Method of Glyphosate, AMPA, and Glufosinate Ammonium Determination in Beebread by Liquid Chromatography—Tandem Mass Spectrometry after Molecularly Imprinted Solid-Phase Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.1.1. Extraction Step
2.1.2. Derivatization Step
2.1.3. Post-Derivatization Clean-Up Step
2.1.4. Initial Clean-Up Step
2.2. Method Validation and Verification
2.3. Real Sample Application
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Standard Solutions
3.3. Sample Preparation
3.4. LC—MS/MS Analysis
3.5. Validation and Verification
3.6. Real Application of Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. An Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Tosi, S.; Sfeir, C.; Carnesecchi, E.; VanEngelsdorp, D.; Chauzat, M.-P. Lethal, Sublethal, and Combined Effects of Pesticides on Bees: A Meta-Analysis and New Risk Assessment Tools. Sci. Total Environ. 2022, 844, 156857. [Google Scholar] [CrossRef] [PubMed]
- Farina, W.M.; Balbuena, M.S.; Herbert, L.T.; Goñalons, C.M.; Vázquez, D.E. Effects of the Herbicide Glyphosate on Honey Bee Sensory and Cognitive Abilities: Individual Impairments with Implications for the Hive. Insects 2019, 10, 354. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Raymann, K.; Moran, N.A. Glyphosate Perturbs the Gut Microbiota of Honey Bees. Proc. Natl. Acad. Sci. USA 2018, 115, 10305–10310. [Google Scholar] [CrossRef]
- Vázquez, D.E.; Latorre-Estivalis, J.M.; Ons, S.; Farina, W.M. Chronic Exposure to Glyphosate Induces Transcriptional Changes in Honey Bee Larva: A Toxicogenomic Study. Environ. Pollut. 2020, 261, 114148. [Google Scholar] [CrossRef] [PubMed]
- Weidenmüller, A.; Meltzer, A.; Neupert, S.; Schwarz, A.; Kleineidam, C. Glyphosate Impairs Collective Thermoregulation in Bumblebees. Science 2022, 376, 1122–1126. [Google Scholar] [CrossRef]
- Bergero, M.; Bosco, L.; Giacomelli, A.; Angelozzi, G.; Perugini, M.; Merola, C. Agrochemical Contamination of Honey and Bee Bread Collected in the Piedmont Region, Italy. Environments 2021, 8, 62. [Google Scholar] [CrossRef]
- El Agrebi, N.; Tosi, S.; Wilmart, O.; Scippo, M.-L.; de Graaf, D.C.; Saegerman, C. Honeybee and Consumer’s Exposure and Risk Characterisation to Glyphosate-Based Herbicide (GBH) and Its Degradation Product (AMPA): Residues in Beebread, Wax, and Honey. Sci. Total Environ. 2020, 704, 135312. [Google Scholar] [CrossRef]
- Karise, R.; Raimets, R.; Bartkevics, V.; Pugajeva, I.; Pihlik, P.; Keres, I.; Williams, I.H.; Viinalass, H.; Mänd, M. Are Pesticide Residues in Honey Related to Oilseed Rape Treatments? Chemosphere 2017, 188, 389–396. [Google Scholar] [CrossRef]
- Maria Chiesa, L.; Nobile, M.; Panseri, S.; Arioli, F. Detection of Glyphosate and Its Metabolites in Food of Animal Origin Based on Ion-Chromatography-High Resolution Mass Spectrometry (IC-HRMS). Food Addit. Contam. Part A 2019, 36, 592–600. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Tzouganaki, Z.D.; Machera, K. Direct Determination of Glyphosate and Aminomethyl Phosphonic Acid in Honeybees. Hell. Plant Prot. J. 2018, 11, 40–46. [Google Scholar] [CrossRef]
- Anastassiades, M.; Wachtler, A.-K.; Kolberg, D.I.; Eichhorn, E.; Benkenstein, A.; Zechmann, S.; Mack, D.; Barth, A.; Wildgrube, C.; Sigalov, I.; et al. Quick Method for the Analysis of Numerous Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC-MS/MS Measurement. II. Food of Animal Origin (QuPPe-AO-Method). EU Ref. Lab. Pestic. Requiring Single Residue Methods 2019, 3, 1–24. [Google Scholar]
- Chamkasem, N.; Harmon, T. Direct Determination of Glyphosate, Glufosinate, and AMPA in Soybean and Corn by Liquid Chromatography/Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2016, 408, 4995–5004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Rose, M.; Van Zwieten, L. Direct Determination of Glyphosate and Its Metabolite AMPA in Soil Using Mixed-Mode Solid-Phase Purification and LC-MS/MS Determination on a Hypercarb Column. J. AOAC Int. 2019, 102, 952–965. [Google Scholar] [CrossRef] [PubMed]
- Nagatomi, Y.; Yoshioka, T.; Yanagisawa, M.; Uyama, A.; Mochizuki, N. Simultaneous LC-MS/MS Analysis of Glyphosate, Glufosinate, and Their Metabolic Products in Beer, Barley Tea, and Their Ingredients. Biosci. Biotechnol. Biochem. 2013, 77, 2218–2221. [Google Scholar] [CrossRef]
- Yoshioka, N.; Asano, M.; Kuse, A.; Mitsuhashi, T.; Nagasaki, Y.; Ueno, Y. Rapid Determination of Glyphosate, Glufosinate, Bialaphos, and Their Major Metabolites in Serum by Liquid Chromatography—Tandem Mass Spectrometry Using Hydrophilic Interaction Chromatography. J. Chromatogr. A 2011, 1218, 3675–3680. [Google Scholar] [CrossRef]
- Botero-Coy, A.M.; Ibáñez, M.; Sancho, J.V.; Hernández, F. Direct Liquid Chromatography—Tandem Mass Spectrometry Determination of Underivatized Glyphosate in Rice, Maize and Soybean. J. Chromatogr. A 2013, 1313, 157–165. [Google Scholar] [CrossRef]
- Demonte, L.D.; Michlig, N.; Gaggiotti, M.; Adam, C.G.; Beldoménico, H.R.; Repetti, M.R. Determination of Glyphosate, AMPA and Glufosinate in Dairy Farm Water from Argentina Using a Simplified UHPLC-MS/MS Method. Sci. Total Environ. 2018, 645, 34–43. [Google Scholar] [CrossRef]
- Oulkar, D.P.; Hingmire, S.; Goon, A.; Jadhav, M.; Ugare, B.; Thekkumpurath, A.S.; Banerjee, K. Optimization and Validation of a Residue Analysis Method for Glyphosate, Glufosinate, and Their Metabolites in Plant Matrixes by Liquid Chromatography with Tandem Mass Spectrometry. J. AOAC Int. 2017, 100, 631–639. [Google Scholar] [CrossRef]
- Hanke, I.; Singer, H.; Hollender, J. Ultratrace-Level Determination of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Natural Waters by Solid-Phase Extraction Followed by Liquid Chromatography—Tandem Mass Spectrometry: Performance Tuning of Derivatization, Enrichment and Detection. Anal. Bioanal. Chem. 2008, 391, 2265–2276. [Google Scholar] [CrossRef]
- Pires, N.L.; Passos, C.J.S.; Morgado, M.G.A.; Mello, D.C.; Infante, C.M.C.; Caldas, E.D. Determination of Glyphosate, AMPA and Glufosinate by High Performance Liquid Chromatography with Fluorescence Detection in Waters of the Santarém Plateau, Brazilian Amazon. J. Environ. Sci. Health-Part B Pestic. Food Contam. Agric. Wastes 2020, 55, 794–802. [Google Scholar] [CrossRef]
- Kaczyński, P.; Łozowicka, B. Liquid Chromatographic Determination of Glyphosate and Aminomethylphosphonic Acid Residues in Rapeseed with MS/MS Detection or Derivatization/Fluorescence Detection. Open Chem. 2015, 13, 1011–1019. [Google Scholar] [CrossRef]
- Valle, A.L.; Mello, F.C.C.; Alves-Balvedi, R.P.; Rodrigues, L.P.; Goulart, L.R. Glyphosate Detection: Methods, Needs and Challenges. Environ. Chem. Lett. 2019, 17, 291–317. [Google Scholar] [CrossRef]
- Steinborn, A.; Alder, L.; Michalski, B.; Zomer, P.; Bendig, P.; Martinez, S.A.; Mol, H.G.J.; Class, T.J.; Costa Pinheiro, N. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS. J. Agric. Food Chem. 2016, 64, 1414–1421. [Google Scholar] [CrossRef]
- Alexa, E.; Häfner, M.; Negrea, M.; Lazureanu, A. HPLC and GC Determination of Glyphosate and Aminomethylphosphonic Acid (AMPA) in Water Samples. In Proceedings of the 43rd Croatian and 3rd International Symposium on Agriculture, Opatija, Croatia, 24–27 February 2015; pp. 100–105. [Google Scholar]
- Azizi, A.; Bottaro, C.S. A Critical Review of Molecularly Imprinted Polymers for the Analysis of Organic Pollutants in Environmental Water Samples. J. Chromatogr. A 2020, 1614, 460603. [Google Scholar] [CrossRef]
- Villa, C.C.; Sánchez, L.T.; Valencia, G.A.; Ahmed, S.; Gutiérrez, T.J. Molecularly Imprinted Polymers for Food Applications: A Review. Trends Food Sci. Technol. 2021, 111, 642–669. [Google Scholar] [CrossRef]
- Puzio, K.; Claude, B.; Amalric, L.; Berho, C.; Grellet, E.; Bayoudh, S.; Nehmé, R.; Morin, P. Molecularly Imprinted Polymer Dedicated to the Extraction of Glyphosate in Natural Waters. J. Chromatogr. A 2014, 1361, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rigobello-Masini, M.; Pereira, E.A.O.; Abate, G.; Masini, J.C. Solid-Phase Extraction of Glyphosate in the Analyses of Environmental, Plant, and Food Samples. Chromatographia 2019, 82, 1121–1138. [Google Scholar] [CrossRef]
- Martinez-Haro, M.; Chinchilla, J.M.; Camarero, P.R.; Viñuelas, J.A.; Crespo, M.J.; Mateo, R. Determination of Glyphosate Exposure in the Iberian Hare: A Potential Focal Species Associated to Agrosystems. Sci. Total Environ. 2022, 823, 153677. [Google Scholar] [CrossRef] [PubMed]
- Freuze, I.; Jadas-Hecart, A.; Royer, A.; Communal, P.Y. Influence of Complexation Phenomena with Multivalent Cations on the Analysis of Glyphosate and Aminomethyl Phosphonic Acid in Water. J. Chromatogr. A 2007, 1175, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Toss, V.; Leito, I.; Yurchenko, S.; Freiberg, R.; Kruve, A. Determination of Glyphosate in Surface Water with High Organic Matter Content. Environ. Sci. Pollut. Res. 2017, 24, 7880–7888. [Google Scholar] [CrossRef] [PubMed]
- Schrübbers, L.C.; Masís-Mora, M.; Carazo Rojas, E.; Valverde, B.E.; Christensen, J.H.; Cedergreen, N. Analysis of Glyphosate and Aminomethylphosphonic Acid in Leaves from Coffea Arabica Using High Performance Liquid Chromatography with Quadrupole Mass Spectrometry Detection. Talanta 2016, 146, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Berthion, J.-M.; Colet, I.; Merlo, M.; Nougadère, A.; Hu, R. Validation and Application of Analytical Method for Glyphosate and Glufosinate in Foods by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2018, 1549, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Claude, B.; Berho, C.; Bayoudh, S.; Amalric, L.; Coisy, E.; Nehmé, R.; Morin, P. Preliminary Recovery Study of a Commercial Molecularly Imprinted Polymer for the Extraction of Glyphosate and AMPA in Different Environmental Waters Using MS. Environ. Sci. Pollut. Res. 2017, 24, 12293–12300. [Google Scholar] [CrossRef]
- Wirth, M.A.; Schulz-Bull, D.E.; Kanwischer, M. The Challenge of Detecting the Herbicide Glyphosate and Its Metabolite AMPA in Seawater—Method Development and Application in the Baltic Sea. Chemosphere 2021, 262, 128327. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Mayán, L.; Castro, G.; Ramil, M.; Cela, R.; Rodríguez, I. Approaches to Liquid Chromatography Tandem Mass Spectrometry Assessment of Glyphosate Residues in Wine. Anal. Bioanal. Chem. 2022, 414, 1445–1455. [Google Scholar] [CrossRef]
- Ibáñez, M.; Pozo, Ó.J.; Sancho, J.V.; López, F.J.; Hernández, F. Re-Evaluation of Glyphosate Determination in Water by Liquid Chromatography Coupled to Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1134, 51–55. [Google Scholar] [CrossRef]
- European Commission Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed SANTE 11312/2021. 2021, pp. 1–57. Available online: https://www.accredia.it/en/documento/guidance-sante-11312-2021-analytical-quality-control-and-method-validation-procedures-for-pesticide-residues-analysis-in-food-and-feed/ (accessed on 2 August 2022).
Compound | Linearity Range, µg/kg | R2 | ME, % | Recovery, % (RSDr, %) | ||
---|---|---|---|---|---|---|
5 µg/kg | 10 µg/kg | 100 µg/kg | ||||
AMPA-FMOC | 5–500 | 0.988 | −86 | 111 (9) | 97 (17) | 76 (4) |
Glyphosate-FMOC | 10–500 | 0.998 | −58 | ̶ | 106 (18) | 82 (5) |
Glufosinate ammonium-FMOC | 5–500 | 0.981 | −90 | 76 (17) | 105 (9) | 76(5) |
Compound | MRM 1 | DP | CE | CXP | MRM 2 | CE | CXP |
---|---|---|---|---|---|---|---|
Glyphosate–FMOC | 390 > 150 | −59 | −37 | −8 | 390 > 124 | −39 | −10 |
AMPA–FMOC | 332 > 110 | −55 | −11 | −7 | 332 > 136 | −23 | −8 |
Glufosinate ammonium–FMOC | 402 > 180 | −65 | −16 | −11 | 402 > 206 | −22 | −13 |
AMPA 13C 15N–FMOC (ISTD) | 334 > 112 | −37 | −12 | −1 | |||
Glyphosate-2-13C15N–FMOC (ISTD) | 393 > 171 | −45 | −18 | −9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małysiak, M.; Kiljanek, T. Method of Glyphosate, AMPA, and Glufosinate Ammonium Determination in Beebread by Liquid Chromatography—Tandem Mass Spectrometry after Molecularly Imprinted Solid-Phase Extraction. Molecules 2022, 27, 5741. https://doi.org/10.3390/molecules27175741
Małysiak M, Kiljanek T. Method of Glyphosate, AMPA, and Glufosinate Ammonium Determination in Beebread by Liquid Chromatography—Tandem Mass Spectrometry after Molecularly Imprinted Solid-Phase Extraction. Molecules. 2022; 27(17):5741. https://doi.org/10.3390/molecules27175741
Chicago/Turabian StyleMałysiak, Marta, and Tomasz Kiljanek. 2022. "Method of Glyphosate, AMPA, and Glufosinate Ammonium Determination in Beebread by Liquid Chromatography—Tandem Mass Spectrometry after Molecularly Imprinted Solid-Phase Extraction" Molecules 27, no. 17: 5741. https://doi.org/10.3390/molecules27175741
APA StyleMałysiak, M., & Kiljanek, T. (2022). Method of Glyphosate, AMPA, and Glufosinate Ammonium Determination in Beebread by Liquid Chromatography—Tandem Mass Spectrometry after Molecularly Imprinted Solid-Phase Extraction. Molecules, 27(17), 5741. https://doi.org/10.3390/molecules27175741