Synthesis of Novel α-Trifluorothioanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity
Abstract
:1. Introduction
2. Results and Discussions
2.1. Chemistry
2.2. Greenhouse Herbicidal Activity Assays
3. Materials and Methods
3.1. Instrumentation
3.2. Synthesis
3.2.1. General Approach to the Synthesis of Compounds 3a–3f
3.2.2. General Approach to the Synthesis of Compounds 5a–5f
3.2.3. General Approach to the Synthesis of Compounds 6a–6f
3.2.4. General Approach to the Synthesis of Compounds 7a–7f
3.3. Herbicidal Activity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 2014, 57, 2832–2842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-M.; Tan, X.-Y.; Feng, J.; Ding, N.; Li, Y.-P.; Jin, Z.; Meng, Q.-G.; Liu, X.-P.; Hu, C. Design, synthesis and biological evaluation of a new series of 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenylurea derivatives as antiproliferative agents. Molecules 2019, 24, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Francesconi, V.; Cichero, E.; Schenone, S.; Naesens, L.; Tonelli, M. Synthesis and biological evaluation of novel (thio)semicarbazone-based benzimidazoles as antiviral agents against human respiratory viruses. Molecules 2020, 25, 1487–1507. [Google Scholar] [CrossRef] [PubMed]
- Abu-Hashem, A.A.; Al-Hussain, S.A.; Zaki, M.E.A. Design, synthesis and anticancer activity of new polycyclic: Imidazole, thiazine, oxathiine, pyrrolo-quinoxaline and thienotriazolopyrimidine derivatives. Molecules 2021, 26, 2031–2050. [Google Scholar] [CrossRef]
- Li, Y.-T.; Yao, W.-Q.; Lin, J.; Li, F.-L.; Wu, Y.; Xu, J.-X. Design, synthesis, and biological activity of novel triazole sulfonamide derivatives containing a benzylamine moiety. J. Heterocycl. Chem. 2019, 56, 2170–2178. [Google Scholar] [CrossRef]
- Yu, X.-L.; Liu, Y.-X.; Li, Y.-Q.; Wang, Q.-M. Design, synthesis, acaricidal/insecticidal activity, and structure-activity relationship studies of novel oxazolines containing sulfone/sulfoxide groups based on the sulfonylurea receptor protein-binding site. J. Agric. Food Chem. 2016, 64, 3034–3040. [Google Scholar] [CrossRef]
- Fu, Q.; Cai, P.-P.; Cheng, L.; Zhong, L.-K.; Tan, C.-X.; Shen, Z.-H.; Han, L.; Xu, T.-M.; Liu, X.-H. Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. Pest Manag. Sci. 2020, 76, 679–868. [Google Scholar] [CrossRef]
- Hao, S.-L.; Cai, Z.-F.; Cao, Y.-Y.; Du, X.-H. Design, synthesis, and acaricidal activity of phenyl methoxyacrylates containing 2-alkenylthiopyrimidine. Molecules 2020, 25, 3379–3390. [Google Scholar] [CrossRef]
- Wang, H.-L.; Li, H.-R.; Zhang, Y.-C.; Yang, W.-T.; Yao, Z.; Wu, R.-J.; Niu, C.-W.; Li, Y.-H.; Wang, J.-G. Discovery of ortho-alkoxy substituted novel sulfonylurea compounds that display strong herbicidal activity against monocotyledon grasses. J. Agric. Food Chem. 2021, 69, 8415–8427. [Google Scholar] [CrossRef]
- Zhang, D.K.; Hua, X.W.; Liu, M.; Wu, C.C.; Wei, W.; Liu, Y.; Chen, M.G.; Zhou, S.; Li, Y.H.; Li, Z.M. Design, synthesis and herbicidal activity of novel sulfonylureas containing triazole and oxadiazole moieties. Chem. Res. Chin. U. 2016, 32, 607–614. [Google Scholar] [CrossRef]
- Wang, S.-H.; Li, M.; Su, B.; Lu, Q.-H. Preparation and properties of superhydrophobic polyphenylene sulfide composite coatings. Acta Polym. Sin. 2010, 10, 449–455. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Gao, Y.; Zhang, Y.-X.; Zhang, M.-G.; Gao, Y.; Cheng, B.-W.; Li, Z.-H. Preparation and properties of polyphenylene sulfide/oxidized-polyphenylene sulfide composite membranes. React. Funct. Polym. 2021, 160, 104842. [Google Scholar] [CrossRef]
- Zheng, H.-D.; Huang, Y.-J.; Weng, Z.-Q. Recent advances in trifluoromethylthiolation using nucleophilic trifluoromethylthiolating reagents. Tetrahedron Lett. 2016, 57, 1397–1409. [Google Scholar] [CrossRef]
- Nohara, T.; Fujiwara, Y.; El-Aasr, M.; Ikeda, T.; Ono, M.; Nakano, D.; Kinjoet, J. Antitumor allium sulfides. Chem. Pharm. Bull. 2017, 65, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Crozet, M.D.; Rathelot, P.; Azas, N.; Vanelle, P. Synthesis and promising in vitro antiproliferative activity of sulfones of a 5-nitrothiazole series. Molecules 2012, 18, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Umetsu, N.; Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef]
- Liu, X.-H.; Zhao, W.; Shen, Z.-H.; Xing, J.-H.; Xu, T.-M.; Peng, W.-L. Synthesis, nematocidal activity and SAR study of novel difluoromethylpyrazole carboxamide derivatives containing flexible alkyl chain moieties. Eur. J. Med. Chem. 2017, 125, 881–889. [Google Scholar] [CrossRef]
- Khalil, Y.; Flower, K.; Siddique, K.H.M.; Ward, P. Pyroxasulfone efficacy for annual ryegrass control is affected by wheat residue height, amount, and orientation. Pest Manag. Sci. 2019, 76, 861–867. [Google Scholar] [CrossRef]
- Li, P.; Wang, L.; Wang, X. Recent advances on the pesticidal activity evaluations of sulfone derivatives: A 2010 to 2020 decade in mini-review. J. Heterocycl. Chem. 2020, 58, 28–39. [Google Scholar] [CrossRef]
- Su, S.-H.; Zhou, X.; Liao, G.-P.; Qi, P.-Y.; Jin, L.-H. Synthesis and antibacterial evaluation of new sulfone derivatives containing 2-aroxymethyl-1,3,4-oxadiazole/thiadiazole moiety. Molecules 2016, 22, 64–80. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.-M.; He, J.; He, M.; Han, F.-F.; Chen, X.-H.; Pan, Z.-X.; Wang, J.; Tong, M. Synthesis and antifungal activity of novel sulfone derivatives containing 1,3,4-oxadiazole moieties. Molecules 2011, 16, 9129–9141. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ma, Y.-H.; Zhou, J.-L.; Luo, H.; Yan, J.-W.; Mao, Y.-Y.; Wang, Z. The efficacy and underlying mechanism of sulfone derivatives containing 1,3,4-oxadiazole on citrus canker. Molecules 2015, 20, 14103–14117. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, M.; Ito, M.; Yoshimura, T.; Miyazaki, M.; Ueno, R.; Kawasaki, H.; Takahashi, S.; Todoroki, Y. Synthesis and herbicidal activity of 3-{[(hetero)aryl]methanesulfonyl}-4,5-dihydro-1,2-oxazole derivative; Discovery of the novel pre-emergence herbicide pyroxasulfone. J. Pestic. Sci. 2016, 41, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, P.; Hampreche, G.; Puhl, M.; Westphalen, K.O.; Zagaret, C. Synthesis and herbicidal activity of phenylpyridines—A new lead. Chim. Int. J. Chem. 2003, 57, 715–719. [Google Scholar] [CrossRef]
- Schaefer, P.; Hampreche, G.; Heistracher, E.; Koenig, H.; Klintz, R.; Muenster, P.; Rang, H.; Westphalen, K.O.; Gerber, M.; Walter, H. Preparation of Substituted 2-Phenylpyriden Herbicides. DE Patent DE4323916A1, 19 January 1995. [Google Scholar]
- Xie, Y.; Chi, H.W.; Guan, A.Y.; Liu, C.L.; Ma, H.J.; Cui, D.L. Design, synthesis, and herbicidal activity of novel substituted 3-(pyridin-2-yl)benzenesulfonamide derivatives. J. Agric. Food Chem. 2014, 62, 12491–12496. [Google Scholar] [CrossRef]
- Xie, Y.; Peng, W.; Ding, F.; Liu, S.J.; Ma, H.J.; Liu, C.L. Quantitative structure-activity relationship (QSAR) directed the discovery of 3-(pyridin-2-yl)benzenesulfonamide derivatives as novel herbicidal agents. Pest Manag. Sci. 2017, 74, 189–199. [Google Scholar] [CrossRef]
- Xie, Y.; Chi, H.W.; Guan, A.Y.; Liu, C.L.; Ma, H.J.; Cui, D.L. Synthesis and evaluation of substituted 3-(pyridin-2-yl)-benzenesulfonamide derivatives as potent herbicidal agents. Bioorg. Med. Chem. 2016, 24, 428–434. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Mao, D.J.; Wang, W.W.; Du, X.H. Kresoxim-methyl derivatives: Synthesis and herbicidal activities of (pyridinylphenoxymethylene)phenyl methoxyiminoacetates. J. Agric. Food Chem. 2017, 65, 6114–6121. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Wang, W.W.; Du, X.H. Synthesis, crystal structure and herbicidal activity of methyl (E)-α-(methoxyimino)-2-((4-(3-chloro-5-(trifluoromethyl)-pyridine-2-yl)phenoxy)methyl)benzeneacetate. Chin. J. Struct. Chem. 2019, 38, 1123–1128. [Google Scholar]
- Cao, Y.-Y.; Cai, Z.-F.; Zhang, W.-L.; Du, X.-H. Synthesis and herbicidal activity of novel β-methoxyacrylate derivatives containing a substituted phenylpyridine moiety. Chem. Res. Chin. U. 2019, 35, 1008–1011. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Li, Y.; Xiao, Y.; Zhu, L.; Cheng, C.-M.; Liu, Y. Advances in synthesis and application of sulfoxide compounds. Chin. J. Org. Chem. 2011, 31, 925–931. [Google Scholar]
- Horvat, M.; Kodri, G.; Jereb, M.; Iskra, J. One pot synthesis of trifluoromethyl aryl sulfoxides by trifluoromethylthiolation of arenes and subsequent oxidation with hydrogen peroxide. RSC Adv. 2020, 10, 34534–34540. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.-F.; Zhang, W.-L.; Cao, Y.-Y.; Du, X.-H. Synthesis and herbicidal activities of 2-phenylpyridine compounds containing alkenyl moieties. J. Heterocycl. Chem. 2022, 59, 1247–1252. [Google Scholar] [CrossRef]
Compound | Chemical Structure | Dosage/ (g a.i./hm2) | Weed a | ||||||
---|---|---|---|---|---|---|---|---|---|
R1 | R2 | EC | DS | SV | AT | AR | EP | ||
5a | H | H | 150 | 10 ± 2 | 90 ± 5 | 80 ± 3 | 100 ± 0 | 100 ± 0 | 90 ± 2 |
75 | 0 ± 0 | 20 ± 3 | 0 ± 0 | 95 ± 1 | 100 ± 0 | 90 ± 5 | |||
37.5 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 90 ± 3 | 100 ± 0 | 85 ± 4 | |||
5b | H | F | 150 | 0 ± 0 | 50 ± 4 | 30 ± 5 | 60 ± 2 | 70 ± 5 | 85 ± 1 |
5c | H | Cl | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 100 ± 0 | 40 ± 5 |
5d | H | NO2 | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 20 ± 4 | 20 ± 2 | 100 ± 0 |
5e | H | CF3 | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 20 ± 3 | 100 ± 0 |
5f | F | F | 150 | 20 ± 4 | 75 ± 2 | 60 ± 5 | 100 ± 0 | 95 ± 1 | 100 ± 0 |
75 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 100 ± 0 | 100 ± 0 | 95 ± 1 | |||
37.5 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 70 ± 5 | 90 ± 2 | 80 ± 4 | |||
6a | H | H | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 30 ± 1 | 90 ± 4 | 30 ± 3 |
6b | H | F | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 100 ± 0 | 100 ± 0 | 80 ± 5 |
6c | H | Cl | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
6d | H | NO2 | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 80 ± 5 | 0 ± 0 |
6e | H | CF3 | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 80 ± 2 | 0 ± 0 |
6f | F | F | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 90 ± 3 | 80 ± 4 | 30 ± 3 |
7a | H | H | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 90 ± 4 | 85 ± 3 | 80 ± 1 |
7b | H | F | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 20 ± 2 | 95 ± 1 | 70 ± 5 |
7c | H | Cl | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 30 ± 3 | 0 ± 0 |
7d | H | NO2 | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 80 ± 4 | 0 ± 0 |
7e | H | CF3 | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 60 ± 2 | 0 ± 0 |
7f | F | F | 150 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 100 ± 0 | 90 ± 5 | 70 ± 2 |
fomesafen | / | 150 | 68 ± 4 | 76 ± 3 | 78 ± 5 | 98 ± 2 | 100 ± 0 | 76 ± 5 | |
75 | 63 ± 1 | 69 ± 5 | 67 ± 3 | 92 ± 2 | 95 ± 3 | 67 ± 4 | |||
37.5 | 47 ± 3 | 44 ± 2 | 56 ± 4 | 90 ± 1 | 87 ± 5 | 55 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Zhang, W.; Yan, Z.; Du, X. Synthesis of Novel α-Trifluorothioanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. Molecules 2022, 27, 5879. https://doi.org/10.3390/molecules27185879
Cai Z, Zhang W, Yan Z, Du X. Synthesis of Novel α-Trifluorothioanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. Molecules. 2022; 27(18):5879. https://doi.org/10.3390/molecules27185879
Chicago/Turabian StyleCai, Zengfei, Wenliang Zhang, Zhongjie Yan, and Xiaohua Du. 2022. "Synthesis of Novel α-Trifluorothioanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity" Molecules 27, no. 18: 5879. https://doi.org/10.3390/molecules27185879
APA StyleCai, Z., Zhang, W., Yan, Z., & Du, X. (2022). Synthesis of Novel α-Trifluorothioanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. Molecules, 27(18), 5879. https://doi.org/10.3390/molecules27185879