Impurity Profiling of Dinotefuran by High Resolution Mass Spectrometry and SIRIUS Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instruments
2.3. Impurities Separation
2.4. Impurities Identification
2.5. Impurities Elucidation
3. Results and Discussion
3.1. Impurities Separation
3.2. Impurities Identification
3.3. Impurities Elucidation
3.4. Purity and Uncertainty Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D.; et al. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification—A tool for resistance management. Pestic. Biochem. Phys. 2020, 167, 104587. [Google Scholar] [CrossRef]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Phys. 2015, 121, 122–128. [Google Scholar] [CrossRef]
- Wakita, T.; Kinoshita, K.; Yamada, E.; Yasui, N.; Kawahara, N.; Naoi, A.; Nakaya, M.; Ebihara, K.; Matsuno, H.; Kodaka, K. The discovery of dinotefuran: A novel neonicotinoid. Pest. Manag. Sci. 2003, 59, 1016–1022. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, K.; Chen, L.; Liu, B.; Zhang, Q.; Zhang, H.; Sun, C.; Hu, D. Determination of Dinotefuran and Its Metabolites in Orange Pulp, Orange Peel, and Whole Orange Using Liquid Chromatography-Tandem Mass Spectrometry. J. AOAC Int. 2017, 100, 1551–1558. [Google Scholar] [CrossRef]
- Zhao, W.-H.; Shi, Y.-P. A porous boron nitride nanorods-based QuEChERS analysis method for detection of five neonicotinoid pesticide residues in goji berries. J. Chromatogr. A 2022, 1670, 462968. [Google Scholar] [CrossRef]
- Yang, B.; Ma, W.; Wang, S.; Shi, L.; Li, X.; Ma, Z.; Zhang, Q.; Li, H. Determination of eight neonicotinoid insecticides in Chinese cabbage using a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry. Food Chem. 2022, 387, 132935. [Google Scholar] [CrossRef]
- Ma, W.; Yang, B.; Li, J.; Li, X. Amino-functional metal-organic framework as a general applicable adsorbent for simultaneous enrichment of nine neonicotinoids. Chem. Eng. J. 2022, 434, 134629. [Google Scholar] [CrossRef]
- Mahai, G.; Wan, Y.; Xia, W.; Wang, A.; Shi, L.; Qian, X.; He, Z.; Xu, S. A nationwide study of occurrence and exposure assessment of neonicotinoid insecticides and their metabolites in drinking water of China. Water Res. 2021, 189, 116630. [Google Scholar] [CrossRef]
- Ueyama, J.; Nomura, H.; Kondo, T.; Saito, I.; Ito, Y.; Osaka, A.; Kamijima, M. Biological Monitoring Method for Urinary Neonicotinoid Insecticides Using LC-MS/MS and Its Application to Japanese Adults. J. Occup. Health 2014, 56, 461–468. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, K.; Du, J.; Ou, M.; Hou, J.; Wang, D.; Wang, J.; Zhang, W.; Sun, G. Serum concentrations of neonicotinoids and their characteristic metabolites in elderly population from South China: Association with osteoporosis. Environ. Res. 2022, 203, 111772. [Google Scholar] [CrossRef]
- JMPR Report. In Dinotefuran; Joint FAO/WHO Meeting on Pesticide Residues: Rome Italy, 2012.
- Juhász, E. The role of certified reference materials in metrology. Measurement 1986, 4, 104–110. [Google Scholar] [CrossRef]
- Guo, Z.; Li, X.; Li, H. Certified reference materials and metrological traceability assurance for mycotoxin analysis. J. AOAC Int. 2019, 102, 1695–1707. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Zhang, W.; Li, X.; Zhang, Q.; Guo, Z.; Li, X.; Song, S.; Zhao, G. Development of patulin certified reference material using mass balance and quantitative NMR. World Mycotoxin. J. 2021, 15, 135–142. [Google Scholar] [CrossRef]
- Long, N.P.; Park, S.; Anh, N.H.; Kim, S.J.; Kim, H.M.; Yoon, S.J.; Lim, J.; Kwon, S.W. Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. J. Anal. Test. 2020, 4, 183–197. [Google Scholar] [CrossRef]
- Ma, W.; Yang, B.; Li, J.; Li, X. Development of a Simple, Underivatized Method for Rapid Determination of Free Amino Acids in Honey Using Dilute-and-Shoot Strategy and Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2022, 27, 1056. [Google Scholar] [CrossRef]
- Li, M.; Josephs, R.D.; Daireaux, A.; Choteau, T.; Westwood, S.; Martos, G.; Wielgosz, R.I.; Li, H. Structurally related peptide impurity identification and accurate quantification for synthetic oxytocin by liquid chromatography–high-resolution mass spectrometry. Anal. Bioanal. Chem. 2021, 413, 1861–1870. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Ma, W.; Ai, W.; Bai, Y.; Ding, L.; Liu, H. Fast Analysis of Glycosides based on HKUST-1-Coated Monolith Solid-phase Microextraction and Direct Analysis in Real Time Mass Spectrometry. J. Sep. Sci. 2017, 40, 1589–1596. [Google Scholar] [CrossRef]
- Zubarev, R.A.; Makarov, A. Orbitrap Mass Spectrometry. Anal. Chem. 2013, 85, 5288–5296. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef]
- Böcker, S.; Dührkop, K. Fragmentation trees reloaded. J. Cheminform. 2016, 8, 5. [Google Scholar] [CrossRef]
- Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA 2015, 112, 12580–12585. [Google Scholar] [CrossRef]
- Li, H.; Wang, L. A novel and practical method for the synthesis of dinotefuran through Michael addition of nitromethane to diethyl maleate. Tetrahedron 2018, 74, 336–340. [Google Scholar] [CrossRef]
- Ludwig, M.; Nothias, L.-F.; Dührkop, K.; Koester, I.; Fleischauer, M.; Hoffmann, M.A.; Petras, D.; Vargas, F.; Morsy, M.; Aluwihare, L.; et al. Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nat. Mach. Intell. 2020, 2, 629–641. [Google Scholar] [CrossRef]
- Dinotefuran 749. In Cipac Handbook; Collaborative International Pesticides Analytical Council: Milton Keynes, UK; Volume L, p. 67.
- Pan, H. A non-covalent dimer formed in electrospray ionisation mass spectrometry behaving as a precursor for fragmentations. Rapid Commun. Mass Spectrom. 2008, 22, 3555–3560. [Google Scholar] [CrossRef]
- SIRIUS | Lehrstuhl Bioinformatik Jena. Available online: https://bio.informatik.uni-jena.de/software/sirius/ (accessed on 1 May 2022).
- Hou, J.; Xie, W.; Hong, D.; Zhang, W.; Li, F.; Qian, Y.; Han, C. Simultaneous determination of ten neonicotinoid insecticides and two metabolites in honey and Royal-jelly by solid—Phase extraction and liquid chromatography—Tandem mass spectrometry. Food Chem. 2019, 270, 204–213. [Google Scholar] [CrossRef]
- FAO. Dinotefuran; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- SAMR of PRC (2020) Metrological Technical Specification for Purity Assessment of Certified Reference Materials—Organic Purity Certified Reference Materials; Standards Press of China: Beijing, China, 2020.
Analytes | Assignment | Formular | Measured (m/z) | Calculated (m/z) | Error (mDa) | Error (ppm) |
---|---|---|---|---|---|---|
DNT | [M+H]+ | C7H14N4O3 | 203.1136 | 203.1144 | 0.8 | 3.9 |
[M+Na]+ | 225.0954 | 225.0964 | 1.0 | 4.4 | ||
[M-74]+ | C5H10N3O | 129.0898 | 129.0902 | 0.4 | 3.3 | |
[M-89]+ | C5H11N3 | 114.1029 | 114.1031 | 0.2 | 1.9 | |
[M-116]+ | C3H8N3 | 87.0796 | 87.0797 | 0.1 | 0.6 | |
Peak 1 | [M+H]+ | C3H8N4O2 | 133.0720 | 133.0725 | 0.5 | 3.8 |
[M+Na]+ | 155.0538 | 155.0545 | 0.7 | 4.6 | ||
[M-46]+ | C3H8N3 | 87.0796 | 87.0797 | 0.1 | 0.6 | |
[M-62]+ | C3H6N2 | 71.0611 | 71.0609 | −0.2 | −2.5 | |
[M-75]+ | C2H5N2 | 58.0534 | 58.0531 | −0.3 | −5.2 | |
Peak 4 | [M+H]+ | C11H20N4O4 | 273.1554 | 273.1563 | 0.9 | 3.3 |
[M+Na]+ | 295.1373 | 295.1383 | 1.0 | 3.2 | ||
[M-74]+ | C9H16N3O2 | 199.1316 | 199.1321 | 0.5 | 2.5 | |
[M-89]+ | C9H17N3O | 184.1445 | 184.1450 | 0.5 | 2.7 | |
[M-117]+ | C7H13N3O | 156.1132 | 156.1137 | 0.5 | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ma, W.; Yang, B.; Tu, M.; Zhang, Q.; Li, H. Impurity Profiling of Dinotefuran by High Resolution Mass Spectrometry and SIRIUS Tool. Molecules 2022, 27, 5251. https://doi.org/10.3390/molecules27165251
Li X, Ma W, Yang B, Tu M, Zhang Q, Li H. Impurity Profiling of Dinotefuran by High Resolution Mass Spectrometry and SIRIUS Tool. Molecules. 2022; 27(16):5251. https://doi.org/10.3390/molecules27165251
Chicago/Turabian StyleLi, Xianjiang, Wen Ma, Bingxin Yang, Mengling Tu, Qinghe Zhang, and Hongmei Li. 2022. "Impurity Profiling of Dinotefuran by High Resolution Mass Spectrometry and SIRIUS Tool" Molecules 27, no. 16: 5251. https://doi.org/10.3390/molecules27165251
APA StyleLi, X., Ma, W., Yang, B., Tu, M., Zhang, Q., & Li, H. (2022). Impurity Profiling of Dinotefuran by High Resolution Mass Spectrometry and SIRIUS Tool. Molecules, 27(16), 5251. https://doi.org/10.3390/molecules27165251