Pitahaya Peel: A By-Product with Great Phytochemical Potential, Biological Activity, and Functional Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quantification of Phenolic Compounds in Pitahaya Peels
2.2. Identification of Gas-Chromatography-Mass Spectrometry (GC-MS) Analysis
2.3. Analysis of the Antioxidant Capability by DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ABTS (2,2’-azino-bis-(3-Ethyl Benzothiazolin-6-ammonium Sulphonate) Methods in Pitahaya Peels
2.4. Analysis of Bioactive Compounds of Pitahaya Peels
3. Materials and Methods
3.1. Sample Preparation
3.2. Total Phenolic Compounds
3.3. Total Flavonoids
3.4. Total Tannins
3.5. Identification of Gas-Chromatography-Mass Spectrometry (GC-MS) Analysis
3.6. Antioxidant Capacity
3.6.1. DPPH Method Antioxidant Capacity
3.6.2. ABTS Method Antioxidant Capacity
3.7. Biological Activity
3.7.1. α-. Amylase Inhibition
3.7.2. α-. Glucosidase Inhibition
3.7.3. Antihypertensive Activity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Elmarzugi, N.; Cheah, L.; Eid, A.; Aziz, A.; Ariffin, F. Phytochemical properties and health benefits of Hylocereus undatus. Nanomed. Nanotechnol. 2016, 1, 103. [Google Scholar]
- Panchal, J.; Gaikwad, R.; Dhemre, J.; Chavan, U. Studies on preparation and storage of jelly from dragon fruit (Hylocereus undatus). J. Pharmacogn. Phytochem. 2018, 7, 2648–2655. [Google Scholar]
- Sosa, V.; Pérez-Orozco, A. Las pitahayas: Frutos mayas del futuro. Ecofronteras 2022, 26, 22–25. [Google Scholar]
- Mercado-Silva, E.M. Pitaya—Hylocereus undatus (haw). Exot. Fruits 2018, 339–349. [Google Scholar]
- MY, M.; AP, S. Development of supercritical fluid extraction for the recovery of betacyanins from red pitaya fruit (Hylocereus polyrhizus) peel: A source of natural red pigment with potential antioxidant properties. Int. Food Res. J. 2019, 26, 1023–1034. [Google Scholar]
- Fathordoobady, F.; Jarzębski, M.; Pratap-Singh, A.; Guo, Y.; Abd-Manap, Y. Encapsulation of betacyanins from the peel of red dragon fruit (Hylocereus polyrhizus L.) in alginate microbeads. Food Hydrocoll. 2021, 113, 106535. [Google Scholar] [CrossRef]
- Ferreres, F.; Grosso, C.; Gil-Izquierdo, A.; Valentão, P.; Mota, A.T.; Andrade, P.B. Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chem. 2017, 230, 463–474. [Google Scholar] [CrossRef]
- Tenore, G.C.; Novellino, E.; Basile, A. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Funct. Foods 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Zulkifli, S.A.; Abd Gani, S.S.; Zaidan, U.H.; Halmi, M.I.E. Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties. Molecules 2020, 25, 787. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.-C.; Hsu, H.-W.; Chen, Y.-C.; Chiu, C.-C.; Lin, Y.-I.; Ho, J.-A.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Bueno, R.S.; Ressutte, J.B.; Hata, N.N.; Henrique-Bana, F.C.; Guergoletto, K.B.; de Oliveira, A.G.; Spinosa, W.A. Quality and shelf life assessment of a new beverage produced from water kefir grains and red pitaya. Lwt 2021, 140, 110770. [Google Scholar] [CrossRef]
- Paśko, P.; Galanty, A.; Zagrodzki, P.; Ku, Y.G.; Luksirikul, P.; Weisz, M.; Gorinstein, S. Bioactivity and cytotoxicity of different species of pitaya fruits–A comparative study with advanced chemometric analysis. Food Biosci. 2021, 40, 100888. [Google Scholar] [CrossRef]
- Attar, Ş.H.; Gündeşli, M.A.; Urün, I.; Kafkas, S.; Kafkas, N.E.; Ercisli, S.; Ge, C.; Mlcek, J.; Adamkova, A. Nutritional Analysis of Red-Purple and White-Fleshed Pitaya (Hylocereus) Species. Molecules 2022, 27, 808. [Google Scholar] [CrossRef] [PubMed]
- Verona-Ruiz, A.; Urcia-Cerna, J.; Paucar-Menacho, L.M. Pitahaya (Hylocereus spp.): Cultivo, características fisicoquímicas, composición nutricional y compuestos bioactivos. Scientia Agropecuaria 2020, 11, 439–453. [Google Scholar] [CrossRef]
- VH, E.S.; Utomo, S.B.; Syukri, Y.; Redjeki, T. Phytochemical screening and analysis polyphenolic antioxidant activity of methanolic extract of white dragon fruit (Hylocereus undatus). Indones. J. Pharm. 2012, 23, 60–64. [Google Scholar]
- Nurliyana, R.; Syed Zahir, I.; Mustapha Suleiman, K.; Aisyah, M.; Kamarul Rahim, K. Antioxidant study of pulps and peels of dragon fruits: A comparative study. Int. Food Res. J. 2010, 17, 367–375. [Google Scholar]
- van der Schaft, N.; Schoufour, J.D.; Nano, J.; Kiefte-de Jong, J.C.; Muka, T.; Sijbrands, E.J.; Ikram, M.A.; Franco, O.H.; Voortman, T. Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: The Rotterdam Study. Eur. J. Epidemiol. 2019, 34, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Uuh-Narváez, J.J.; González-Tamayo, M.A.; Segura-Campos, M.R. A study on nutritional and functional study properties of Mayan plant foods as a new proposal for type 2 diabetes prevention. Food Chem. 2021, 341, 128247. [Google Scholar] [CrossRef]
- Da Silveira Agostini-Costa, T. Bioactive compounds and health benefits of Pereskioideae and Cactoideae: A review. Food Chem. 2020, 327, 126961. [Google Scholar] [CrossRef]
- Kabir, F.; Tow, W.W.; Hamauzu, Y.; Katayama, S.; Tanaka, S.; Nakamura, S. Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food Chem. 2015, 167, 358–362. [Google Scholar] [CrossRef]
- Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Brnčić, S.R. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves- and enzyme-assisted extraction. Trends Food Sci. Technol. 2018, 76, 28–37. [Google Scholar] [CrossRef]
- Grasso, S. Extruded snacks from industrial by-products: A review. Trends Food Sci. Technol. 2020, 99, 284–294. [Google Scholar] [CrossRef]
- Figueroa, R.; Tamayo, J.; González, S.; Moreno, G.; Vargas, L. Actividad antioxidante de antocianinas presentes en cáscara de pitahaya (Hylocereus undatus). Rev. Iberoam. Tecnol. Postcosecha 2011, 12, 44–50. [Google Scholar]
- Som, A.M.; Ahmat, N.; Hamid, H.A.A.; Azizuddin, N. A comparative study on foliage and peels of Hylocereus undatus (white dragon fruit) regarding their antioxidant activity and phenolic content. Heliyon 2019, 5, e01244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalhães, D.S.; da Silva, D.M.; Ramos, J.D.; Pio, L.A.S.; Pasqual, M.; Boas, E.V.B.V.; Galvão, E.C.; de Melo, E.T. Changes in the physical and physico-chemical characteristics of red-pulp dragon fruit during its development. Sci. Hortic. 2019, 253, 180–186. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, Y.; Zhang, Z.; Li, T.; Jiang, Y.; Gao, H.; Yun, Z. Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya. Postharvest Biol. Technol. 2020, 160, 111059. [Google Scholar] [CrossRef]
- Vázquez-Flores, A.A.; López-Díaz, J.A.; Wall-Medrano, A.; Laura, A. Taninos hidrolizables y condensados: Naturaleza química, ventajas y desventajas de su consumo. Tecnociencia Chihuah. 2012, 6, 84–93. [Google Scholar]
- Suleria, H.A.; Barrow, C.J.; Dunshea, F.R. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Park, Y.-S.; Jung, S.-T.; Kang, S.-G.; Heo, B.G.; Arancibia-Avila, P.; Toledo, F.; Drzewiecki, J.; Namiesnik, J.; Gorinstein, S. Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem. 2008, 107, 640–648. [Google Scholar] [CrossRef]
- de Lourdes Vargas, M.; Brito, H.F.; Cortez, J.A.T.; López, V.M.T.; Huchin, V.M. Aprovechamiento de cáscaras de frutas: Análisis nutricional y compuestos bioactivos. CIENCIA Ergo-Sum 2019, 26, 6. [Google Scholar]
- Lim, H.K.; Tan, C.P.; Karim, R.; Ariffin, A.A.; Bakar, J. Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chem. 2010, 119, 1326–1331. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Z.; Zhu, H.; Li, T.; Zhu, X.; Gao, H.; Yun, Z.; Jiang, Y. Comparative volatile compounds and primary metabolites profiling of pitaya fruit peel after ozone treatment. J. Sci. Food Agric. 2019, 99, 2610–2621. [Google Scholar] [CrossRef] [PubMed]
- Jerônimo, M.; Orsine, J.V.C.; Borges, K.; Novaes, M. Chemical and physical-chemical properties, antioxidant activity and fatty acids profile of red pitaya [Hylocereus undatus (Haw.) Britton & Rose] grown in Brazil. J. Drug Metab. Toxicol. 2015, 6, 1000188. [Google Scholar]
- Ariffin, A.A.; Bakar, J.; Tan, C.P.; Rahman, R.A.; Karim, R.; Loi, C.C. Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chem. 2009, 114, 561–564. [Google Scholar] [CrossRef]
- Coral Caycho, E.R.; Calixto Cotos, M.R.; Soberón Lozano, M.M. In vitro inhibitory activity of aqueous extracts of fruits of Hylocereus megalanthus and Passiflora tripartita var. mollisima on α-amylase and α-glucosidase enzymes. Rev. Soc. Quím. Perú. 2020, 82, 93–104. [Google Scholar]
- Wang, R.; Zhao, H.; Pan, X.; Orfila, C.; Lu, W.; Ma, Y. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein. Food Sci. Nutr. 2019, 7, 1848–1856. [Google Scholar] [CrossRef]
- Shad, Z.; Mirhosseini, H.; Motshakeri, M.; Sanjabi, M.R.; Hussin, A.S.M. α-amylase from white pitaya (Hylocereus undatus L.) peel: Optimization of extraction using full factorial design. Foods Raw Mater. 2021, 9, 79–86. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Li, X.; Shu, C.; Jiang, W.; Cao, J. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: A comprehensive review. Trends Food Sci. Technol. 2021, 116, 199–217. [Google Scholar] [CrossRef]
- Cardador-Martínez, A.; Loarca-Piña, G.; Oomah, B.D. Antioxidant activity in common beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2002, 50, 6975–6980. [Google Scholar] [CrossRef]
- Agbor, G.A.; Oben, J.E.; Ngogang, J.Y.; Xinxing, C.; Vinson, J.A. Antioxidant capacity of some herbs/spices from Cameroon: A comparative study of two methods. J. Agric. Food Chem. 2005, 53, 6819–6824. [Google Scholar] [CrossRef]
- Oomah, B.D.; Cardador-Martínez, A.; Loarca-Piña, G. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- Feregrino-Pérez, A.A.; Berumen, L.C.; García-Alcocer, G.; Guevara-Gonzalez, R.N.G.; Ramos-Gomez, M.; Reynoso-Camacho, R.A.; Acosta-Gallegos, J.A.; Loarca-Piña, G. Composition and chemopreventive effect of polysaccharides from common beans (Phaseolus vulgaris L.) on azoxymethane-induced colon cancer. J. Agric. Food Chem. 2008, 56, 8737–8744. [Google Scholar] [CrossRef] [PubMed]
- Zenil, L.; Colinas, L.; Bautista, B.; Vázquez, R.; Lozoya, S.; Martínez, D. Total phenols and antioxidant capacity estimated with DPPH/ABTS assays in roses on preservative solutions. Rev. Mex. Cienc. Agrícolas 2014, 5, 1029–1039. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Meza, D.L.M.; Valdés, R.M. Inhibición in vitro de las enzimas alfa-amilasa y lipasa pancreática por fracciones fenólicas de extractos etanólicos de hojas de Yacón (Smallanthus sonchifolius Poepp. & Endl). Av. En Química 2015, 10, 33–40. [Google Scholar]
- Ranilla, L.G.; Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef]
- Salazar Aranda, R.; Rodríguez, T.; Yael, C.; Alanís Garza, B.A.; Pérez López, L.A.; Waksman de Torres, N. Evaluación de la actividad biológica de productos herbolarios comerciales. Med. Univ. 2009, 11, 156–164. [Google Scholar]
Peels | Phenolic mg GAE/g Sample | Flavonoids mg RE/g Sample | Tannins mg CE/g Sample | Total Phenolicmg /g Sample | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p-Value * | F | p-Value * | F | p-Value * | |||||||||||
S. undatus | 2.717 ± 0.0319 a | 1.492 | 0.706 | 356.74 ± 0.0216 a | 0.471 | 0.000 | 2.886 ± 0.001 a | 4.046 | 0.000 | 362. 568 ± 0.026 a | ||||||
H. polyrhizus | 1.863 ± 0.0053 b | 352.09 ± 0.0455 a | 1.628 ± 0.002 b | 355..033 ± 0.038 b |
Peak | TR | Compound Name | Area% | % Similarity to Library | ||||
---|---|---|---|---|---|---|---|---|
S.undatus | H. polyrhizus | S.undatus | H. polyrhizus | S.undatus | H. polyrhizus | S.undatus | H. polyrhizus | |
1 | 9.27 | 8.750 | 9-Octadecenamide | Heneicosane | 1.30 | 5.85 | 43 | 87 |
2 | 9.78 | 9.26 | Ethanedioic acid, dimethyl ester | Nonadecane | 0.58 | 6.56 | 80 | 91 |
3 | 11.615 | 11.615 | Undecanoic acid, methyl ester | Undecanoic acid, methyl ester | 5.51 | 5.51 | 92 | 92 |
4 | 13.94 | 13.25 | - | Methyl tretadecanoate | - | 1.28 | - | 95 |
5 | 15.35 | 15.388 | Hexadecanoic acid, methyl ester | Hexadecanoic acid, methyl ester | 51.29 | 10.38 | 98 | 97 |
6 | 16.04 | 16.04 | 3-Acetoxy-3-hydroxypropionic acid, methyl ester | Dimethyl dl-malate | 0.40 | 0.41 | 72 | 83 |
7 | 19.88 | 18.98 | 3-Hexadecanol | Eicosane | 0.70 | 15.01 | 35 | 87 |
8 | 20.78 | 20.82 | Methyl linoleate | Methyl linoleate | 32.08 | 6.20 | 99 | 99 |
9 | 23.84 | 22.94 | Decanamide | 9,12,15-Octadecatrienoic acid, methyl ester | 0.65 | 2.15 | 53 | 98 |
10 | 34.35 | 34.78 | 9-Octadecenamide | Hexadecanamide | 62.35 | 5.09 | 96 | 81 |
Peels | DPPH% | ABTS% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p-Value* | F | p-Value* | |||||||||
S. undatus | 23.81 ± 0.46 a | 23.84 | 0.000 | 51.22 ± 0.171 a | 71.79 | 0.000 | ||||||
H. polyrhizus | 24.88 ± 0.29 a | 50.92 ± 0.421 a |
Peels | α-Amylase% | α-Glucosidase% | ACE% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p-Value * | F | p-Value * | F | p-Value * | |||||||||||||
S. undatus | 57.95 ± 6.39 a | 10.137 | 0.000 | 55.08 ± 1.39 a | 4.596 | 0.000 | 91.5895 ± 0.65 a | 33.107 | 0.000 | |||||||||
H. polyrhizus | 67.78 ± 6.06 b | 69.60 ± 1.02 b | 97.9571 ± 7.44 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Garcia, S.N.; Garcia-Mier, L.; Ramirez-Gomez, X.S.; Aguirre-Becerra, H.; Escobar-Ortiz, A.; Contreras-Medina, L.M.; Garcia-Trejo, J.F.; Feregrino-Perez, A.A. Pitahaya Peel: A By-Product with Great Phytochemical Potential, Biological Activity, and Functional Application. Molecules 2022, 27, 5339. https://doi.org/10.3390/molecules27165339
Jimenez-Garcia SN, Garcia-Mier L, Ramirez-Gomez XS, Aguirre-Becerra H, Escobar-Ortiz A, Contreras-Medina LM, Garcia-Trejo JF, Feregrino-Perez AA. Pitahaya Peel: A By-Product with Great Phytochemical Potential, Biological Activity, and Functional Application. Molecules. 2022; 27(16):5339. https://doi.org/10.3390/molecules27165339
Chicago/Turabian StyleJimenez-Garcia, Sandra N., Lina Garcia-Mier, Xóchitl S. Ramirez-Gomez, Humberto Aguirre-Becerra, Alexandro Escobar-Ortiz, Luis M. Contreras-Medina, Juan F. Garcia-Trejo, and Ana A. Feregrino-Perez. 2022. "Pitahaya Peel: A By-Product with Great Phytochemical Potential, Biological Activity, and Functional Application" Molecules 27, no. 16: 5339. https://doi.org/10.3390/molecules27165339
APA StyleJimenez-Garcia, S. N., Garcia-Mier, L., Ramirez-Gomez, X. S., Aguirre-Becerra, H., Escobar-Ortiz, A., Contreras-Medina, L. M., Garcia-Trejo, J. F., & Feregrino-Perez, A. A. (2022). Pitahaya Peel: A By-Product with Great Phytochemical Potential, Biological Activity, and Functional Application. Molecules, 27(16), 5339. https://doi.org/10.3390/molecules27165339