Enantioselective Cyclopropanation Catalyzed by Gold(I)-Carbene Complexes
Abstract
:1. Introduction
2. Results and Discussion
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Arduengo, A.J.; Harlow, R.L.; Kline, M. A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 113, 363–365. [Google Scholar] [CrossRef]
- Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Hameury, S.; Frémont, P.; Braunstein, P. Metal Complexes with Oxygen-Functionalized NHC Ligands: Synthesis and Applications. Chem. Soc. Rev. 2017, 46, 632–733. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, H.D.; Verpoort, F. N-Heterocyclic Carbene Transition Metal Complexes for Catalysis in Aqueous Media. Chem. Soc. Rev. 2012, 41, 7032–7060. [Google Scholar] [CrossRef]
- Lin, J.C.Y.; Huang, R.T.W.; Lee, C.S.; Bhattacharyya, A.; Hwang, W.S.; Lin, I.J.B. Coinage Metal-N-Heterocyclic Carbene (NHC) Complexes. Chem. Rev. 2009, 109, 3561–3598. [Google Scholar] [CrossRef]
- Díez-González, S.; Marion, N.; Nolan, S.P. N-Heterocyclic Carbenes in Late Transition Metal Catalysis. Chem. Rev. 2009, 109, 3612–3676. [Google Scholar] [CrossRef]
- Herrmann, W.A. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. Angew. Chem. Int. Ed. 2002, 41, 1290–1309. [Google Scholar] [CrossRef]
- Peris, E.; Crabtree, R.H. Recent Homogeneous Catalytic Applications of Chelate and Pincer N-Heterocyclic Carbenes. Coord. Chem. Rev. 2004, 248, 2239–2246. [Google Scholar] [CrossRef]
- Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and Activity of A New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1, 3-Dimesity-4, 5-Dihydroimidazol-2-Ylidene Ligands. Org. Lett. 1999, 1, 953–956. [Google Scholar] [CrossRef]
- Scholl, M.; Trnka, T.M.; Morgan, J.P.; Grubbs, R.H. Increased Ring Closing Metathesis Activity of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with Imidazolin-2-Ylidene Ligands. Tetrahedron Lett. 1999, 40, 2247–2250. [Google Scholar] [CrossRef]
- Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts. Chem. Rev. 2010, 110, 1746–1787. [Google Scholar] [CrossRef] [PubMed]
- Samojlowicz, C.; Bieniek, M.; Grela, K. Ruthenium-Based Olefin Metathesis Catalysts Bearing N-Heterocyclic Carbene Ligands. Chem. Rev. 2009, 109, 3708–3742. [Google Scholar] [CrossRef] [PubMed]
- Schuster, O.; Yang, L.; Raubenheimer, H.G.; Albrecht, M. Beyond Conventional N-Heterocyclic Carbenes: Abnormal, Remote, and other Classes of NHC Ligands with Reduced Heteroatom Stabilization. Chem. Rev. 2009, 109, 3445–3478. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.J.; Nolan, S.P. Quantifying and Understanding the Electronic Properties of N-Heterocyclic Carbenes. Chem. Soc. Rev. 2013, 42, 6723–6753. [Google Scholar] [CrossRef]
- García-Morales, C.; Echavarren, A.M. From Straightforward Gold(I)-Catalyzed Enyne Cyclizations to more Demanding Intermolecular Reactions of Alkynes with Alkenes. Synlett 2018, 29, 2225–2237. [Google Scholar]
- Hashmi, A.S.K.; Bührle, M. Gold-Catalyzed Addition of X–H Bonds to C–C Multiple Bonds. Aldrichim. Acta 2010, 43, 27–33. [Google Scholar]
- Shapiro, N.D.; Toste, F.D. A Reactivity-Driven Approach to the Discovery and Development of Gold-Catalyzed Organic Reactions. Synlett 2010, 5, 675–691. [Google Scholar]
- Patil, N.T.; Yamamoto, Y. Gold-catalyzed reactions of oxo-alkynes. ARKIVOC 2007, 6, 19. [Google Scholar] [CrossRef]
- Jiménez-Núñez, E.; Echavarren, A.M. Gold-Catalyzed Cycloisomerizations of Enynes: A Mechanistic Perspective. Chem. Rev. 2008, 108, 3326–3350. [Google Scholar] [CrossRef]
- Gorin, D.J.; Sherry, B.D.; Toste, F.D. Ligand Effects in Homogeneous Au Catalysis. Chem. Rev. 2008, 108, 3351–3378. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, J.; Kozmin, S.A. Gold and Platinum Catalysis of Enyne Cycloisomerization. Adv. Synth. Catal. 2006, 348, 2271–2296. [Google Scholar] [CrossRef]
- Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009, 52, 6752–6756. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.J.; Gorin, D.J.; Staben, S.T.; Toste, F.D. Gold(I)-Catalyzed Stereoselective Olefin Cyclopropanation. J. Am. Chem. Soc. 2005, 127, 18002–18003. [Google Scholar] [CrossRef] [PubMed]
- Bartolomé, C.; García-Cuadrado, D.; Ramiro, Z.; Espinet, P. Synthesis and catalytic activity of gold chiral nitrogen acyclic carbenes and gold hydrogen bonded heterocyclic carbenes in cyclopropanation of vinyl arenes and in intramolecular hydroalkoxylation of allenes. Inorg. Chem. 2010, 49, 9758. [Google Scholar] [CrossRef]
- Strand, R.B.; Helgerud, T.; Solvang, T. Asymmetric induction afforded by chiral azolylidene N-heterocyclic carbenes (NHC) catalysts. Tetrahedron Asymmetry 2012, 23, 1350. [Google Scholar] [CrossRef]
- Szabó, Z.; Timári, M.; Kassai, R.; Szokol, B.; Bényei, C.A.; Gáti, T.; Paczal, A.; Kotschy, A. Modular Synthesis of Chiral NHC Precursors and Their Silver and Gold Complexes. Organometallics 2020, 39, 3572–3589. [Google Scholar] [CrossRef]
- Szabó, Z.; Paczal, A.; Kovács, T.; Mándi, A.; Kotschy, A.; Kurtán, T. Synthesis and Vibrational Circular Dichroism Analysis of N-Heterocyclic Carbene Precursors Containing Remote Chirality Centers. Int. J. Mol. Sci. 2022, 23, 3471. [Google Scholar] [CrossRef]
- Paczal, A.; Bényei, A.C.; Kotschy, A. Modular synthesis of heterocyclic carbene precursors. J. Org. Chem. 2006, 71, 5969–5979. [Google Scholar] [CrossRef]
Entry | [Au] | R1 | R2 | R3 | 3a ee (%) | 4a ee (%) | Time (d) 1 |
---|---|---|---|---|---|---|---|
1 | C1 | S-tBu | S-Ph | H | 50 2 | 44 | 6 |
2 | C2 | S-tBu | R-Ph | H | 14 2 | 12 | 6 |
3 | C3 | S-tBu | S-1-naphthyl | H | 36 2 | 32 | 6 |
4 | C4 | S-tBu | R-1-naphthyl | H | 14 | 14 2 | 8 |
5 | C5 | S-tBu | S-2-naphthyl | H | 46 2 | 44 | 6 |
6 | C6 | S-tBu | R-2-naphthyl | H | 12 2 | 12 | 6 |
7 | C7 | S-tBu | S-tBu | H | 58 2 | 48 | 7 |
8 | C8 | S-tBu | R-tBu | H | 10 | 0 | 9 |
9 | C9 | S-tBu | 2-isopropylphenyl | 12 2 | 16 | 8 | |
10 | C10 | S-tBu | 2-tertbutylphenyl | 2 2 | 20 | 14 (85) | |
11 | C11 | S-tBu | S-Ph | H | 12 2 | 10 | 14 (84) |
12 | C12 | R-tBu | S-Ph | H | 6 2 | 2 | 14 (98) |
13 | C13 | R-tBu | S-adamantyl | H | 26 2 | 4 | 9 |
14 | C14 | R-tBu | R-adamantyl | H | 50 | 42 2 | 10 |
15 | C15 | S-tBu | R-4-CF3-Ph | Ph | 74 2 | 64 | 10 |
16 | C16 | S-tBu | S-4-CF3-Ph | Ph | 44 | 42 2 | 9 |
17 | C17 | S-tBu | R-4-MeO-Ph | Ph | 70 2 | 64 | 7 |
18 | C18 | S-tBu | S-4-MeO-Ph | Ph | 40 | 42 2 | 14 (82) |
19 | C19 | S-tBu | R-4-Me-Ph | Ph | 70 2 | 64 | 7 |
20 | C20 | S-tBu | S-4-Me-Ph | Ph | 44 | 42 2 | 8 |
21 | C21 | S-tBu | R-2-MeO-Ph | Ph | 30 2 | 28 | 10 |
22 | C22 | S-tBu | S-2-MeO-Ph | Ph | 52 | 48 2 | 10 |
23 | C233 | S-tBu | R-2-Me-Ph | Ph | 38 2 | 32 | 14 |
24 | C24 | S-tBu | S-2-Me-Ph | Ph | 52 | 54 2 | 14 |
25 | C25 | S-tBu | R-3-MeO-Ph | Ph | 70 2 | 64 | 8 |
26 | C26 | S-tBu | S-3-MeO-Ph | Ph | 36 | 42 2 | 9 |
27 | C27 | S-tBu | R-Ph | 4-Me-Ph | 68 2 | 62 | 10 |
28 | C28 | S-tBu | S-Ph | 4-Me-Ph | 38 | 46 2 | 14 |
29 | C29 | S-tBu | R-Ph | 4-Cl-Ph | 76 2 | 72 | 8 |
30 | C30 | S-tBu | S-Ph | 4-Cl-Ph | 34 | 24 2 | 14 (91) |
31 | C31 | S-tBu | R-Ph | 2-Cl-Ph | 58 2 | 56 | 7 |
32 | C32 | S-tBu | S-Ph | 2-Cl-Ph | 62 | 58 2 | 7 |
33 | C33 | R-tBu | R-Ph | Ph | 50 2 | 46 | 9 |
34 | C34 | R-tBu | S-Ph | Ph | 64 | 68 2 | 8 |
35 | C35 | R-tBu | R-Ph | 3-Cl-Ph | 74 2 | 66 | 7 |
36 | C36 | R-tBu | S-Ph | 3-Cl-Ph | 82 | 82 2 | 6 |
37 | C37 | R-tBu | R-3-CF3-Ph | Ph | 54 2 | 46 | 8 |
38 | C38 | R-tBu | S-3-CF3-Ph | Ph | 70 | 74 2 | 8 |
39 | C39 | H | R-Ph | 4-Cl-Ph | 48 | 46 2 | 9 |
40 | C40 | H | S-Ph | 4-Cl-Ph | 60 2 | 54 | 9 |
41 | C41 | H | S-hydroxymethyl | Ph | 18 | 20 2 | 10 |
42 | C42 | S-tBu | S-hydroxymethyl | Ph | 36 | 38 2 | 10 |
Entry | Complex | Ag Salt | 3a ee (%) | 4a ee (%) | Time (d) 1 |
---|---|---|---|---|---|
1 | C35 | AgNTf2 | 74 2 | 66 | 7 |
2 | C36 | AgNTf2 | 82 | 82 2 | 6 |
3 | C35 or C36 | none | no reaction | ||
4 | C35 | AgSbF6 | 74 2 | 68 | 1 |
5 | C36 | AgSbF6 | 80 | 78 2 | 1 |
6 | C35 | AgBF4 | 70 2 | 62 | 7 |
7 | C36 | AgBF4 | 78 | 78 2 | 2 |
8 | C35 | AgPF6 | nd | 8 (33%) | |
9 | C36 | AgPF6 | 56 | 58 2 | 8 (94%) |
10 | C35 | AgOTs | nd | 8 (32%) | |
11 | C36 | AgOTs | 48 | 68 2 | 8 (37%) |
12 | C35 or C36 | AgOAc | no reaction | ||
13 | C35 or C36 | AgTFA | no reaction | ||
14 | C35 or C36 | Ag-S-CSA or Ag-R-CSA | nd | 8 (28–38%) |
Entry | Complex | Solvent | 3a ee (%) | 4a ee (%) | Time (d) 1 |
---|---|---|---|---|---|
1 | C35 | DCM | 74 2 | 66 | 7 |
2 | C36 | AgNTf2 | 82 | 82 2 | 6 |
3 | C35 | chloroform | 76 2 | 62 | 5 (32%) |
4 | C35 | DEE | 62 2 | 50 | 5 (30%) |
5 | C35 | THF | 56 2 | 52 | 5 (30%) |
6 | C35 | MeCN | 40 2 | 44 | 5 (21%) |
7 | C35 | EtOAc | 58 2 | 48 | 5 (18%) |
8 | C35 | toluene | 64 2 | 38 | 5 (20%) |
9 | C35 | MeOH | no reaction | ||
10 | C35 | acetone | no reaction | ||
11 | C35 | TFE | 82 2 | 74 | 1 |
12 | C36 | TFE | 84 | 78 2 | 1 |
13 | C35 | HFIPA (0 °C) | 84 2 | 78 | 1 |
14 | C36 | HFIPA (0 °C) | 86 | 82 2 | 1 |
Entry | Complex (mol%) | Solvent | Temperature | 3a ee (%) | 4a ee (%) | Time (h) 1 |
---|---|---|---|---|---|---|
1 | C35 (2.5%) | TFE | −25 °C | 84 2 | 82 | 2, 5 |
2 | C35 (2.5%) | TFE | 0 °C | 78 2 | 70 | 0, 5 |
3 | C35 (2.5%) | TFE | 25 °C | 72 2 | 70 | 0, 25 |
4 | C36 (2.5%) | TFE | −40 °C | 88 | 84 2 | 17 |
5 | C36 (2.5%) | TFE | −25 °C | 84 | 78 2 | 2, 5 |
6 | C36 (2.5%) | TFE | 0 °C | 84 | 78 2 | 0, 5 |
7 | C36 (2.5%) | TFE | 25 °C | 78 | 70 2 | 0, 25 |
8 | C35 (2.5%) | HFIPA | 0 °C | 84 2 | 78 | 1, 5 |
9 | C35 (2.5%) | HFIPA | 25 °C | 78 2 | 64 | 0, 5 |
10 | C36 (2.5%) | HFIPA | 0 °C | 84 | 80 2 | 1 |
11 | C36 (2.5%) | HFIPA | 25 °C | 82 | 76 2 | 0, 25 |
12 | C35 (1%) | TFE | −25 °C | 84 2 | 72 | 24 |
13 | C35 (0.5%) | TFE | −25 °C | 80 2 | 66 | 48 (34%) |
14 | C36 (1%) | TFE | −40 °C | 88 | 84 2 | 96 |
15 | C36 (1%) | TFE | −25 °C | 86 | 82 2 | 21 |
16 | C36 (0.5%) | TFE | −25 °C | 84 | 76 2 | 48 |
17 | C35 (1%) | HFIPA | 0 °C | 84 2 | 80 | 12 |
18 | C35 (0.5%) | HFIPA | 0 °C | 84 2 | 80 | 21 |
19 | C35 (0.1%) | HFIPA | 0 °C | 86 2 | 78 | 48 |
20 | C36 (1%) | HFIPA | 0 °C | 88 | 84 2 | 4 |
21 | C36 (0.5%) | HFIPA | 0 °C | 86 | 84 2 | 21 |
22 | C36 (0.1%) | HFIPA | 0 °C | 86 | 80 2 | 24 |
23 | C36 (1%) | TFE:HFIPA (1:1) | −25 °C | 92 | 88 2 | 24 |
Entry | Reagents | R3 | R4 | R5 | 3:4 1 | Products (Yield 2, ee) | ||
---|---|---|---|---|---|---|---|---|
1 | 1a | 2a | Me | OAc | H | 71:29 | 3a (68%, 92 3) | 4a (42%, 88 3) |
2 | 1b | 2a | Me | OAc | H | 68:32 | 3b (68%, 90 3) | 4b (60%, 84 3) |
3 | 1c | 2a | Me | OAc | H | 73:27 | 3c (76%, 56) | 4c (88%, 64) |
4 | 1a | 2b | C2H4CO2Me | H | H | 54:46 | 3d (58%, 77) | 4d (64%, 68) |
5 | 1a | 2c | C2H4-N-phthaloyl | H | H | 57:43 | 3e (58%, 77) | 4e (50%, 75 3) |
6 | 1a | 2d | 3-thienyl | H | H | 100:0 | 3f (66%, 56) | |
7 | 1a | 2e | 4-ClPh | H | H | 80:20 | 3g (82%, 26) | 4g (78%, 24) |
8 | 1a | 2f | 3-BrPh | H | H | 83:17 | 3h (72%, 0) | 4h (66%, 0) |
9 | 1a | 2g | 2-MePh | H | H | 75:25 | 3i (76%, 46) | 4i (62%, 16) |
10 | 1a | 2h | 4-NO2Ph | H | H | 87:13 | 3j (55%, 35) | 4j (65%, 17) |
11 | 1a | 2i | Ph | H | H | 100:0 | 3k (80%, 30) | |
12 | 1a | 2j | Ph | H | Me | 74:26 | 3l (87%, 16) | 4l (83%, 56) |
13 | 1a | 2k | Ph | H | Ph | 100:0 | 3m (52%, 44) | |
14 | 1a | 2l | CH2CO2Me | H | Ph | 100:0 | 3n (35%, 64) | |
15 | 1a | 2m | Ph | OAc | H | 67:33 | 3o (75%, 68) | 4o (65%, 70 3) |
16 | 1a | 2n | H | -(CH2)4- | 100 | 3p (52%, 44) | ||
17 | 1b | 2o | 4-AcPh | H | H | 82:18 | 3q (-,80) + 4q (-,46) 43% 4 | |
18 | 1c | 2p | cyclopentyl | H | H | 67:33 | 3r (65%, 4 3) | 4r (53%, 7 3) |
19 | 1d | 2f | 3-BrPh | H | H | 65:34 | 3s (-,0) + 4s (-,0) 55% 4 | |
20 | 1d | 2q | 2-IPh | H | H | 78:22 | 3t (-,6) + 4t (-,28 3) 25% 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabo, Z.; Ben Ahmed, S.; Nagy, Z.; Paczal, A.; Kotschy, A. Enantioselective Cyclopropanation Catalyzed by Gold(I)-Carbene Complexes. Molecules 2022, 27, 5805. https://doi.org/10.3390/molecules27185805
Szabo Z, Ben Ahmed S, Nagy Z, Paczal A, Kotschy A. Enantioselective Cyclopropanation Catalyzed by Gold(I)-Carbene Complexes. Molecules. 2022; 27(18):5805. https://doi.org/10.3390/molecules27185805
Chicago/Turabian StyleSzabo, Zita, Sophia Ben Ahmed, Zoltan Nagy, Attila Paczal, and Andras Kotschy. 2022. "Enantioselective Cyclopropanation Catalyzed by Gold(I)-Carbene Complexes" Molecules 27, no. 18: 5805. https://doi.org/10.3390/molecules27185805
APA StyleSzabo, Z., Ben Ahmed, S., Nagy, Z., Paczal, A., & Kotschy, A. (2022). Enantioselective Cyclopropanation Catalyzed by Gold(I)-Carbene Complexes. Molecules, 27(18), 5805. https://doi.org/10.3390/molecules27185805