Fluorescent Molecular Logic Gates and Pourbaix Sensors in Polyacrylamide Hydrogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Homogeneous Solution Studies
2.2. Hydrogel Studies
3. Materials and Methods
3.1. Materials
3.2. Hydrogel Synthesis
3.3. Instrumentation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gombert, Y.; Roncoroni, F.; Sánchez-Ferrer, A.; Spencer, N.D. The hierarchical bulk molecular structure of poly(acrylamide) hydrogels: Beyond the fishing net. Soft Matter 2020, 16, 978–9798. [Google Scholar] [CrossRef] [PubMed]
- Kopeček, J. Hydrogel Biomaterials: A Smart Future? Biomaterials 2007, 56, 1078–1098. [Google Scholar] [CrossRef] [PubMed]
- Sennakesavan, G.; Mostakhdemin, M.; Dkhar, L.K.; Seyfoddin, A.; Fatihhi, S.J. Acrylic acid/acrylamide based hydrogels and its properties—A review. Polym. Degrad. Stab. 2020, 180, 109308. [Google Scholar] [CrossRef]
- Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Shi, Q.; Jackowski, G. Gel Electrophoresis of Proteins: A Practical Approach, 3rd ed.; Hames, B.D., Ed.; Oxford University Press: Oxford, UK, 1998; pp. 1–52. [Google Scholar]
- Menter, P. Electrophoresis Tech note 1156, Acrylamide Polymerization—A Practical Approach; BIORAD: Hercules, CA, USA, 2000. [Google Scholar]
- de Silva, A.P. Crossing the Divide: Experiences of taking fluorescent PET (photoinduced electron transfer) sensing/switching systems from solution to solid. Dyes Pigm. 2022, 204, 110453. [Google Scholar] [CrossRef]
- Oshchepkov, A.S.; Oshchepkov, M.S.; Oshchepkova, M.V.; Al-Hamry, A.; Kanoun, O.; Kataev, E.A. Naphthalimide-Based Fluorescent Polymers for Molecular Detection. Adv. Optical Mater. 2021, 9, 2001913. [Google Scholar] [CrossRef]
- Li, Y.; Young, D.J.; Loh, X.J. Fluorescent gels: A review of synthesis, properties, applications and challenges. Mater. Chem. Front. 2019, 3, 1489–1502. [Google Scholar] [CrossRef]
- Kotova, O.; Bradberry, S.J.; Savyasachia, A.J.; Gunnlaugsson, T. Recent advances in the development of luminescent lanthanide-based supramolecular polymers and soft materials. Dalton Trans. 2018, 47, 16377–16387. [Google Scholar] [CrossRef]
- Uchiyama, S. Fluorescent Sensors Based on a Novel Functional Design: Combination of an Environment−sensitive Fluorophore with Polymeric and Self−assembled Architectures. J. Synth. Org. Chem. Jpn. 2019, 64, 116–127. [Google Scholar] [CrossRef]
- Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705. [Google Scholar] [CrossRef] [Green Version]
- McCoy, C.P.; Stomeo, F.; Plush, S.E.; Gunnlaugsson, T. Soft Matter pH Sensing: From Luminescent Lanthanide pH Switches in Solution to Sensing in Hydrogels. Chem. Mater. 2006, 18, 4336–4343. [Google Scholar] [CrossRef]
- Whitaker, C.M.; Derouin, E.E.; O’ Connor, M.B.; Whitaker, C.K.; Whitaker, J.A.; Snyder, J.J.; Kaufmann, N.R.; Gillard, A.N.; Reitmayer, A.K. Smart hydrogel sensor for detection of organophosphorus chemical warfare nerve agents J. Macromol. Sci. A. 2017, 54, 40–46. [Google Scholar] [CrossRef]
- Müller, B.J.; Borisov, S.M.; Klimant, I. Red- to NIR-Emitting, BODIPY-Based, K+-Selective Fluoroionophores and Sensing Materials. Adv. Funct. Mater. 2016, 26, 7697–7707. [Google Scholar] [CrossRef]
- Tribuser, L.; Borisov, S.M.; Klimant, I. Tuning the sensitivity of fluoroionophore-based K+ sensors via variation of polymer matrix: A comparative study. Sens. Actuators B. Chem. 2020, 312, 127940. [Google Scholar] [CrossRef]
- Müller, B.J.; Rappitsch, T.; Staudinger, C.; Rüschitz, C.; Borisov, S.M.; Klimant, I. Sodium-Selective Fluoroionophore-Based Optodes for Seawater Salinity Measurement. Anal. Chem. 2017, 89, 7195–7202. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, D.; Klimant, I.; Borisov, S.M. Ultrabright Red-Emitting Photostable Perylene Bisimide Dyes: New Indicators for Ratiometric Sensing of High pH or Carbon Dioxide. Chem. Eur. J. 2018, 24, 10711–10720. [Google Scholar] [CrossRef]
- Staudinger, C.; Strobl, M.; Breininger, J.; Klimant, I.; Borisov, S.M. Fast and stable optical pH sensor materials for oceanographic applications. Sens. Actuators B. Chem. 2019, 282, 204–217. [Google Scholar] [CrossRef]
- Thapa, P.; Byrnes, N.K.; Denisenko, A.A.; Mao, J.X.; McDonald, A.D.; Newhouse, C.A.; Vuong, T.T.; Woodruff, K.; Nam, K.; Nygren, D.R.; et al. Demonstration of Selective Single-Barium Ion Detection with Dry Diazacrown Ether Naphthalimide Turn-on Chemosensors. ACS Sens. 2021, 6, 192–202. [Google Scholar] [CrossRef]
- Bradberry, S.J.; Byrne, J.P.; McCoy, C.P.; Gunnlaugsson, T. Lanthanide luminescent logic gate mimics in soft matter: [H+] and [F-] dual-input device in a polymer gel with potential for selective component release. Chem. Commun. 2015, 51, 16565–16568. [Google Scholar] [CrossRef]
- Saha, A.; Manna, S.; Nandi, A.K. Temperature and pH sensitive photoluminescence of riboflavin-methyl cellulose hydrogel: Towards AND molecular logic gate behaviour. Soft Matter 2009, 5, 3992–3996. [Google Scholar] [CrossRef]
- de Silva, A.P. Molecular Logic-Based Computation; The Royal Society of Chemistry: Cambridge, UK, 2013. [Google Scholar]
- Johnson, A.D.; Zammit, R.; Vella, J.; Valentino, M.; Buhagiar, J.A.; Magri, D.C. Aminonaphthalimide hybrids of mitoxantrone as anticancer and fluorescent cellular imaging agents. Biorg. Chem. 2019, 39, 103287. [Google Scholar] [CrossRef]
- Diacono, A.; Aquilina, M.C.; Calleja, A.; Agius, G.; Gauci, G.; Szaciłowski, K.; Magri, D.C. Enhanced ion binding by the benzocrown receptor and a carbonyl of the aminonaphthalimide fluorophore in water-soluble logic gates. Org. Biomol. Chem. 2020, 18, 4773–4782. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, T.J.; Magri, D.C. ‘Pourbaix sensors’: A new class of fluorescent pE–pH molecular AND logic gates based on photoinduced electron transfer. New J. Chem. 2013, 37, 148–151. [Google Scholar] [CrossRef]
- Spiteri, J.C.; Schembri, J.S.; Magri, D.C. A naphthalimide-based ‘Pourbaix sensor’: A redox and pH driven AND logic gate with photoinduced electron transfer and internal charge transfer mechanisms. New J. Chem. 2015, 39, 3349–3352. [Google Scholar] [CrossRef]
- Magri, D.C. ‘Pourbaix sensors’: Fluorescent molecular logic gates for pE and pH. Supramol. Chem. 2017, 32, 13–22. [Google Scholar] [CrossRef]
- Scerri, G.J.; Cini, M.; Schembri, J.S.; da Costa, P.F.; Johnson, A.D.; Magri, D.C. Redox-Enabled, pH-Disabled Pyrazoline–Ferrocene INHIBIT Logic Gates. ChemPhysChem 2017, 18, 1742–1745. [Google Scholar] [CrossRef]
- Zerafa, N.; Cini, M.; Magri, D.C. Molecular engineering of 1,3,5-triaryl-2-pyrazoline fluorescent logic systems responsive to acidity and oxidisability and attachment to polymer beads. Mol. Syst. Des. Eng. 2021, 6, 93–99. [Google Scholar] [CrossRef]
- Nandhikonda, P.; Begaye, M.P.; Heagy, M.D. Highly water-soluble, OFF-ON, dual fluorescent probes for sodium and potassium ions. Tetrahedron Lett. 2009, 50, 2459–2461. [Google Scholar] [CrossRef]
- Tomoyuki, O.E.; Morita, M.; Toyo’oka, T. A Novel Bi-Functional Fluorescent Probe for Hydrophobicity and Alkali Metal Ions. Anal. Sci. 1999, 15, 1021–1024. [Google Scholar] [CrossRef]
- Chapin, B.M.; Metola, P.; Vankayala, S.L.; Woodcock, H.L.; Mooibroek, T.J.; Lynch, V.M.; Larkin, J.D.; Anslyn, E.V. Disaggregation is a Mechanism for Emission Turn-On of ortho-Aminomethylphenylboronic Acid-Based Saccharide Sensors. J. Am. Chem. Soc. 2017, 139, 5568–5578. [Google Scholar] [CrossRef]
- Datta, A.; Das, S.; Mandal, D.; Pal, S.K.; Bhattacharyya, K. Fluorescence Monitoring of Polyacrylamide Hydrogel Using 4-Aminophthalimide. Langmuir 1997, 13, 6922–6926. [Google Scholar] [CrossRef]
- White, M.L. The Permeability of an Acrylamide Polymer Gel. Phys. Chem. 1960, 64, 1563–1565. [Google Scholar] [CrossRef]
- Chrambach, A.; Rodbard, D. Polyacrylamide Gel Electrophoresis. Science 1971, 172, 440–451. [Google Scholar] [CrossRef]
- Raymond, S.; Nakamichi, M. Electrophoresis in synthetic gels. I. Relation of gel structure to resolution. Anal. Biochem. 1962, 3, 23–30. [Google Scholar] [CrossRef]
Parameters | 1 a | 2 a | 3 a | 4 b | 5 b | 6 c |
---|---|---|---|---|---|---|
λAbs (pH 4)/nm | 434 | 433 | 387 | 345 | 386 | 349 |
λFlu (pH 4)/nm | 540 | 538 | 538 | 406 | 526 | 395 |
ΦFmax | 0.47 | 0.58 | 0.50 | 0.02 | 0.086 | 0.018 |
pKa*, pβH+* | 9.3 | 9.0 | 9.0 | − | 6.6 | 7.8 d |
Input1 b (H+) | Input2 c (S2O82−) | Output 5 (Φf) | Output 6 (Φf) |
---|---|---|---|
0 | 0 | 0 (0.001) | 0 (0.0002) |
1 | 0 | 0 (0.006) | 0 (0.0101) |
0 | 1 | 0 (0.001) | 0 (0.0011) |
1 | 1 | 1 (0.391) | 1 (0.0834) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scerri, G.J.; Caruana, M.; Agius, N.; Agius, G.; Farrugia, T.J.; Spiteri, J.C.; Johnson, A.D.; Magri, D.C. Fluorescent Molecular Logic Gates and Pourbaix Sensors in Polyacrylamide Hydrogels. Molecules 2022, 27, 5939. https://doi.org/10.3390/molecules27185939
Scerri GJ, Caruana M, Agius N, Agius G, Farrugia TJ, Spiteri JC, Johnson AD, Magri DC. Fluorescent Molecular Logic Gates and Pourbaix Sensors in Polyacrylamide Hydrogels. Molecules. 2022; 27(18):5939. https://doi.org/10.3390/molecules27185939
Chicago/Turabian StyleScerri, Glenn J., Melchior Caruana, Nicola’ Agius, Godfrey Agius, Thomas J. Farrugia, Jake C. Spiteri, Alex D. Johnson, and David C. Magri. 2022. "Fluorescent Molecular Logic Gates and Pourbaix Sensors in Polyacrylamide Hydrogels" Molecules 27, no. 18: 5939. https://doi.org/10.3390/molecules27185939
APA StyleScerri, G. J., Caruana, M., Agius, N., Agius, G., Farrugia, T. J., Spiteri, J. C., Johnson, A. D., & Magri, D. C. (2022). Fluorescent Molecular Logic Gates and Pourbaix Sensors in Polyacrylamide Hydrogels. Molecules, 27(18), 5939. https://doi.org/10.3390/molecules27185939