Rapid Identification of Wild Gentiana Genus in Different Geographical Locations Based on FT-IR and an Improved Neural Network Structure Double-Net
Abstract
:1. Introduction
2. Results
2.1. Results of Data Pre-Processing
2.1.1. Pre-Processing Results for FT-IR Spectroscopy
2.1.2. Results of PCA Processing
2.2. Macroscopic Chemistry Components in IR Spectra
2.3. Dataset Description
2.4. Models Verification
2.4.1. Machine Learning Models
2.4.2. BP Neural Network
2.4.3. Double-Net
3. Discussion
4. Materials and Methods
4.1. Samples Preparation
4.2. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis
4.3. Data Pre-Processing
4.3.1. Raw Spectrum and Its Processing
4.3.2. Exploratory Analysis of PCA
4.4. Models
4.4.1. Machine Learning Models
4.4.2. BP Neural Networks
4.4.3. Improved Neural Network Structure (Double-Net)
4.5. Evaluation of the Model Performance
4.6. Software
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, M.; Cui, B.W.; Wu, Y.L.; Nan, J.X.; Lian, L.H. Genus Gentiana: A review on phytochemistry, pharmacology and molecular mechanism. J. Ethnopharmacol. 2021, 264, 113391. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Li, H.; Wu, X.; Zhao, H.; Wang, R.; Li, M.; Liu, J.; Liu, Q.; Wang, R.; Li, X. Hepatoprotective effect of gentiopicroside in combination with leflunomide and/or methotrexate in arthritic rats. Life Sci. 2021, 265, 118689. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Sun, X.; Lin, Z.; Yang, Y.; Zhang, M.; Xu, Z.; Liu, P.; Liu, Z.; Huang, H. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharm. Sin. B 2022, 12, 2887–2904. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Ma, H.; Zhang, T.; Wang, L.; Cui, J.; Zha, Y.; Ding, Y.; Wang, J. Gentiopicroside attenuates collagen-induced arthritis in mice via modulating the CD147/p38/NF-κB pathway. Int. Immunopharmacol. 2022, 108, 108854. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Fang, D.; Huang, C.; Zhao, L.; Gan, L.; Chen, Y.; Liu, F. Gentiana scabra Restrains Hepatic Pro-Inflammatory Macrophages to Ameliorate Non-Alcoholic Fatty Liver Disease. Front. Pharmacol. 2022, 12, 816032. [Google Scholar] [CrossRef]
- Xiong, X.J.; Yang, X.C.; Liu, W.; Duan, L.; Wang, P.Q.; You, H.; Li, X.K.; Wang, S. Therapeutic Efficacy and Safety of Traditional Chinese Medicine Classic Herbal Formula Longdanxiegan Decoction for Hypertension: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2018, 9, 466. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Koryakina, L.P.; Vladimirov, L.N. Bitter Gentian Teas: Nutritional and Phytochemical Profiles, Polysaccharide Characterisation and Bioactivity. Molecules 2015, 20, 20014–20030. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Su, T.; Zhang, J. Antioxidant and immunological activities of polysaccharides from Gentiana scabra Bunge roots. Carbohydr. Polym. 2014, 112, 114–118. [Google Scholar] [CrossRef]
- Guedes, L.; Reis, P.B.P.S.; Machuqueiro, M.; Ressaissi, A.; Pacheco, R.; Serralheiro, M.L. Bioactivities of Centaurium erythraea (Gentianaceae) Decoctions: Antioxidant Activity, Enzyme Inhibition and Docking Studies. Molecules 2019, 24, 3795. [Google Scholar] [CrossRef]
- Dai, W.; Yang, Y.; Patch, H.M.; Grozinger, C.M.; Mu, J. Soil moisture affects plant-pollinator interactions in an annual flowering plant. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210423. [Google Scholar] [CrossRef]
- Hou, Q.Z.; Ur Rahman, N.; Ali, A.; Wang, Y.P.; Shah, S.; Nurbiye, E.; Shao, W.J.; Ilyas, M.; Sun, K.; Li, R.; et al. Range expansion decreases the reproductive fitness of Gentiana officinalis (Gentianaceae). Sci. Rep. 2022, 12, 2461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.Z.; Gao, H.K.; Zuo, Z.T.; Yang, S.B.; Cai, C.T. Different strategies in biomass allocation across elevation in two Gentiana plants on the Yunnan-Guizhou Plateau, China. J. Mt. Sci. 2020, 17, 2750–2757. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, Y.; Zhang, J.; Wang, Y. Quality Assessment of Gentiana rigescens from Different Geographical Origins Using FT-IR Spectroscopy Combined with HPLC. Molecules 2017, 22, 1238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Jiang, D.; Yang, M.; Ma, T.; Ding, F.; Hao, M.; Chen, Y.; Zhang, C.; Zhang, X.; Li, M. Influence of the Environment on the Distribution and Quality of Gentiana dahurica Fisch. Front. Plant Sci. 2021, 12, 706822. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Nemoto, K.; Nishizaki, Y.; Sugimoto, N.; Tasaki, K.; Watanabe, A.; Goto, F.; Higuchi, A.; Morgan, E.; Hikage, T.; et al. Identification and characterization of xanthone biosynthetic genes contributing to the vivid red coloration of red-flowered gentian. Plant J. 2021, 107, 1711–1723. [Google Scholar] [CrossRef]
- Pan, Z.; Xiong, F.; Chen, Y.-L.; Wan, G.-G.; Zhang, Y.; Chen, Z.-W.; Cao, W.-F.; Zhou, G.-Y.J.M. Traceability of geographical origin in Gentiana straminea by UPLC-Q exactive mass and multivariate analyses. Molecules 2019, 24, 4478. [Google Scholar] [CrossRef]
- Khalil, A.; Kashif, M. Nuclear Magnetic Resonance Spectroscopy for Quantitative Analysis: A Review for Its Application in the Chemical, Pharmaceutical and Medicinal Domains. Crit. Rev. Anal. Chem. 2021, 1–15. [Google Scholar] [CrossRef]
- Wu, X.M.; Zhang, Q.Z.; Wang, Y.Z. Traceability of wild Paris polyphylla Smith var. yunnanensis based on data fusion strategy of FT-MIR and UV-Vis combined with SVM and random forest. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 205, 479–488. [Google Scholar] [CrossRef]
- Yao, S.; Li, T.; Li, J.; Liu, H.; Wang, Y. Geographic identification of Boletus mushrooms by data fusion of FT-IR and UV spectroscopies combined with multivariate statistical analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 198, 257–263. [Google Scholar] [CrossRef]
- Mousa, M.A.A.; Wang, Y.; Antora, S.A.; Al-Qurashi, A.D.; Ibrahim, O.H.M.; He, H.J.; Liu, S.; Kamruzzaman, M. An overview of recent advances and applications of FT-IR spectroscopy for quality, authenticity, and adulteration detection in edible oils. Crit. Rev. Food Sci. Nutr. 2021, 1–19. [Google Scholar] [CrossRef]
- Zareef, M.; Arslan, M.; Mehedi Hassan, M.; Ali, S.; Ouyang, Q.; Li, H.; Wu, X.; Muhammad Hashim, M.; Javaria, S.; Chen, Q. Application of benchtop NIR spectroscopy coupled with multivariate analysis for rapid prediction of antioxidant properties of walnut (Juglans regia). Food Chem. 2021, 359, 129928. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, T.; Wu, L.; Zuo, Z.; Wang, Y. I Identification of Gentiana rigescens from different geographical origins based on HPLC and FTIR fingerprints. Anal. Methods 2020, 12, 2260–2271. [Google Scholar] [CrossRef]
- Pei, Y.F.; Zuo, Z.T.; Zhang, Q.Z.; Wang, Y.Z. Data Fusion of Fourier Transform Mid-Infrared (MIR) and Near-Infrared (NIR) Spectroscopies to Identify Geographical Origin of Wild Paris polyphylla var. yunnanensis. Molecules 2019, 24, 2559. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Li, W.J.; Qin, H.; Li, H.G.; Ning, X. Research on identifying maize haploid seeds using near infrared spectroscopy based on kernel locality preserving projection. Spectrosc. Spect. Anal. 2019, 39, 2574–2577. [Google Scholar] [CrossRef]
- Liu, W.J.; Li, W.J.; Li, H.G.; Qin, H.; Xin, N. Research on the method of identifying maize haploid based on KPCA and near infrared. Spectrosc. Spect. Anal. 2017, 37, 2024–2027. [Google Scholar] [CrossRef]
- Hillel, T.; Bierlaire, M.; Elshafie, M.Z.; Jin, Y. A systematic review of machine learning classification methodologies for modelling passenger mode choice. J. Choice Modell. 2021, 38, 100221. [Google Scholar] [CrossRef]
- Ding, S.; Li, H.; Su, C.; Yu, J.; Jin, F. Evolutionary artificial neural networks: A review. Artif. Intell. Rev. 2013, 39, 251–260. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep cybersecurity: A comprehensive overview from neural network and deep learning perspective. SN Comput. Sci. 2021, 2, 1–16. [Google Scholar] [CrossRef]
- Mutlu, A.C.; Boyaci, I.H.; Genis, H.E.; Ozturk, R.; Basaran-Akgul, N.; Sanal, T.; Evlice, A.K. Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks. Eur. Food Res. Technol. 2011, 233, 267–274. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F.R. Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms. J. Sci. Food Agric. 2018, 98, 618–627. [Google Scholar] [CrossRef]
- Qie, X.; Kang, C.; Zong, G.; Chen, S. Trajectory Planning and Simulation Study of Redundant Robotic Arm for Upper Limb Rehabilitation Based on Back Propagation Neural Network and Genetic Algorithm. Sensors 2022, 22, 4071. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yan, M.; Zhu, F.; Xu, J.; Li, H.; Sun, X. Fatigue Driving Detection Method Based on Combination of BP Neural Network and Time Cumulative Effect. Sensors 2022, 22, 4717. [Google Scholar] [CrossRef] [PubMed]
- Zojaji, I.; Esfandiarian, A.; Taheri-Shakib, J. Toward molecular characterization of asphaltene from different origins under different conditions by means of FT-IR spectroscopy. Adv. Colloid Interface Sci. 2021, 289, 102314. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zuo, Z.T.; Xu, F.R.; Wang, Y.Z. Study on Quality Response to Environmental Factors and Geographical Traceability of Wild Gentiana rigescens Franch. Front. Plant Sci. 2020, 11, 1128. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation Functions in Deep Learning: A comprehensive Survey and Benchmark. Neurocomputing 2022, 503, 92–108. [Google Scholar] [CrossRef]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. Trac-Trend Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Shao, X.; Zhuang, Y. Determination of chlorogenic acid in plant samples by using near-infrared spectrum with wavelet transform preprocessing. Anal. Sci. 2004, 20, 451–454. [Google Scholar] [CrossRef]
- Soofi, A.A.; Awan, A. Classification techniques in machine learning: Applications and issues. J. Basic Appl. Sci. 2017, 13, 459–465. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Durbin, R.; Golden, R.; Chauvin, Y. Backpropagation: The basic theory. In Backpropagation: Theory, Architectures and Applications; Chauvin, Y., Rumelhart, D.E., Eds.; Lawrence Brlbaum Associates: Hillsdale, NJ, USA, 1995; pp. 1–34. [Google Scholar]
- Chopra, S.; Hadsell, R.; LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 539–546. [Google Scholar]
Model | Decision Tree | Naive Bayes | SVM | BP Neural Network | Double-Net (Ours) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Evaluation Metrics | Acc | F1_Score | Acc | F1_Score | Acc | F1_Score | Acc | F1_Score | Acc | F1_Score |
NO_OP | 80.00% | 0.80 | 86.67% | 0.84 | 82.20% | 0.75 | 95.56% | 0.94 | 97.78% | 0.97 |
Norm | 82.22% | 0.79 | 84.44% | 0.85 | 88.90% | 0.86 | 95.56% | 0.93 | 95.56% | 0.94 |
SG | 77.78% | 0.78 | 86.67% | 0.84 | 82.20% | 0.75 | 95.56% | 0.94 | 100.00% | 1.00 |
MC | 80.00% | 0.81 | 88.89% | 0.88 | 84.40% | 0.76 | 95.56% | 0.95 | 95.56% | 0.92 |
WT | 80.00% | 0.78 | 82.22% | 0.81 | 82.20% | 0.75 | 95.56% | 0.95 | 95.56% | 0.94 |
MSC | 75.56% | 0.75 | 88.89% | 0.91 | 82.20% | 0.81 | 55.56% | 0.38 | 95.56% | 0.96 |
SNV | 77.78% | 0.76 | 84.44% | 0.87 | 91.10% | 0.88 | 97.78% | 0.97 | 100.00% | 1.00 |
Norm + SG | 80.00% | 0.75 | 84.44% | 0.85 | 88.90% | 0.86 | 95.56% | 0.93 | 95.56% | 0.94 |
Norm + MC | 82.22% | 0.78 | 88.89% | 0.86 | 88.90% | 0.86 | 91.11% | 0.87 | 95.60% | 0.94 |
Norm + WT | 84.44% | 0.81 | 84.44% | 0.85 | 88.90% | 0.86 | 97.78% | 0.97 | 100.00% | 1.00 |
Norm + MSC | 26.67% | 0.06 | 64.44% | 0.61 | 26.70% | 0.06 | 26.67% | 0.06 | 95.60% | 0.91 |
Norm + SNV | 64.44% | 0.59 | 88.89% | 0.87 | 91.10% | 0.91 | 93.33% | 0.91 | 100.00% | 1.00 |
SG + MC | 77.78% | 0.81 | 88.89% | 0.88 | 84.40% | 0.76 | 97.78% | 0.97 | 97.78% | 0.97 |
SG + WT | 77.78% | 0.76 | 82.22% | 0.81 | 82.20% | 0.75 | 95.56% | 0.94 | 100.00% | 1.00 |
SG + MSC | 77.78% | 0.77 | 88.89% | 0.91 | 82.20% | 0.81 | 73.33% | 0.65 | 97.78% | 0.97 |
SG + SNV | 80.00% | 0.78 | 84.44% | 0.87 | 91.10% | 0.88 | 95.56% | 0.96 | 95.56% | 0.96 |
MC + WT | 71.11% | 0.70 | 91.10% | 0.88 | 82.20% | 0.73 | 95.56% | 0.94 | 95.60% | 0.94 |
MC + MSC | 75.56% | 0.75 | 88.89% | 0.91 | 82.20% | 0.81 | 26.67% | 0.06 | 95.56% | 0.95 |
MC + SNV | 80.00% | 0.78 | 84.44% | 0.87 | 91.10% | 0.88 | 95.56% | 0.96 | 100.00% | 1.00 |
WT + MSC | 71.11% | 0.67 | 88.89% | 0.92 | 82.20% | 0.81 | 73.33% | 0.67 | 100.00% | 1.00 |
WT + SNV | 75.56% | 0.70 | 84.44% | 0.89 | 93.30% | 0.91 | 93.33% | 0.94 | 100.00% | 1.00 |
MSC + SNV | 80.00% | 0.79 | 84.44% | 0.87 | 91.10% | 0.88 | 97.78% | 0.97 | 95.60% | 0.96 |
Max | 84.44% | 0.81 | 91.10% | 0.92 | 93.30% | 0.91 | 97.78% | 0.97 | 100.00% | 1.00 |
Min | 26.67% | 0.06 | 64.44% | 0.61 | 26.70% | 0.06 | 26.67% | 0.06 | 95.56% | 0.91 |
Avg | 75.35% | 0.72 | 85.45% | 0.86 | 83.62% | 0.79 | 85.46% | 0.81 | 97.48% | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, P.; Li, X.; Wu, X.; Diao, Y.; Liu, Y.; Liu, P. Rapid Identification of Wild Gentiana Genus in Different Geographical Locations Based on FT-IR and an Improved Neural Network Structure Double-Net. Molecules 2022, 27, 5979. https://doi.org/10.3390/molecules27185979
Zeng P, Li X, Wu X, Diao Y, Liu Y, Liu P. Rapid Identification of Wild Gentiana Genus in Different Geographical Locations Based on FT-IR and an Improved Neural Network Structure Double-Net. Molecules. 2022; 27(18):5979. https://doi.org/10.3390/molecules27185979
Chicago/Turabian StyleZeng, Pan, Xiaokun Li, Xunxun Wu, Yong Diao, Yao Liu, and Peizhong Liu. 2022. "Rapid Identification of Wild Gentiana Genus in Different Geographical Locations Based on FT-IR and an Improved Neural Network Structure Double-Net" Molecules 27, no. 18: 5979. https://doi.org/10.3390/molecules27185979
APA StyleZeng, P., Li, X., Wu, X., Diao, Y., Liu, Y., & Liu, P. (2022). Rapid Identification of Wild Gentiana Genus in Different Geographical Locations Based on FT-IR and an Improved Neural Network Structure Double-Net. Molecules, 27(18), 5979. https://doi.org/10.3390/molecules27185979