± 0.022 | |
Tramadol + Naloxone | 10 | 1.20 ± 0.010 | 1.37 ± 0.024 | 1.27 ± 0.027 | 1.28 ± 0.018 | 1.31 ± 0.021 | 1.26 ± 0.025 | 1.20 ± 0.022 |
Morphine + Naloxone | 5 + 2 | 1.22 ± 0.034 | 1.24 ± 0.032 | 1.30 ± 0.021 | 1.21 ± 0.039 | 1.28 ± 0.044 | 1.16 ± 0.036 | 1.21 ± 0.039 |
Sample/Dose | Latency Response (s) | % Response at 90 Min | |||||||
---|---|---|---|---|---|---|---|---|---|
0 Min | 30 Min | 60 Min | 90 Min | 120 Min | 150 Min | 180 Min | |||
Control | 1.71 ± 0.041 | 1.69 ± 0.035 | 1.72 ± 0.044 | 1.64 ± 0.021 | 1.69 ± 0.043 | 1.67 ± 0.021 | 1.72 ± 0.043 | - | |
H1 | 12.5 | 1.53 ± 0.025 | 3.46 ± 0.034 | 3.75 ± 0.034 | 4.22 ± 0.038 ** | 3.85 ± 0.038 | 2.87 ± 0.023 | 2.35 ± 0.029 | 61.14 |
25 | 1.62 ± 0.028 | 3.68 ± 0.032 | 4.59 ± 0.042 | 5.36 ± 0.046 *** | 4.66 ± 0.045 | 4.13 ± 0.037 | 3.22 ± 0.031 | 69.40 | |
H2 | 12.5 | 1.66 ± 0.026 | 3.15 ± 0.036 | 4.20 ± 0.041 | 4.24 ± 0.039 ** | 4.23 ± 0.035 | 3.89 ± 0.034 | 2.88 ± 0.026 | 61.32 |
25 | 1.55 ± 0.024 | 4.75 ± 0.034 | 5.24 ± 0.048 | 5.57 ± 0.048 *** | 4.79 ± 0.047 | 4.21 ± 0.038 | 4.76 ± 0.031 | 70.56 | |
H3 | 12.5 | 1.57 ± 0.028 | 1.54 ± 0.035 | 2.33 ± 0.026 | 3.73 ± 0.035 * | 2.11 ± 0.026 | 2.17 ± 0.021 | 1.33 ± 0.024 | 56.03 |
25 | 1.66 ± 0.023 | 2.69 ± 0.026 | 3.01 ± 0.029 | 4.15 ± 0.038 * | 3.11 ± 0.029 | 2.41 ± 0.023 | 3.21 ± 0.031 | 60.48 | |
H4 | 12.5 | 1.56 ± 0.027 | 3.18 ± 0.035 | 3.46 ± 0.032 | 3.55 ± 0.03 ** | 3.34 ± 0.032 | 3.22 ± 0.027 | 2.56 ± 0.026 | 53.80 |
25 | 1.55 ± 0.023 | 4.24 ± 0.036 | 4.53 ± 0.041 | 4.56 ± 0.052 *** | 4.55 ± 0.043 | 3.96 ± 0.034 | 2.14 ± 0.027 | 64.04 | |
H5 | 12.5 | 1.51 ± 0.034 | 2.99 ± 0.028 | 3.27 ± 0.029 | 3.68 ± 0.043 ** | 3.41 ± 0.035 | 3.17 ± 0.034 | 2.58 ± 0.034 | 55.43 |
25 | 1.68 ± 0.026 | 4.53 ± 0.038 | 4.56 ± 0.043 | 4.62 ± 0.045 *** | 4.25 ± 0.041 | 3.86 ± 0.028 | 2.11 ± 0.029 | 64.50 | |
H6 | 12.5 | 1.45 ± 0.024 | 2.12 ± 0.031 | 3.05 ± 0.044 | 3.08 ± 0.042 *** | 3.11 ± 0.043 | 3.18 ± 0.042 | 2.76 ± 0.074 | 46.75 |
25 | 1.61 ± 0.026 | 2.13 ± 0.029 | 3.01 ± 0.028 | 3.42 ± 0.046 *** | 3.36 ± 0.046 | 4.31 ± 0.041 | 2.41 ± 0.026 | 52.05 | |
Tramadol | 10 | 1.68 ± 0.019 | 4.51 ± 0.041 | 8.19 ± 0.055 | 10.12 ± 0.038 *** | 9.91 ± 0.045 | 9.82 ± 0.039 | 8.73 ± 0.031 | 83.79 |
Morphine | 5 | 1.71 ± 0.041 | 4.91 ± 0.036 | 8.57 ± 0.049 | 10.71 ± 0.022 *** | 10.16 ± 0.019 | 9.93 ± 0.041 | 8.71 ± 0.023 | 84.68 |
Sample/Dose | Latency Response (s) | |||||||
---|---|---|---|---|---|---|---|---|
0 Min | 30 Min | 60 Min | 90 Min | 120 Min | 150 Min | 180 Min | ||
Control | 1.71 ± 0.041 | 1.69 ± 0.035 | 1.72 ± 0.044 | 1.64 ± 0.021 | 1.69 ± 0.043 | 1.67 ± 0.021 | 1.72 ± 0.043 | |
H1 + Naloxone | 12.5 + 2 | 1.40 ± 0.023 | 1.86 ± 0.031 | 2.05 ± 0.032 | 2.12 ± 0.030 | 1.25 ± 0.028 | 1.57 ± 0.023 | 1.35 ± 0.028 |
25 + 2 | 1.51 ± 0.027 | 2.08 ± 0.032 | 2.59 ± 0.043 | 2.06 ± 0.034 | 2.16 ± 0.036 | 2.10 ± 0.034 | 1.72 ± 0.032 | |
H2 + Naloxone | 12.5 | 1.62 ± 0.024 | 1.75 ± 0.037 | 1.90 ± 0.042 | 1.24 ± 0.036 | 1.23 ± 0.031 | 1.29 ± 0.034 | 1.28 ± 0.025 |
25 | 1.43 ± 0.022 | 1.65 ± 0.032 | 1.94 ± 0.037 | 1.77 ± 0.042 | 1.59 ± 0.028 | 1.21 ± 0.038 | 1.06 ± 0.034 | |
H3 + Naloxone | 12.5 | 1.52 ± 0.027 | 1.70 ± 0.036 | 1.63 ± 0.024 | 1.73 ± 0.034 | 2.01 ± 0.022 | 1.61 ± 0.022 | 1.33 ± 0.023 |
25 | 1.61 ± 0.022 | 1.89 ± 0.022 | 2.03 ± 0.025 | 2.15 ± 0.032 | 2.01 ± 0.025 | 1.71 ± 0.021 | 1.21 ± 0.032 | |
H4 + Naloxone | 12.5 + 2 | 1.51 ± 0.027 | 1.48 ± 0.025 | 1.76 ± 0.027 | 1.65 ± 0.032 | 1.84 ± 0.022 | 1.52 ± 0.026 | 1.46 ± 0.023 |
25 + 2 | 1.55 ± 0.024 | 1.34 ± 0.035 | 1.73 ± 0.036 | 1.76 ± 0.053 | 1.55 ± 0.023 | 1.66 ± 0.031 | 1.64 ± 0.028 | |
H5 + Naloxone | 12.5 | 1.51 ± 0.034 | 1.69 ± 0.024 | 1.99 ± 0.028 | 2.01 ± 0.031 | 1.71 ± 0.022 | 1.67 ± 0.025 | 1.58 ± 0.026 |
25 | 1.48 ± 0.025 | 2.03 ± 0.032 | 2.06 ± 0.032 | 2.12 ± 0.036 | 1.85 ± 0.026 | 1.66 ± 0.027 | 1.61 ± 0.028 | |
H6 + Naloxone | 12.5 | 1.45 ± 0.024 | 1.12 ± 0.021 | 2.05 ± 0.031 | 2.12 ± 0.034 | 1.81 ± 0.027 | 1.68 ± 0.034 | 1.70 ± 0.031 |
25 | 1.51 ± 0.024 | 1.13 ± 0.025 | 1.71 ± 0.026 | 1.72 ± 0.027 | 1.76 ± 0.026 | 1.61 ± 0.045 | 1.41 ± 0.022 | |
Tramadol + Naloxone | 10 + 2 | 1.66 ± 0.015 | 1.71 ± 0.024 | 1.78 ± 0.026 | 1.68 ± 0.028 | 1.73 ± 0.026 | 1.66 ± 0.25 | 1.70 ± 0.021 |
Morphine + Naloxone | 5 + 2 | 1.49 ± 0.021 | 1.65 ± 0.043 | 1.67 ± 0.051 | 1.55 ± 0.039 | 1.61 ± 0.033 | 1.60 ± 0.44 | 1.63 ± 0.051 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afridi, H.H.; Shoaib, M.; Al-Joufi, F.A.; Shah, S.W.A.; Hussain, H.; Ullah, A.; Zahoor, M.; Mughal, E.U. Synthesis and Investigation of the Analgesic Potential of Enantiomerically Pure Schiff Bases: A Mechanistic Approach. Molecules 2022, 27, 5206. https://doi.org/10.3390/molecules27165206
Afridi HH, Shoaib M, Al-Joufi FA, Shah SWA, Hussain H, Ullah A, Zahoor M, Mughal EU. Synthesis and Investigation of the Analgesic Potential of Enantiomerically Pure Schiff Bases: A Mechanistic Approach. Molecules. 2022; 27(16):5206. https://doi.org/10.3390/molecules27165206
Chicago/Turabian StyleAfridi, Hamid Hussain, Muhammad Shoaib, Fakhria A. Al-Joufi, Syed Wadood Ali Shah, Haya Hussain, Abid Ullah, Mohammad Zahoor, and Ehsan Ullah Mughal. 2022. "Synthesis and Investigation of the Analgesic Potential of Enantiomerically Pure Schiff Bases: A Mechanistic Approach" Molecules 27, no. 16: 5206. https://doi.org/10.3390/molecules27165206
APA StyleAfridi, H. H., Shoaib, M., Al-Joufi, F. A., Shah, S. W. A., Hussain, H., Ullah, A., Zahoor, M., & Mughal, E. U. (2022). Synthesis and Investigation of the Analgesic Potential of Enantiomerically Pure Schiff Bases: A Mechanistic Approach. Molecules, 27(16), 5206. https://doi.org/10.3390/molecules27165206