Characterization of Three Novel 4-Methylaminorex Derivatives Applied as Designer Drugs
Abstract
:1. Introduction
2. Results
2.1. NMR Spectroscopy Measurements
2.2. LC-HRMS Measurements
2.3. Experiments by Chiral HPLC-UV
3. Discussion
4. Materials and Methods
4.1. NMR Spectroscopy
4.2. LC-HRMS Experimental Parameters
4.3. Chiral Chromatography
4.3.1. Chemicals and Solutions
4.3.2. Chromatographic Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Almeida, A.S.; Silva, B.; de Pinho, P.G.; Remião, F.; Fernandes, C. Synthetic Cathinones: Recent Developments, Enantioselectivity Studies and Enantioseparation Methods. Molecules 2022, 27, 2057. [Google Scholar] [CrossRef] [PubMed]
- Gregg, R.A.; Baumann, M.H.; Partilla, J.S.; Bonano, J.S.; Vouga, A.; Tallarida, C.S.; Velvadapu, V.; Smith, G.R.; Peet, M.M.; Reitz, A.B.; et al. Stereochemistry of Mephedrone Neuropharmacology: Enantiomer-Specific Behavioural and Neurochemical Effects in Rats. Br. J. Pharmacol. 2015, 172, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.M.; Carvalho, F.; Bastos, M.d.L.; Guedes de Pinho, P.; Carvalho, M. The Hallucinogenic World of Tryptamines: An Updated Review. Arch. Toxicol. 2015, 89, 1151–1173. [Google Scholar] [CrossRef] [PubMed]
- Klare, H.; Neudörfl, J.M.; Brandt, S.D.; Mischler, E.; Meier-Giebing, S.; Deluweit, K.; Westphal, F.; Laussmann, T. Analysis of Six ‘Neuro-Enhancing’ Phenidate Analogs. Drug Test. Anal. 2017, 9, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Bouitbir, J.; Liechti, M.E.; Krähenbühl, S.; Mancuso, R.V. Para-Halogenation of Amphetamine and Methcathinone Increases the Mitochondrial Toxicity in Undifferentiated and Differentiated SH-SY5Y Cells. Int. J. Mol. Sci. 2020, 21, 2048. [Google Scholar] [CrossRef]
- Rickli, A.; Hoener, M.C.; Liechti, M.E. Monoamine Transporter and Receptor Interaction Profiles of Novel Psychoactive Substances: Para-Halogenated Amphetamines and Pyrovalerone Cathinones. Eur. Neuropsychopharmacol. 2015, 25, 365–376. [Google Scholar] [CrossRef]
- Trachsel, D. Fluorine in Psychedelic Phenethylamines. Drug Test. Anal. 2012, 4, 577–590. [Google Scholar] [CrossRef]
- Poos, G.; Carson, J.; Rosenau, J.; Roszkowski, A.; Kelley, N.; McGowin, J. 2-Amino-5-Aryl-2-Oxazolines. Potent New Anorectic Agents. J. Med. Chem. 1963, 6, 266–272. [Google Scholar] [CrossRef]
- Hofmaier, T.; Luf, A.; Seddik, A.; Stockner, T.; Holy, M.; Freissmuth, M.; Ecker, G.F.; Schmid, R.; Sitte, H.H.; Kudlacek, O. Aminorex, a Metabolite of the Cocaine Adulterant Levamisole, Exerts Amphetamine like Actions at Monoamine Transporters. Neurochem. Int. 2014, 73, 32–41. [Google Scholar] [CrossRef]
- McNeil Laboratories 2-Amino-5-Aryloxazoline Compositions and Methods of Using Same. U.S. Patent 3,278,382, 11 October 1966.
- Fabregat-Safont, D.; Carbón, X.; Ventura, M.; Fornís, I.; Hernández, F.; Ibáñez, M. Characterization of a Recently Detected Halogenated Aminorex Derivative: Para-Fluoro-4-Methylaminorex (4′F-4-MAR). Sci. Rep. 2019, 9, 8314. [Google Scholar] [CrossRef] [Green Version]
- EMCDDA. New Psychoactive Substances: Global Markets, Glocal Threats and the COVID-19 Pandemic—An Update from the EU Early Warning System; Publications Office of the European Union: Luxembourg, 2020; p. 24. [Google Scholar] [CrossRef]
- Maier, J.; Mayer, F.P.; Brandt, S.D.; Sitte, H.H. DARK Classics in Chemical Neuroscience: Aminorex Analogues. ACS Chem. Neurosci. 2018, 9, 2484–2502. [Google Scholar] [CrossRef] [PubMed]
- Rickli, A.; Kolaczynska, K.; Hoener, M.C.; Liechti, M.E. Pharmacological Characterization of the Aminorex Analogs 4-MAR, 4,4′-DMAR, and 3,4-DMAR. NeuroToxicology 2019, 72, 95–100. [Google Scholar] [CrossRef] [PubMed]
- EMCDDA. European Drug Report 2022: Trends and Developments; Publications Office of the European Union: Luxembourg, 2022; pp. 38–40. [Google Scholar] [CrossRef]
- Schmid, M.G.; Hägele, J.S. Separation of Enantiomers and Positional Isomers of Novel Psychoactive Substances in Solid Samples by Chromatographic and Electrophoretic Techniques—A Selective Review. J. Chromatogr. A 2020, 1624, 461256. [Google Scholar] [CrossRef]
- By, A.W.; Dawson, B.A.; Lodge, B.A.; Sy, W.-W. Spectral Distinction between Cis- and Trans-4-Methylaminorex. Forensic Sci. Int. 1989, 43, 83–91. [Google Scholar] [CrossRef]
- Kadkhodaei, K.; Kadisch, M.; Schmid, M.G. Successful Use of a Novel Lux® I-Amylose-1 Chiral Column for Enantioseparation of “Legal Highs” by HPLC. Chirality 2020, 32, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Kadkhodaei, K.; Forcher, L.; Schmid, M.G. Separation of Enantiomers of New Psychoactive Substances by High-performance Liquid Chromatography. J. Sep. Sci. 2018, 41, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Taschwer, M.; Grascher, J.; Schmid, M.G. Development of an Enantioseparation Method for Novel Psychoactive Drugs by HPLC Using a Lux®Cellulose-2 Column in Polar Organic Phase Mode. Forensic Sci. Int. 2017, 270, 232–240. [Google Scholar] [CrossRef]
- Glennon, R.A.; Misenheimer, B.; Glennon, R.A.; And, B.M. Stimulus Properties of a New Designer Drug: 4-Methylaminorex (“U4Euh”). Pharmacol. Biochem. Behav. 1990, 35, 517–521. [Google Scholar] [CrossRef]
- Rasmussen, L.B.; Olsen, K.H.; Johansen, S.S. Chiral Separation and Quantification of R/S-Amphetamine, R/S-Methamphetamine, R/S-MDA, R/S-MDMA, and R/S-MDEA in Whole Blood by GC-EI-MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 842, 136–141. [Google Scholar] [CrossRef]
- Jirovsky, D.; Lemr, K.; Sevcık, J.; Smysl, B.; Stransky, Z. Methamphetamine-Properties and Analytical Methods of Enantiomer Determination. Forensic Sci. Int. 1998, 96, 61–70. [Google Scholar] [CrossRef]
- Schwaninger, A.E.; Meyer, M.R.; Huestis, M.A.; Maurer, H.H. Development and Validation of LC-HRMS and GC-NICI-MS Methods for Stereoselective Determination of MDMA and Its Phase i and II Metabolites in Human Urine. J. Mass. Spectrom. 2011, 46, 603–614. [Google Scholar] [CrossRef]
- Gannon, B.M.; Williamson, A.; Suzuki, M.; Rice, K.C.; Fantegrossi, W.E. Stereoselective Effects of Abused “Bath Salt” Constituent 3,4-Methylenedioxypyrovalerone in Mice: Drug Discrimination, Locomotor Activity, and Thermoregulation. J. Pharmacol. Exp. Ther. 2016, 356, 615–623. [Google Scholar] [CrossRef]
- Philogene-Khalid, H.L.; Simmons, S.J.; Nayak, S.; Martorana, R.M.; Su, S.H.; Caro, Y.; Ranieri, B.; Difurio, K.; Mo, L.; Gentile, T.A.; et al. Stereoselective Differences between the Reinforcing and Motivational Effects of Cathinone-Derived 4-Methylmethcathinone (Mephedrone) in Self-Administering Rats. ACS Chem. Neurosci. 2017, 8, 2648–2654. [Google Scholar] [CrossRef]
Position | 4B-MAR | 4C-MAR | 4F-MAR | |||
---|---|---|---|---|---|---|
δC | δH | δC | δH | δC | δH | |
2 | 159.3 | - | 159.1 | - | 158.9 | - |
4 | 68.6 | 3.87 (p, 6.4) | 68.7 | 3.88 (p, 6.9) | 68.7 | 3.91 (p, 6.8) |
5 | 88.2 | 4.87 (d, 6.8) | 88.2 | 4.88 (d, 7.2) | 88.5 | 4.90 (d, 7.2) |
2-NH2 | - | 4.82 (brs) | - | 4.54 (brs) | - | 4.34 (brs) |
4-CH3 | 21.6 | 1.32 (d, 7.1) | 21.6 | 1.32 (d, 6.4) | 21.6 | 1.32 (d, 6.6) |
1′ | 139.1 | - | 138.5 | - | 135.7 (d, 3.2) | - |
2′/6′ | 127.3 | 7.20 (d, 8.5) | 127.1 | 7.26 (d, 8.6) | 127.6 (d, 8.3) | 7.31 (dd, 8.8, 5.3) |
3′/5′ | 131.9 | 7.50 (d, 8.5) | 128.9 | 7.34 (d, 8.6) | 115.7 (d, 21.6) | 7.03 (t, 8.8) |
4′ | 122.2 | - | 134.1 | - | 162.7 (d, 246.8) | - |
Position | 4B-MAR | 4C-MAR | 4F-MAR | |||
---|---|---|---|---|---|---|
δC | δH | δC | δH | δC | δH | |
2 | 158.8 | - | 158.8 | - | 158.8 | - |
4 | 68.5 | 3.61 (p, 6.4) | 68.5 | 3.62 (p, 6.3) | 68.4 | 3.64 (p, 6.5) |
5 | 85.3 | 4.86 (d, 6.4) | 85.3 | 4.88 (d, 6.3) | 85.5 | 4.87 (d, 6.5) |
2-NH2 | - | 5.97 (s) | - | 5.99 (s) | - | 5.96 (s) |
4-CH3 | 22.0 | 1.17 (d, 6.4) | 22.0 | 1.17 (d, 6.3) | 22.0 | 1.16 (d, 6.5) |
1′ | 140.7 | - | 140.2 | - | 137.4 (d, 3.1) | - |
2′/6′ | 127.4 | 7.26 (d, 8.5) | 127.1 | 7.33 (d, 8.4) | 127.4 (d, 8.3) | 7.35 (dd, 8.9, 5.4) |
3′/5′ | 131.4 | 7.58 (d, 8.5) | 128.5 | 7.45 (d, 8.4) | 115.3 (d, 21.4) | 7.20 (t, 8.9) |
4′ | 120.7 | - | 132.2 | - | 161.6 (d, 243.5) | - |
Compound | Found m/z [Ion Species] | Molecular Formula (Ion Species) | m/z Calculated for Molecular Formula | Δ (ppm) |
---|---|---|---|---|
4F-MAR | 195.0929 [M + H]+ | C10H12ON2F+ | 195.0934 | 0.63 |
4C-MAR | 211.0634 [M + H]+ | C10H12ON2Cl+ | 211.0638 | 0.72 |
4B-MAR | 255.0129 [M + H]+ | C10H12ON2Br+ | 255.0133 | 0.66 |
Compound | t1 | t2 | α | Rs |
---|---|---|---|---|
4F-MAR | 6.36 | 8.99 | 1.53 | 9.49 |
4C-MAR | 7.41 | 13.01 | 1.93 | 14.70 |
4B-MAR | 8.21 | 15.54 | 2.08 | 16.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seibert, E.; Kunert, O.; Pferschy-Wenzig, E.-M.; Schmid, M.G. Characterization of Three Novel 4-Methylaminorex Derivatives Applied as Designer Drugs. Molecules 2022, 27, 5770. https://doi.org/10.3390/molecules27185770
Seibert E, Kunert O, Pferschy-Wenzig E-M, Schmid MG. Characterization of Three Novel 4-Methylaminorex Derivatives Applied as Designer Drugs. Molecules. 2022; 27(18):5770. https://doi.org/10.3390/molecules27185770
Chicago/Turabian StyleSeibert, Elisabeth, Olaf Kunert, Eva-Maria Pferschy-Wenzig, and Martin G. Schmid. 2022. "Characterization of Three Novel 4-Methylaminorex Derivatives Applied as Designer Drugs" Molecules 27, no. 18: 5770. https://doi.org/10.3390/molecules27185770
APA StyleSeibert, E., Kunert, O., Pferschy-Wenzig, E. -M., & Schmid, M. G. (2022). Characterization of Three Novel 4-Methylaminorex Derivatives Applied as Designer Drugs. Molecules, 27(18), 5770. https://doi.org/10.3390/molecules27185770