An Ionic-Liquid-Imprinted Nanocomposite Adsorbent: Simulation, Kinetics and Thermodynamic Studies of Triclosan Endocrine Disturbing Water Contaminant Removal
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of N-Methyl Butyl Imidazolium Bromide CuO Nanocomposite
2.2. Characterization of N-Methyl Butyl Imidazolium Bromide Nanocomposite
2.3. Sorption Study
2.4. Kinetic Study
2.5. Thermodynamics Study
2.6. Analysis of Triclosan by HPLC
2.7. Simulation Study
3. Results and Discussion
3.1. Characterization
3.2. Sorption Study
3.2.1. Concentration of Triclosan
3.2.2. Contact Time
3.2.3. pH of the Solution
3.2.4. Dose of the Nanocomposite
3.2.5. Temperature of the Solution
3.3. Combined Effect of the 3D Parameters
3.4. Modeling
3.4.1. Langmuir
3.4.2. Freundlich
3.4.3. Temkin
3.4.4. Dubinin–Radushkevich
3.5. Kinetic Study
3.6. Thermodynamics Study
3.7. Adsorption Mechanism
3.8. Supramolecular Mechanism of Uptake
3.9. Regeneration of Sorbent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olaniyan, L.W.B.; Mkwetshana, N.; Okoh, A.I. Triclosan in water, implications for human and environmental health. SpringerPlus 2016, 5, 1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das Sarkar, S.; Nag, S.K.; Kumari, K.; Saha, K.; Bandyopadhyay, S.; Aftabuddin, M.; Das, B.K. Occurrence and safety evaluation of antimicrobial compounds triclosan and triclocarban in water and fishes of the multitrophic niche of River Torsa, India. Arch. Environ. Contam. Toxicol. 2020, 79, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Vimalkumar, K.; Arun, E.; Kumar, S.K.; Poopal, R.K.; Nikhil, N.P.; Subramanian, A.; Babu-Rajendran, R. Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers. Sci. Total Environ. 2018, 625, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- MacIsaa, J.K.; Gerona, R.R.; Blanc, P.D.; Apatira, L.; Friesen, M.W.; Cop-polino, M.; Janssen, S. Health care worker exposures to the antibacterial agent triclosan. J. Occup. Environ. Med. 2014, 56, 834–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweizer, H.P. Triclosan: A widely used biocide and its link to antibiotics. FEMS Microbiol. Lett. 2001, 202, 1–7. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2000, 36, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Reiss, R.; Mackay, N.; Habig, C.; Griffin, J. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ. Toxicol. Chem. 2002, 21, 2483–2492. [Google Scholar] [CrossRef]
- Loraine, G.A.; Pettigrove, M.E. Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California. Environ. Sci. Technol. 2006, 40, 687–695. [Google Scholar] [CrossRef]
- Li, X.; Ying, G.G.; Su, H.C.; Yang, X.B.; Wang, L. Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ. Int. 2010, 36, 557–562. [Google Scholar] [CrossRef]
- Helbing, C.C.; van Aggelen, G.; Veldhoen, N. Triclosan affects thyroid hormone-dependent metamorphosis in anurans. Toxicol. Sci. 2011, 119, 417–418. [Google Scholar] [CrossRef] [Green Version]
- Park, H.G.; Yeo, M.K. The toxicity of triclosan, bisphenol a, bisphenol a diglycidyl ether to the regeneration of cnidarian, Hydra magnipapillata. Mol. Cell Toxicol. 2012, 8, 209–216. [Google Scholar] [CrossRef]
- Crofton, K.M.; Paul, K.B.; De Vito, M.J.; Joan, M.; Hedge, J.M. Short-term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine. Environ. Toxicol. Pharmacol. 2007, 24, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Du, G.; Zhang, W.; Hu, J.; Wu, D.I.; Song, L.; Xia, Y.; Wang, X. The in vitro estrogenic activities of triclosan and triclocarban. J. Appl. Toxicol. 2014, 34, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Stoker, T.E.; Gibson, E.K.; Zorrilla, L.M. Triclosan exposure modulates estrogen-dependent responses in the female Wistar rat. Toxicol. Sci. 2010, 117, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, H.; Matsumura, N.; Hirano, M.; Matsuoka, M.; Shiratsuchi, H.; Ishibashi, Y.; Takao, Y.; Arizono, K. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 2004, 67, 167–179. [Google Scholar] [CrossRef]
- Fang, J.L.; Vanlandingham, M.; da Costa, G.G.; Beland, F.A. Absorption and metabolism of triclosan after application to the skin of B6C3F1 mice. Environ. Toxicol. 2014, 31, 609–623. [Google Scholar] [CrossRef]
- Queckenberg, C.; Meins, J.; Wachall, B.; Doroshyenko, O.; Tomalik-Scharte, D.; Bastian, B.; Abdel-Tawab, M.; Fuhr, U. Absorption, pharmacokinetics, and safety of triclosan after dermal administration. Antimicrob. Agents Chemother. 2010, 54, 570–572. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Alharbi, O.M.L.; ALOthman, Z.A.; Badjah, A.Y. Kinetics, thermodynamics and modeling of amido black dye photo-degradation in water using Co/TiO2 nanoparticles. Photochem. Photobiol. 2018, 94, 935–941. [Google Scholar] [CrossRef]
- Ali, I.; Alharbi, O.M.L.; ALOthman, Z.A.; Alwarthan, A.; Al-Mohaimeed, A.M. Preparation of a carboxymethylcellulose-iron composite for the uptake of atorvastatin in water. Int. J. Biol. Macromol. 2019, 132, 244–253. [Google Scholar] [CrossRef]
- Ali, I.; Burakov, A.E.; Melezhik, A.V.; Babkin, A.V.; Burakova, I.V.; Neskomornaya, E.A.; Galunin, E.V.; Tkachev, A.G.; Kuznetsov, D.V. Kinetics, thermodynamics and mechanism of copper and zinc metal ions removal in water on newly synthesized pol-yhydroquinone/graphene nanocomposite material. Chem. Select 2019, 4, 12708–12718. [Google Scholar]
- Ali, I.; Basheer, A.A.; Kucherova, A.; Memetov, N.; Pasko, T.; Ovchinnikov, K.; Pershin, V.; Kuznetsov, D.; Galunin, E.; Grachev, V.; et al. Advances in carbon nanomaterials as lubricants modifiers. J. Mol. Liq. 2019, 279, 251–266. [Google Scholar] [CrossRef]
- Ali, I. Nano anti-cancer drugs: Pros and cons and future perspectives. Curr. Cancer Drugs Target. 2011, 11, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Brose, D.A.; Kumar, K.; Liao, A.; Hundal, L.S.; Tian, G.; Cox, A.; Zhang, H.; Podczerwinski, E.W. A reduction in triclosan and triclocarban in water resource recovery facilities’ influent, effluent, and biosolids following the U.S. Food and Drug Admin-istration’s 2013 proposed rulemaking on antibacterial products. Water Environ. Res. 2019, 91, 715–721. [Google Scholar] [CrossRef]
- Wu, C.; Spongberg, A.L.; Witter, J.D. Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils. J. Agric. Food Chem. 2009, 57, 4900–4905. [Google Scholar] [CrossRef] [PubMed]
- Tonga, Y.; Mayera, B.K.; McNamara, P.J. Triclosan adsorption using wastewater biosolids-deried biochar. Environ. Sci. Water Res. Technol. 2016, 2, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Khori, N.K.E.M.; Hadibarata, T.; Elshikh, M.S.; Al-Ghamdi, A.A.; Yusop, S.Z. Triclosan removal by adsorption using activated carbon derived from waste biomass: Isotherms and kinetic studies. J. Chin. Chem. Soc. 2018, 65, 951–959. [Google Scholar] [CrossRef]
- Fard, M.A.; Barkdoll, B. Using recyclable magnetic carbon nanotube to remove micropollutants from aqueous solutions. J. Mol. Liq. 2018, 249, 193–202. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Chen, Y.; Huang, L.; Lin, Z.; Cai, Z. Core-shell structured magnetic covalent organic framework nanocomposites for triclosan and triclocarban adsorption. ACS Appl. Mater Interfac. 2019, 11, 22492–22500. [Google Scholar] [CrossRef]
- Triwiswaraa, M.; Leeb, C.G.; Moonc, J.K.; Park, S.J. Adsorption of triclosan from aqueous solution onto char derived from palm kernel shell. Desal. Water Treat. 2020, 177, 71–79. [Google Scholar] [CrossRef]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms. Sep. Purif. Technol. 2020, 235, 116–152. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, X. Solution phase synthesis of CuO hierarchical nanosheets at near neutral PH and near room temperature. Mater. Lett. 2007, 61, 2222–2226. [Google Scholar] [CrossRef]
- Wu, W.; Li, W.; Han, B.; Zhang, Z.; Jiang, T.; Liu, Z. A green and effective method to synthesize ionic liquids: Supercritical CO2 route. Green Chem. 2005, 7, 701–704. [Google Scholar] [CrossRef]
Isotherms | Temperatures | ||
---|---|---|---|
20.0 °C | 25.0 °C | 30.0 °C | |
Langmuir | |||
Xmax (μg/g) | 0.087 | 0.015 | 0.008 |
b (L/μg) | 188.68 | 625 | 833.33 |
R2 | 0.929 | 0.967 | 0.901 |
Freundlich | |||
kF (µg/g) | 17.64 | 10.11 | 5.08 |
n (µg/L) | 1.38 | 1.09 | 0.89 |
R2 | 0.949 | 0.968 | 0.885 |
Temkin | |||
KT (L/µg) | 5.55 | 2.99 | 1.86 |
BT (kJ/mol) | 3.35 | 2.70 | 2.23 |
R2 | 0.949 | 0.968 | 0.885 |
Dubinin–Radushkevich | |||
Qm (µg/g) | 128.83 | 158.48 | 177.83 |
Kad (mol2/kJ2) | 1.22 | 3.20 | 5.38 |
E (kJ/mol) | 0.53 | 0.42 | 0.36 |
R2 | 0.901 | 0.954 | 0.849 |
Kinetic Models and Parameters | Numerical Values |
---|---|
First-second-order | |
k1 (1/min) | 0.073 |
The experimental Qe (µg/g) | 90.2 |
The theoretical Qe (µg/g) | 124.11 |
R2 | 0.995 |
Pseudo-second-order | |
k2 (g/µg min) | 3.26 × 10−6 |
The experimental Qe (µg/g) | 90.2 |
The theoretical Qe (µg/g) | 909.09 |
h (µg/g min) | 2.70 |
R2 | 0.994 |
Elovich | |
α (µg/g min) | 9.37 |
β (g/µg) | 0.028 |
R2 | 0.939 |
The Kinetic Models and Parameters | Numerical Values |
---|---|
The intraparticle diffusion kinetic model | |
kid (µg/g min0.5) | 23.37 |
Intercept | −43.72 |
R2 | 0.976 |
Liquid film diffusion kinetic model | |
kfd (1/min) | 0.073 |
Intercept | 0.32 |
R2 | 0.946 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Imanova, G.T.; Albishri, H.M.; Alshitari, W.H.; Locatelli, M.; Siddiqui, M.N.; Hameed, A.M. An Ionic-Liquid-Imprinted Nanocomposite Adsorbent: Simulation, Kinetics and Thermodynamic Studies of Triclosan Endocrine Disturbing Water Contaminant Removal. Molecules 2022, 27, 5358. https://doi.org/10.3390/molecules27175358
Ali I, Imanova GT, Albishri HM, Alshitari WH, Locatelli M, Siddiqui MN, Hameed AM. An Ionic-Liquid-Imprinted Nanocomposite Adsorbent: Simulation, Kinetics and Thermodynamic Studies of Triclosan Endocrine Disturbing Water Contaminant Removal. Molecules. 2022; 27(17):5358. https://doi.org/10.3390/molecules27175358
Chicago/Turabian StyleAli, Imran, Gunel T. Imanova, Hassan M. Albishri, Wael Hamad Alshitari, Marcello Locatelli, Mohammad Nahid Siddiqui, and Ahmed M. Hameed. 2022. "An Ionic-Liquid-Imprinted Nanocomposite Adsorbent: Simulation, Kinetics and Thermodynamic Studies of Triclosan Endocrine Disturbing Water Contaminant Removal" Molecules 27, no. 17: 5358. https://doi.org/10.3390/molecules27175358
APA StyleAli, I., Imanova, G. T., Albishri, H. M., Alshitari, W. H., Locatelli, M., Siddiqui, M. N., & Hameed, A. M. (2022). An Ionic-Liquid-Imprinted Nanocomposite Adsorbent: Simulation, Kinetics and Thermodynamic Studies of Triclosan Endocrine Disturbing Water Contaminant Removal. Molecules, 27(17), 5358. https://doi.org/10.3390/molecules27175358