Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties
Abstract
:1. Introduction
2. Traditional and Agronomic Uses of Brassica Seeds
3. Functional Ingredients of Brassica Genus Seeds
3.1. Edible Oil Profile
3.2. Proteins, Minerals, and Secondary Metabolites
Chemical Composition | Species | Subspecies/var | Sample Analyzed | Extracting Solvent | Content | Reference |
---|---|---|---|---|---|---|
Volatile oil | B. nigra | Seeds | H2O | 25.13% (w/w) | [64] | |
Fat | B. juncea | Seed meal | nf | 2.8% (w/w) | [50] | |
B. napus | Canola | Seed meal | nf | 2.9% (w/w) | ||
Protein | B. nigra | Seeds | nf | 24.70% (w/w) | [64] | |
B. oleracea | italica cv. Legacy | Seeds | nf | 27.29% (w/w) | [36] | |
B. rapa L. | Rapa Catozza Napoletana (RCN) | Seed meal | nf | 38.2% (w/w) | [51] | |
B. carinata | Defatted cake | nf | 24.6 to 35.4% (w/w) | [74] | ||
B. juncea | Canola | Seed meal | nf | 47.4% (w/w) | [75] | |
Seed meal | nf | 41.7% (w/w) | [50] | |||
B. napus | Canola | Seed meal | nf | 41.5% (w/w) | ||
Seed meal | nf | 48.6, 49.8% (w/w) | [39,75] | |||
B. hirta | Seeds | H2O | 0.77% (w/w) | [76] | ||
B. campestris | Wild meal | nf | 26% (w/w) | [67] | ||
Dehulled, defatted meal | nf | 48% (w/w) | ||||
Carbohydrates | B. nigra | Seeds | nf | 35.40% (w/w) | [64] | |
B. oleracea | italica cv. Legacy | Seeds | nf | 58.89% (w/w) | [36] | |
Dietary fiber | B. juncea | Canola | Seed meal | nf | 25.8% (w/w) | [75] |
Seed meal | nf | 27.7% (w/w) | [50] | |||
B. napus | Canola | Seed meal | nf | 33.8% (w/w) | ||
Seed meal | nf | 26.4%, 24.1% (w/w) | [75] | |||
Crude fiber | B. oleracea | italica cv. Legacy | Seeds | nf | 15.47% (w/w) | [36] |
B. nigra | Seeds | nf | 0.30% (w/w) | [64] | ||
B. campestris | Wild meal | nf | 13.4% (w/w) | [67] | ||
Dehulled and defatted meal | nf | 3.8% (w/w) | ||||
Oligosaccharides | B. napus | Seed meal | nf | 2.1% (w/w) | [39] | |
Glycosides | B. nigra | Seeds | H2O | 20.01% (w/w) | [64] | |
Reducing sugar | B. nigra | Seeds | H2O | 5.56% (w/w) | [64] | |
Starch | B. juncea | Seed meal | nf | 3.4% (w/w) | [50] | |
B. napus | Canola | Seed meal | nf | 1% (w/w) | ||
B. napus | Seed meal | nf | 2.3% (w/w) | [39] | ||
Nonstarch polysaccharides | B. napus | Seed meal | nf | 17.5% (w/w) | ||
Sucrose | B. juncea | Canola | Seed meal | nf | 9.2% (w/w) | [75] |
B. juncea | Seed meal | nf | 6.9% (w/w) | [50] | ||
B. napus | canola | Seed meal | nf | 5.6% (w/w) | ||
B. napus | Seed meal | nf | 7.5%, 10.2% (w/w) | [39,75] | ||
Moisture | B. nigra | Seeds | nf | 4.16% (w/w) | [64] | |
B. campestris | Wild meal | nf | 4.8% (w/w) | [67] | ||
Ash | B. nigra | Seeds | nf | 5.14% (w/w) | [64] | |
B. oleracea | italica cv. Legacy | Seeds | nf | 4.45% (w/w) | [36] | |
B. campestris | Wild meal | nf | 4.4% (w/w) | [67] | ||
Dehulled and defatted meal | nf | 7% (w/w) | ||||
Phosphorus | B. napus | Seed meal | nf | 1.14% (w/w) | [39] | |
Non-phytate phosphorus | B. napus | Seed meal | nf | 0.83% (w/w) | ||
Vitamin E | B. juncea L. | Czern | Seeds | 80% methanol, 20% H2O | 0.08% (w/w) | [62] |
Vitamin C | B. oleracea | italica Green King variety | Seeds | 70% methanol | 0.27% AAE (w/w) | [77] |
α-tocopherol | B. nigra | Seeds | Hexane, ethyl acetate, and methanol | 0.11% (w/v) | [63] | |
B. oleracea L. | var. acephala | Oil | nf | 70% (w/w) | [35] | |
Total phenolic | B. nigra | Cold-press oil | nf | 0.01% GAE (w/v) | [78] | |
B. oleracea | italica cv. Legacy | Seeds | Methanol/water (80:20) | 0.89% GAE (w/w) | [36] | |
italica Green King variety | Seeds | 70% methanol | 1.66% GAE (w/w) | [77] | ||
Seeds | Methanol | 0.39–0.46% GAE (w/w) | [79] | |||
B.rapa L. | RCN seed meal | nf | 1.30% (w/w) | [51] | ||
B. tournefortii | Gouan | Oil | nf | 1.61% GAE (w/w) | [80] | |
Total phenolic | B. carinata | Defatted cake | Methanol | 0.04–0.13% (w/w) | [74] | |
B. hirta | Seeds | H2O | 0.63% (w/w) | [76] | ||
Cold-press oil | nf | 0.02% GAE (w/v) | [78] | |||
B. juncea | Czern | Seeds | 70% ethanol | 2.77% TAE (w/w) | [81] | |
Seeds | nf | 0.12% GAE (w/v) | [65] | |||
Dolsan mustard seeds (DMS) | 50% acetonitrile (ACN) | 40.43% GAE (w/w) | [73] | |||
B. napus | Canola | Seeds | 80% methanol | 46.23% (w/w) | [82] | |
Canola | Defatted oilseed cakes | Methanol/acetone/water (MAW) | 2.11% GAE (w/w) | [83] | ||
Total flavonoid | B. nigra | Seeds | H2O | 6.57% (w/w) | [64] | |
Cold-press oil | nf | 0.002% CE (w/v) | [78] | |||
B. oleracea var. | italica Green King variety | Seeds | 70% methanol | 0.37% CE (w/w) | [77] | |
italica cv. Legacy | Seeds | Methanol/water (80:20) | 3.3% QE (w/w) | [36] | ||
Seeds | Methanol | 0.26–0.40% RE (w/w) | [79] | |||
B. juncea | DMS | 50% ACN | 39.53% QE (w/w) | [73] | ||
Seeds | nf | 2.48% RE (w/w) | [65] | |||
Czern | Seeds | 70% ethanol | 12.68% QE (w/w) | [81] | ||
B. napus | Canola | Seeds | 80% methanol | 7.54% (w/w) | [82] | |
Canola | Defatted oilseed cakes | MAW | 0.04% LUE (w/w) | [83] | ||
B. hirta | Cold-press oil | nf | 0.001% CE (w/v) | [78] | ||
Vanillin | B. juncea | Czem | Seeds | 80% methanol, 20% H2O | 0.21% (w/w) | [62] |
Catechin | 0.42% (w/w) | |||||
Quercetin | 0.01% (w/w) | |||||
Alkaloids | B. nigra | Seeds | H2O | 20.58% (w/w) | [64] | |
B. juncea | Seeds | 10% acetic in ethanol | 2.25% (w/w) | [65] | ||
Tannins | B. nigra | Seeds | H2O | 15.05% (w/w) | [64] | |
B. juncea | Seeds | nf | 7.75% TAE (w/v) | [65] | ||
Saponins | B. nigra | Seeds | H2O | 12.82% (w/w) | [64] | |
B. juncea | Seeds | 80% methanol | 4.25% Diosgenin equivalent (w/w) | [65] | ||
Terpenoids | B. juncea | Seeds | Ethanol | 5.40% (w/w) | ||
Carotenoids | B. nigra | Seeds | Hexane, ethyl acetate, and methanol | 1.51% (w/v) | [63] | |
Glucosinolates | B. oleracea | italica | Sprouts | nf | 0.40% (w/w) | [84] |
italica | Seeds | Aqueous methanol (80% v/v) | 1.01% sinigrin equivalent (w/w) to 2.09% sinigrin equivalent (w/w) | [85] | ||
B. napus | Seed meal | nf | 20.8% (w/w) | [39] | ||
Seeds | Methanol, lead acetate 0,3 M, water | Oilseed group: 2.3% (w/w) Forage group: 4.88% (w/w) | [72] | |||
B. rapa L. | RCN seed meal | nf | 0.6% (w/w) | [51] | ||
B. campestris | Dehulled and defatted meal | nf | 2.3% (w/w) | [67] | ||
Sinigrin | B. juncea L. | Czern | Seeds | 80% methanol, 20% H2O | 0.08% (w/w) | [62] |
B. juncea | DMS | 50% ACN | 5.38% (w/w) | [73] |
3.3. Aqueous, Organic Extracts and Essential Oil Phytochemical Profile
Chemical Composition | Species | Subspecies/var | Sample Analyzed | Extracting Solvent | Separation and Detection Methods | Bioactive Compounds | Reference |
---|---|---|---|---|---|---|---|
Polyphenols | B. nigra | Seeds | UHPLC–MS/MS | 4-hydroxybenzoic acid, caffeic acid, p-coumaric acid, ferulic acid, sinapic acid, and procatechuic acid | [119] | ||
B. oleracea | var. acephala | Oil | GC-FID, MS, HPLC-DAD, HPLC–MS, HPLC fluorescence | 11 polyphenols, 5 flavonoids, and 6 hydroxycinnamic acids | [35] | ||
var. costata | Seeds | H2O | Reverse-phase HPLC-DAD–MS/MS-ESI and HPLC-DAD | 13 phenolic compounds: 2 sinapoylgentiobiose isomers (sinapoylgentiobiose (0.03% (w/w)) and sinapoylgentiobiose isomer (0.03% (w/w))), 3 sinapoylglucose isomers (1-sinapoylglucose isomer (0.04% (w/w)), 1-sinapoylglucose isomer (0.04% (w/w)), and 1-sinapoylglucose (0.07% (w/w))), kaempferol-3 (sinapoyl) sophorotrioside-7-glucoside, sinapoylcholine, kaempferol-3,7-diglucoside-4’-(sinapoyl) glucoside, 3 disinapoylgentiobiose isomers (1,2-disinapoylgentiobiose isomer (0.02% (w/w)), 1,2-disinapoylgentiobiose isomer (0.04% (w/w)), and 1,2-disinapoylgentiobiose (0.10% (w/w))), 1,2,2’-trisinapoylgentiobiose, and 1,2-disinapoylglucose | [103] | ||
B. rapa L. | RCN | Seed meal | 70% methanol | LC–MS | Polyphenols: flavonol and hydroxycinnamic derivatives: K−3−O-(methoxycaffeoyl) sophotrioside−7−O-glc, K−3−O-sophotrioside−7−O-glc, Q−3−O-(coumaroyl) sophoroside −7−O-glc, K−3−O-(sinapoyl) sophotrioside−7−O-glc, I−3−O-(cumaroyl) sophotrioside−7−O-sophoroside, I-3,7−O-di-glc, I−3−O-glc−7−O-sophoroside, caffeoyl derivative, K−3−O-sophoroside, Q−3−O-sophoroside, K−3−O-(feruloyl) sophoroside, Q−3−O-glc, 1,2-disinapoylgentiobioside, 1-sinapoyl-2-feruloylgentiobioside, K−3−O-glc, and I−3−O-glc | [51] | |
B. juncea | Seeds | UHPLC–MS/MS | 4-hydroxybenzoic acid, syringic acid, p-coumaric acid, ferulic acid, sinapic acid (0.02% (w/w), procatechuic acid, and kaempferol | [119] | |||
30% etthanol | LC–MS/MS | Caffeic acid, p-coumaric acid, epigallocatechin gallate, myricetin, apigenin, quercetin-3-O-(caffeoyl)-glucoside, and quercetin | [120] | ||||
B. napus | spring oilseed rape (Napus cv. Drakkar) | Seeds | Hexane–80% aq. methanol | Combination of high-field NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI) | 15 constituents: glucose, kaempferol glycoside esters, gentiobiose,, sinapine (sinapoylcholine), and sinapoylmalate; 1 of the glucose esters (1,6-di-O-sinapoylglucose), 2 kaempferol conjugates [4’-(6-O-sinapoylglucoside)-3,7-di-O-glucoside and 3-O-sophoroside-7-O-(2-O-sinapoylglucoside)], and 2 gentiobiose esters (1-O-caffeoylgentiobiose, and 1,2,6’-tri-O-sinapoylgentiobiose)are new plant products | [121] | |
winter type: Aviso (00), CMB1039 (00), Doublol (00), JetNeuf (0þ) and PR3984 (00) | Seed coat | Methanol/acetone/water/TFA mixture (40:32:28:0.05 v/v/v/v) | LC–ESI-MSn | 13 different flavonoids: (−)-epicatechin, 7 flavonols (quercetin-3-O-glucoside, quercetin-dihexoside, kaempferol-sinapoyl-trihexoside, isorhamnetin-3-O-glucoside, isorhamnetin-dihexoside, isorhamnetin-hexoside-sulfate, and isorhamnetin-sinapoyl-trihexoside), and 5 procyanidins | [90] | ||
Canola | Seeds | 80% methanol | Sephadex LH-20 chromatography | Free phenolic compound: trans-sinapic acid (19.34% (w/w)); sinapic acid derivatives: 1-O-β-D-glucopyranosyl sinapate and 1,2-di-O- sinapoyl-β-D-glucose | [82] | ||
cv.Yang 6 | Seeds | 80% methanol | HPLC-PDA–ESI(−)-MSn/HRMS | Detection of 91 flavonoids and hydroxycinnamic acid derivatives: 6 flavanols and their oligomers, 39 kaempferol derivatives, 5 quercetin derivatives, 11 isorhamnetin derivatives, and 30 hydroxycinnamic acid derivatives | [89] | ||
B. alba | Seeds | UHPLC–MS/MS | 4-hydroxybenzoic acid, apigenin, p-coumaric acid, ferulic acid, and sinapic acid (0.12% (w/w)) | [119] | |||
Glucosinolates | B. oleracea | italica (broccoli) | Seed isothiocyanates (ITCs) | Ethyl acetate | GC–MS | 3-BITC (3-butenyl isothiocyanate) (13.85% (w/w)) and sulforaphane (4.98% (w/w)) | [96] |
Alboglabra (Chinese kale) | 3-BITC (7.76% (w/w)) | ||||||
italica (broccoli) | Seeds | H2O | HPLC | Aliphatic glucosinolates: sinigrin (0–1.94% (w/w)), progoitrin (0–5.51% (w/w)), glucoraphanin (0.12–6.18% (w/w)), gluconapin (0–0.7% (w/w)), glucoerucin, glucoiberin, and glucoiberverin. Indolic glucosinolates: glucobrassicin (0–0.17% (w/w)), and 4-hydroxy-glucobrassicin (0–0.33% (w/w)) | [122] | ||
italica cv. Legacy | Seeds | Dichloromethane (DCM) | HPLC | Sulforaphane (0.36% (w/w)) | [36] | ||
B. rapa L. | Rapa L | Seeds | DCM | GC–MS | Phenylethylbrassinin and 3-phenylpropionitrile | [123] | |
RCN | Seed meal | 70% methanol | LC–MS | (R)-2-Hydroxy-3-butenyl (progoitrin), 4-methylsulfinylbutyl (glucoraphanin), 3-butenyl (gluconapin), 4-hydroxy-3-indolylmethyl (4-hydroxyglucobrassicin), 4-pentenyl (glucobrassicanapin), 3-indolylmethyl (glucobrassicin), and N-methoxy-3-indolylmethy (neoglucobrassicin) | [51] | ||
B. juncea | Seeds | 5% ethyl alcohol | Allyl isothiocyanate (0.48% (w/w)) | [41] | |||
raya | Oil | Ethyl acetate | GC/GC–MS | GSLs hydrolytic products in ethyl acetate oil: allyl isothiocyanate (23% (w/w)), 2-phethyl isothiocyanate (~20% (w/w)), 3-butenyl isothiocyanate (18% (w/w)), 3-(methylthio) propyl isothiocyanate, allyl thiocyanate, and 1-isothiocyanato-3-methyl butane | [97] | ||
DCM | GC/GC–MS | GSLs hydrolytic products: phenethyl isothiocyanate (15.15% (w/w)), 4-pentenyl isothiocyanate (12.548% (w/w)), sec-butyl isothiocyanate, allyl isothiocyanate, and isothiocyanic acid | |||||
Coss and Czern | Seeds | Methanol | 13C-NMR, 1H-NMR | 3 native glucosinolates isolated: p-hydroxybenzyl glucosinolates, newly described in B. juncea seeds, and 2 new compounds 9-(methyl-sulfonyl) nonyl and 8-(methylsulfonyl) octyl glucosinolates | [118] | ||
Seeds | Double-distilled water (ddH2O) | HPLC | 4 aliphatic GLSs: sinigrin, progoitrin, gluconapin, and glucoiberin, 4 indolic GLSs: glucobrassicin, neoglucobrassicin, 4-methoxyglucobrassicin and 4-hydroxy glucobrassicin, and one aromatic GLS: gluconasturtiin; sinigrin is the predominant GLS with 90% of total GLSs, followed by gluconapin | [114] | |||
Seeds | DCM | GC | Glucosinolates breakdown products (GBPs): 5 ITCs: [2-propenyl isothiocyanate, 3-butenyl isothiocyanate, 5-vinyl-1,3-oxazolidine-2-thione, 3-methyl sulfinylpropyl isothiocyanate, and 2-phenylethyl isothiocyanate], 2 CNs: [3-butenenitrile and 4-pentenenitrile], and 3 EPNs: [3,4-epithiobutanenitrile, 4,5-epithiopentanenitrile, and 3-hydroxy-4,5-epithiopentanenitrile]; 2-propenyl isothiocyanate is the predominant individual GBP with 51–98% of total GBPs, followed by 3-butenenitrile, 3,4-epithiobutanenitrile, 3,4-epithiobutanenitrile, and 3-butenyl isothiocyanate. | ||||
B. hirta | Sinapis alba | Seeds | 5% ethyl alcohol | Allyl isothiocyanate (0.15% (w/w)) | [41] | ||
B. campestris | Isothiocyanates (ITCs) | Ethyl acetate | GC–MS | 3-BITC (3-butenyl isothiocyanate) contained (7.76% (w/w)) | [96] | ||
Carotenoids | B. oleracea | var. acephala | Seed oil | GC-FID, MS, HPLC-DAD, HPLC–MS, HPLC fluorescence | 13 carotenoids, with all-elutein as the main component | [35] | |
Amino acids | B. oleracea | italica cv. Legacy | Seeds | Hydrochloric acid | HPLC | Glutamic acid (7.28% (w/w)), asparagine (5.18% (w/w)), serine + histidine (3.42% (w/w)), proline (2.33% (w/w)), threonine (1.88% (w/w)), leucine (1.37% (w/w)), valine (1.03% (w/w)), tyrosine (0.95% (w/w)), phenylalanine (0.87% (w/w)), isoleucine (0.8% (w/w)), glycine (0.74% (w/w)), methionine (0.42% (w/w)), arginine (0.39% (w/w)), and alanine (0.23% (w/w)) | [36] |
Fatty acids | B. nigra | Cold-press oil | GC–MS | Methyl erucate (38.23% (w/w)), 8,11,14-docosatrienoic acid, methyl ester (23.72% (w/w)), 11-eicosenoic acid, methyl ester (15.82% (w/w)), and methyl linoleate (10.13% (w/w)) | [78] | ||
B. hirta | Cold-press oil | GC–MS | Methyl linoleate (68.19% (w/w)), methyl oleate (15.79% (w/w)), and hexadecanoic acid, methyl ester (10.51% (w/w)) | ||||
B. juncea | raya | Oil | Ethyl acetate and DCM | GC/GC–MS | Octadecenoic acid (5.67–23.3% (w/w)), hexaicenoic acid (4.98–20% (w/w)), butanedioic acid (1.6–16% (w/w)), and nonanedioic acid (4.73% (w/w)) | [97] | |
Organic acids | B. oleracea | var. costata | Seeds | H2O | HPLC-UV | 7 organic acids: aconitic (0.02% (w/w)), citric (0.47% (w/w)), ascorbic (0.86% (w/w)), malic + quinic (0.31% (w/w)), shikimic, and fumaric acids | [103] |
Sterols | B. juncea | Seeds | HPLC, GC, 1H-NMR | Sterol, 22-dehydrocampesterol [(24S)24-methylcholesta-5, E-22-dien-3β-ol], newly discovered in higher plants | [124] | ||
Essential oil | B. hirta | Sinapis alba | Essential oil | H2O | GC–MS and GC-FID | 2-methylbutyronitrile, 3-pentenenitrile, hexanal, furfural, 2-furanmethanol, cyclopropyl isothiocyanate, allyl isothiocyanate, isobutyl isothiocyanate, 3-butenyl isothiocyanate, benzene acetaldehyde, 3-methylbutyl isothiocyanate, 3-(methylthio) propyl cyanide, 2-phenylethyl cyanide, and 2-phenethyl isothiocyanate | [105] |
Cold-press oil | GC–MS | Cyclopropanenonanoic acid, 2-[(2-butylcyclopropyl) methyl] -, methyl ester (48.7% (w/w)), and hexadecanoic acid, 1-(hydroxymethyl)-1,2-ethanediyl ester (42. 08% (w/w)) | [78] | ||||
B. oleracea | var. botrytis (L.), Romanesco group | Seed/volatile oil | DCM | GC and GC–MS | Natalino variety: 43 compounds (99.7% (w/w)), contained 10 cyanides (88.1% (w/w)), 10 isothiocyanates (8.8% (w/w)), and 8 aldehydes (1.3% (w/w)) Campid oglio variety: 41 compounds (99.6% (w/w)) contained 10 cyanides (92.3% (w/w)), 10 isothiocyanates (6.2% (w/w)), and 6 aldehydes (0.4% (w/w)) Navona variety: 32 compounds (99.5% (w/w)) contained 9 cyanides (91.0% (w/w)), 6 isothiocyanates (7.5% (w/w)), and 6 aldehydes (0.6% (w/w)) Cyanides: 2-methylpropyl cyanide, but-3-enyl cyanide, 3-methylbutyl cyanide, n-pentyl cyanide, 4-methylpentyl cyanide, n-hexyl cyanide, 3-(methylthio) propyl cyanide, benzyl cyanide, 4-(methylthio) butyl cyanide, and 2-phenylethyl cyanide. Isothiocyanates: allyl thiocyanate, allyl isothiocyanate, 2-methylpropyl isothiocyanate, but-3-enyl isothiocyanate, 3-methylbutyl isothiocyanate, 4-methylpentyl isothiocyanate, 3-(methylthio)propyl isothiocyanate, benzyl isothiocyanate, 4-(methylthio) butyl isothiocyanate, 2-phenylethyl isothiocyanate, and 5-(methylthio) pentyl isothiocyanate Aldehydes: hexanal, furfural; 3-(methylthio) propanal, phenylacetaldehyde, nonanal, non-2(E)-enal, deca-2(E),4(E)-dienal, and syringaldehyde The predominant compounds were cyanides: 4-(methylthio) butyl cyanide (61.3%, 66.3%, and 79.6% (w/w), respectively), 3-(methylthio) propyl cyanide (21.7%, 21.6%, and 10.7% (w/w)), and isothiocyanates: 4-(methylthio) butyl isothiocyanate (5.3%, 4.0%, and 6.7% (w/w)) for the three oils | [125] | |
B. tournefortii | Gouan | Volatile oil | diethyl ether | GC–MS | 14 compounds (76.1% (w/w)): propane, 1-isothiocyanato-3-(methylthio) (24.39% (w/w)), 2-propenal, 3-(2,6,6-trimethyl-1-cyclohexen-1-yl), ionone (1.7% (w/w)), aromadendrene (6.69% (w/w)), 2-pentadecanone,6,10,14-trimethyl, elimicin (1.864% (w/w)), 8,11-octadecanoic acid, methyl ester, α –bisabolol, 1-hexadecanol, hexadecanoic acid, di-2-propenyltetrasulfide (19.803%), n-heneicosane, 12-octadecanoic acid, and n-octadecanoic acid | [126] |
4. Pharmacological Properties of Brassica Genus Seeds
4.1. Antioxidant Activity
4.2. Cytotoxic Activity
4.3. Antimicrobial Activity
4.4. Antidiabetic Activity
4.5. Anti-Inflammatory Activity
4.6. Regulation of Metabolic Syndrome
4.7. Neuroprotective Activity
5. Toxicological Effects of Brassica Seeds
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shankar, S.; Segaran, G.; Sundar, R.D.V.; Settu, S.; Sathiavelu, M. Brassicaceae-A Classical Review on Its Pharmacological Activities. Int. J. Pharm. Sci. Rev. Res. 2019, 55, 107–113. [Google Scholar]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional Ingredients from Brassicaceae Species: Overview and Perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef]
- Peña, M.; Guzmán, A.; Martínez, R.; Mesas, C.; Prados, J.; Porres, J.M.; Melguizo, C. Preventive Effects of Brassicaceae Family for Colon Cancer Prevention: A Focus on in Vitro Studies. Biomed. Pharmacother. 2022, 151, 113145. [Google Scholar] [CrossRef]
- da Mattosinhos, P.S.; Sarandy, M.M.; Novaes, R.D.; Esposito, D.; Gonçalves, R.V. Anti-Inflammatory, Antioxidant, and Skin Regenerative Potential of Secondary Metabolites from Plants of the Brassicaceae Family: A Systematic Review of in Vitro and In Vivo Preclinical Evidence (Biological Activities Brassicaceae Skin Diseases). Antioxidants 2022, 11, 1346. [Google Scholar] [CrossRef]
- El-Esawi, M.A. Taxonomic Relationships and Biochemical Genetic Characterization of Brassica Resources: Towards a Recent Platform for Germplasm Improvement and Utilization. Annu. Res. Rev. Biol. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Butnariu, M.; Sarac, I.; Marmouzi, I.; Kamle, M.; Tripathi, V.; Kumar, P.; Bouyahya, A.; Capanoglu, E. Phytotherapy and Food Applications from Brassica Genus. Phytother. Res. 2021, 35, 3590–3609. [Google Scholar] [CrossRef]
- Dixon, G.R. Origins and Diversity of Brassica and Its Relatives. In Vegetable Brassicas and Related Crucifers; CABI: Wallingford, UK, 2006; pp. 1–33. [Google Scholar] [CrossRef]
- Šamec, D.; Pavlović, I.; Salopek-Sondi, B. White Cabbage (Brassica oleracea Var. Capitata f. Alba): Botanical, Phytochemical and Pharmacological Overview. Phytochem. Rev. 2017, 16, 117–135. [Google Scholar] [CrossRef]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.P.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B. Early Allopolyploid Evolution in the Post-Neolithic Brassica Napus Oilseed Genome. Science 2014, 345, 950–953. [Google Scholar] [CrossRef]
- Nawaz, H.; Shad, M.A.; Muzaffar, S. Phytochemical Composition and Antioxidant Potential of Brassica. Brassica Germplasm Charact. Breed. Util. 2018, 1, 7–26. [Google Scholar]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The Value of Bioactive Compounds of Cruciferous Vegetables (Brassica) as Antimicrobials and Antioxidants: A Review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef]
- De Zoysa, H.K.S.; Waisundara, V.Y. Mustard (Brassica Nigra) Seed. In Oilseeds: Health Attributes and Food Applications; Springer: Berlin, Germany, 2021; pp. 191–210. [Google Scholar] [CrossRef]
- Li, H.; Xia, Y.; Liu, H.-Y.; Guo, H.; He, X.-Q.; Liu, Y.; Wu, D.-T.; Mai, Y.-H.; Li, H.-B.; Zou, L. Nutritional Values, Beneficial Effects, and Food Applications of Broccoli (Brassica oleracea Var. Italica Plenck). Trends. Food Sci. Technol. 2021, 119, 288–308. [Google Scholar] [CrossRef]
- Jan, S.A.; Shinwari, Z.K.; Malik, M.; Ilyas, M. Antioxidant and Anticancer Activities of Brassica Rapa: A Review. MOJ Biol. Med. 2018, 3, 175–178. [Google Scholar]
- Rahman, M.; Khatun, A.; Liu, L.; Barkla, B.J. Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules 2018, 23, 231. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, F. Phytochemistry and Biological Activity of Mustard (Brassica juncea): A Review. CYTA J. Food. 2020, 18, 704–718. [Google Scholar] [CrossRef]
- Rai, P.K.; Yadav, P.; Kumar, A.; Sharma, A.; Kumar, V.; Rai, P. Brassica Juncea: A Crop for Food and Health. In The Brassica juncea Genome; Springer: Berlin, Germany, 2022; pp. 1–13. [Google Scholar]
- Chmielewska, A.; Kozłowska, M.; Rachwał, D.; Wnukowski, P.; Amarowicz, R.; Nebesny, E.; Rosicka-Kaczmarek, J. Canola/Rapeseed Protein–Nutritional Value, Functionality and Food Application: A Review. Crit. Rev. Food Sci. Nut. 2021, 61, 3836–3856. [Google Scholar] [CrossRef]
- Raboanatahiry, N.; Li, H.; Yu, L.; Li, M. Rapeseed (Brassica napus): Processing, Utilization, and Genetic Improvement. Agronomy 2021, 11, 1776. [Google Scholar] [CrossRef]
- USDA-FAS (Foreign Agricultural Service). Oilseeds: World Markets and Trade; Foreign Agricultural Service/USDA: U.S. Department of Agriculture: Washington, DC, USA, 2021; pp. 1–35.
- Food and Agriculture Organization (FAO). FAOSTAT. Statistical Database of the United Nation Food and Agriculture Organization (FAO) Statistical Division; FAO: Rome, Italy, 2021. [Google Scholar]
- Han, J.; Lu, C.; Li, Y.; Deng, Z.; Fu, B.; Geng, Z. Discrimination of Rapeseeds (Brassica napus L.) Based on the Content of Erucic Acid by 1H NMR. Eur. Food Res. Technol. 2016, 242, 441–447. [Google Scholar] [CrossRef]
- Lozano-Baena, M.-D.; Tasset, I.; Obregón-Cano, S.; de Haro-Bailon, A.; Muñoz-Serrano, A.; Alonso-Moraga, Á. Antigenotoxicity and Tumor Growing Inhibition by Leafy Brassica Carinata and Sinigrin. Molecules 2015, 20, 15748–15765. [Google Scholar] [CrossRef]
- Aydin, S. Total Phenolic Content, Antioxidant, Antibacterial and Antifungal Activities, FT-IR Analyses of Brassica oleracea L. Var. Acephala and Ornithogalum umbellatum L. Genetika 2020, 52, 229–244. [Google Scholar] [CrossRef]
- Szőllősi, R. Indian Mustard (Brassica juncea L.) Seeds in Health. Nuts Seeds Health Dis. Prev. 2020, 357–364. [Google Scholar] [CrossRef]
- Kasprzak, M.M.; Houdijk, J.G.M.; Liddell, S.; Davis, K.; Olukosi, O.A.; Kightley, S.; White, G.A.; Wiseman, J. Rapeseed Napin and Cruciferin Are Readily Digested by Poultry. J Anim. Physiol. Anim. Nutr. 2017, 101, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Lakwani, M.A.S.; Kenanoğlu, O.N.; Taştan, Y.; Bilen, S. Effects of Black Mustard (Brassica nigra) Seed Oil on Growth Performance, Digestive Enzyme Activities and Immune Responses in Rainbow Trout (Oncorhynchus mykiss). Aquac. Res. 2022, 53, 300–313. [Google Scholar] [CrossRef]
- Kayacetin, F. Botanical Characteristics, Potential Uses, and Cultivation Possibilities of Mustards in Turkey: A Review. Turk. J. Bot. 2020, 44, 101–127. [Google Scholar]
- Balesh, T.; Zapata, F.; Aune, J.B. Evaluation of Mustard Meal as Organic Fertiliser on Tef (Eragrostis Tef (Zucc) Trotter) under Field and Greenhouse Conditions. Nutr. Cycl. Agroecosyst. 2005, 73, 49–57. [Google Scholar] [CrossRef]
- Monaci, E.; Casucci, C.; De Bernardi, A.; Marini, E.; Landi, L.; Toscano, G.; Romanazzi, G.; Vischetti, C. Brassica carinata Seed Meal as Soil Amendment and Potential Biofumigant. Crops 2022, 2, 233–246. [Google Scholar] [CrossRef]
- Khaliq, B.; Sarwar, H.; Akrem, A.; Azam, M.; Ali, N. Isolation of Napin from Brassica nigra Seeds and Coagulation Activity to Turbid Pond Water. Water Supply 2022, 22, 6050–6058. [Google Scholar] [CrossRef]
- Kowalski, R.; Kowalska, G.; Pankiewicz, U.; Mazurek, A.; Włodarczyk-Stasiak, M.; Sujka, M.; Wyrostek, J. The Effect of an Addition of Marjoram Oil on Stabilization Fatty Acids Profile of Rapeseed Oil. LWT 2019, 109, 225–232. [Google Scholar] [CrossRef]
- Beyzi, E.; Gunes, A.; Beyzi, S.B.; Konca, Y. Changes in Fatty Acid and Mineral Composition of Rapeseed (Brassica napus ssp. Oleifera L.) Oil with Seed Sizes. Ind. Crops Prod. 2019, 129, 10–14. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, R.; Kaur, S. Studies on Physiochemical Properties of Oil Extracted from Brassica Nigra and Brassica Rapa Toria. Mater. Today Proc. 2022, 48, 1645–1651. [Google Scholar] [CrossRef]
- Cacciola, F.; Beccaria, M.; Oteri, M.; Utczas, M.; Giuffrida, D.; Cicero, N.; Dugo, G.; Dugo, P.; Mondello, L. Chemical Characterisation of Old Cabbage (Brassica Oleracea L. Var. Acephala) Seed Oil by Liquid Chromatography and Different Spectroscopic Detection Systems. Nat. Prod. Res. 2016, 30, 1646–1654. [Google Scholar] [CrossRef]
- López-Cervantes, J.; Tirado-Noriega, L.G.; Sánchez-Machado, D.I.; Campas-Baypoli, O.N.; Cantú-Soto, E.U.; Núñez-Gastélum, J.A. Biochemical Composition of Broccoli Seeds and Sprouts at Different Stages of Seedling Development. Int. J. Food Sci. Technol. 2013, 48, 2267–2275. [Google Scholar] [CrossRef]
- Cartea, E.; Haro-Bailón, D.; Padilla, G.; Obregón-Cano, S.; del Rio-Celestino, M.; Ordás, A. Seed Oil Quality of Brassica napus and Brassica rapa Germplasm from Northwestern Spain. Foods 2019, 8, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghdam, A.M.; Sayfzadeh, S.; Rad, A.H.S.; Valadabadi, S.A.; Zakerin, H.R. The Assessment of Water Stress and Delay Cropping on Quantitative and Qualitative Traits of Rapeseed Genotypes. Ind. Crops Prod. 2019, 131, 160–165. [Google Scholar] [CrossRef]
- Slominski, B.A.; Meng, X.; Jia, W.; Nyachoti, M.; Jones, O.; Rakow, G. Chemical Composition and Nutritive Value of Yellow-Seeded Brassica Napus Canola. In Proceedings of the 12th International Rapeseed Congress, Wuhan, China, 26–30 March 2007; pp. 253–255. [Google Scholar]
- Miyazawa, M.; Kawata, J. Identification of the Main Aroma Compounds in Dried Seeds of Brassica hirta. J. Nat. Med. 2006, 60, 89–92. [Google Scholar] [CrossRef]
- Abul-Fadl, M.M.; El-Badry, N.; Ammar, M.S. Nutritional and Chemical Evaluation for Two Different Varieties of Mustard Seeds. World Appl. Sci. J. 2011, 15, 1225–1233. [Google Scholar]
- Stefansson, B.R.; Hougen, F.W. Selection of Rape Plants (Brassica napus) with Seed Oil Practically Free from Erucic Acid. Can. J. Plant Sci. 1964, 44, 359–364. [Google Scholar] [CrossRef]
- Quiñones, J.; Maggiolino, A.; Bravo, S.; Muñoz, E.; Lorenzo, J.M.; Cancino, D.; Díaz, R.; Saenz, C.; Sepúlveda, N.; De Palo, P. Effect of Canola Oil on Meat Quality and Fatty Acid Profile of Araucano Creole Lambs during Fattening Period. Anim. Feed Sci. Technol. 2019, 248, 20–26. [Google Scholar] [CrossRef]
- Mollers, C. Development of High Oleic Acid Oilseed Rape. In Proceedings of the 8th International Conference for Renewable Resources and Plant Biotechnology NAROSSA 2002, Magdeburg, Germany, 10–11 June 2002; pp. 10–11. [Google Scholar]
- Velioglu, S.D.; Temiz, H.T.; Ercioglu, E.; Velioglu, H.M.; Topcu, A.; Boyaci, I.H. Use of Raman Spectroscopy for Determining Erucic Acid Content in Canola Oil. Food Chem. 2017, 221, 87–90. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Sun, X.; Liu, Y. The Mathematical Prediction Model for the Oxidative Stability of Vegetable Oils by the Main Fatty Acids Composition and Thermogravimetric Analysis. LWT 2018, 96, 51–57. [Google Scholar] [CrossRef]
- Amjad Khan, W.; Chun-Mei, H.; Khan, N.; Iqbal, A.; Lyu, S.-W.; Shah, F. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids. Biomed Res. Int. 2017, 2017, 7348919. [Google Scholar] [CrossRef]
- Alejandre, M.; Astiasarán, I.; Ansorena, D.; Barbut, S. Using Canola Oil Hydrogels and Organogels to Reduce Saturated Animal Fat in Meat Batters. Int. Food Res. J. 2019, 122, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Seyyedi, S.M.; Afshari, R.T.; Daneshmandi, M.S. The Relationships between Fatty Acids and Heterotrophic Seedling Growth in Winter Canola Cultivars during Accelerated Seed Aging Process. S. Afr. J. Bot. 2018, 119, 353–361. [Google Scholar] [CrossRef]
- Radfar, M.; Rogiewicz, A.; Slominski, B.A. Chemical Composition and Nutritive Value of Canola-Quality Brassica juncea Meal for Poultry and the Effect of Enzyme Supplementation. Anim. Feed Sci. Technol. 2017, 225, 97–108. [Google Scholar] [CrossRef]
- Carlo Tenore, G.; Troisi, J.; Di Fiore, R.; Basile, A.; Novellino, E. Chemical Composition, Antioxidant and Antimicrobial Properties of Rapa Catozza Napoletana (Brassica Rapa L. Var. Rapa DC.) Seed Meal, a Promising Protein Source of Campania Region (Southern Italy) Horticultural Germplasm. J. Sci. Food Agric. 2012, 92, 1716–1724. [Google Scholar] [CrossRef] [PubMed]
- Wanasundara, J.P.D.; McIntosh, T.C.; Perera, S.P.; Withana-Gamage, T.S.; Mitra, P. Canola/Rapeseed Protein-Functionality and Nutrition. OCl 2016, 23, D407. [Google Scholar] [CrossRef]
- Hossain, Z.; Johnson, E.N.; Wang, L.; Blackshaw, R.E.; Gan, Y. Comparative Analysis of Oil and Protein Content and Seed Yield of Five Brassicaceae Oilseeds on the Canadian Prairie. Ind. Crops Prod. 2019, 136, 77–86. [Google Scholar] [CrossRef]
- Slabas, A.R.; Harding, J.; Hellyer, A.; Roberts, P.; Bambridge, H.E. Induction, Purification and Characterization of Acyl Carrier Protein from Developing Seeds of Oil Seed Rape (Brassica napus). Biochim. Biophys. Acta Lipids Lipid Metab. 1987, 921, 50–59. [Google Scholar] [CrossRef]
- Kania, J.; Gillner, D.M. Characterisation of the Aminopeptidase from Non-Germinated Winter Rape (Brassica napus L.) Seeds. Food Chem. 2016, 207, 180–186. [Google Scholar] [CrossRef]
- Ascenzi, P.; Ruoppolo, M.; Amoresano, A.; Pucci, P.; Consonni, R.; Zetta, L.; Pascarella, S.; Bortolotti, F.; Menegatti, E. Characterization of Low-molecular-mass Trypsin Isoinhibitors from Oil-rape (Brassica napus Var. Oleifera) Seed. Eur. J. Biochem. 1999, 261, 275–284. [Google Scholar] [CrossRef]
- Wanasundara, J.P.D. Proteins of Brassicaceae Oilseeds and Their Potential as a Plant Protein Source. Crit. Rev. Food Sci. Nutr. 2011, 51, 635–677. [Google Scholar] [CrossRef]
- Wanasundara, J.P.D.; Abeysekara, S.J.; McIntosh, T.C.; Falk, K.C. Solubility Differences of Major Storage Proteins of Brassicaceae Oilseeds. J. Am. Oil Chem. Soc. 2012, 89, 869–881. [Google Scholar] [CrossRef]
- Rahman, M.; Baten, A.; Mauleon, R.; King, G.J.; Liu, L.; Barkla, B.J. Identification, Characterization and Epitope Mapping of Proteins Encoded by Putative Allergenic Napin Genes from Brassica Rapa. Clin. Exp. Allergy. 2020, 50, 848–868. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Guo, Q.; Baten, A.; Mauleon, R.; Khatun, A.; Liu, L.; Barkla, B.J. Shotgun Proteomics of Brassica Rapa Seed Proteins Identifies Vicilin as a Major Seed Storage Protein in the Mature Seed. PLoS ONE 2021, 16, e0253384. [Google Scholar] [CrossRef]
- Sirvent, S.; Palomares, O.; Vereda, A.; Villalba, M.; Cuesta-Herranz, J.; Rodríguez, R. NsLTP and Profilin Are Allergens in Mustard Seeds: Cloning, Sequencing and Recombinant Production of Sin a 3 and Sin a 4. Clin. Exp. Allergy 2009, 39, 1929–1936. [Google Scholar] [CrossRef]
- Parikh, H.; Pandita, N.; Khanna, A. Phytoextract of Indian Mustard Seeds Acts by Suppressing the Generation of ROS against Acetaminophen-Induced Hepatotoxicity in HepG2 Cells. Pharm. Biol. 2015, 53, 975–984. [Google Scholar] [CrossRef]
- Syafiqah, N.; Asnuzilawati, A.; Syara, K.; AW, N.H.; Norhayati, Y. Preliminary Study of Phytochemical Properties & Antioxidant Activities in Seeds of Trigonella Foenum-Graecum, Brassica Nigra and Salvia Hispanica Species. EAS J. Pharm. Pharmacol. 2019, 1, 38–42. [Google Scholar]
- Danlami, U.; Orishadipe Abayomi, T.; Lawal, D.R. Phytochemical, Nutritional and Antimicrobial Evaluations of the Aqueous Extract of Brassica Nigra (Brassicaceae) Seeds. Am. J. Appl. Chem. 2016, 4, 161. [Google Scholar] [CrossRef]
- Ogidi, O.I.; Omu, O.; Ezeagba, P.A. Ethno Pharmacologically Active Components of Brassica Juncea (Brown Mustard) Seeds. Int. J. Pharm. Res. Dev. 2019, 1, 9–13. [Google Scholar]
- Sontakke, K.S.; Shinde, S.L. Evaluation of the Phytochemical Potential of Brassica junceal Seeds. VIIR J. 2020, 2, 25–29. [Google Scholar]
- ALanís-Guzmán, M.A.; Wesche-Ebeling, P.; Maiti, R. Chemical, Nutritional and Functional Characterization of Proteins Extracted from Wild Mustard (Brassica Campestris, Brassicaceae) Seeds from Nuevo Leon, Mexico. Econ. Bot. 1995, 49, 260–268. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Jo, J.S.; Lee, J.G. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops. Molecules 2015, 20, 15827–15841. [Google Scholar] [CrossRef] [PubMed]
- Hanschen, F.S.; Schreiner, M. Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in Brassica Oleracea Varieties. Front. Plant Sci. 2017, 8, 1095. [Google Scholar] [CrossRef]
- Fusari, C.M.; Nazareno, M.A.; Locatelli, D.A.; Fontana, A.; Beretta, V.; Camargo, A.B. Phytochemical Profile and Functionality of Brassicaceae Species. Food Biosci. 2020, 36, 100606. [Google Scholar] [CrossRef]
- Altendorf, K.; Isbell, T.; Wyse, D.L.; Anderson, J.A. Significant Variation for Seed Oil Content, Fatty Acid Profile, and Seed Weight in Natural Populations of Field Pennycress (Thlaspi Arvense L.). Ind. Crops Prod. 2019, 129, 261–268. [Google Scholar] [CrossRef]
- Velasco, P.; Soengas, P.; Vilar, M.; Cartea, M.E.; del Rio, M. Comparison of Glucosinolate Profiles in Leaf and Seed Tissues of Different Brassica Napus Crops. J. Am. Soc. Hortic. Sci. 2008, 133, 551–558. [Google Scholar] [CrossRef]
- Oh, S.; Kim, K.; Choi, M. Antioxidant Activity of Different Parts of Dolsan Leaf Mustard. Food Sci. Biotechnol. 2016, 25, 1463–1467. [Google Scholar] [CrossRef]
- Abdelazim Mohdaly, A.A.; Ramadan, M.F. Characteristics, Composition and Functional Properties of Seeds, Seed Cake and Seed Oil from Different Brassica Carinata Genotypes. Food Biosci. 2021, 100752. [Google Scholar] [CrossRef]
- Slominski, B.A.; Jia, W.; Rogiewicz, A.; Nyachoti, C.M.; Hickling, D. Low-Fiber Canola. Part 1. Chemical and Nutritive Composition of the Meal. J. Agric. Food Chem. 2012, 60, 12225–12230. [Google Scholar] [CrossRef]
- Krishnaveni, M.; Saranya, S. Secondary metabolites, antioxidant activity, phytonutrient analysis of Nigella sativa and Brassica hirta seeds. Int. J. Pharm. Biol. Sci. 2016, 6, 137–143. [Google Scholar]
- Le, T.N.; Sakulsataporn, N.; Chiu, C.-H.; Hsieh, P.-C. Polyphenolic Profile and Varied Bioactivities of Processed Taiwanese Grown Broccoli: A Comparative Study of Edible and Non-Edible Parts. Pharmaceuticals 2020, 13, 82. [Google Scholar] [CrossRef]
- Olgun, Ç.; Özkan, O.E.; Güney, B.; Pattabanoglu, E.S.; Güney, K.; Gür, M. Chemical Composition and Antimicrobial Activity in Cold Press Oil of Fennel, Anise, White and Black Mustard Seeds. Indian J. Pharm. Educ. Res. 2017, 51, S200–S204. [Google Scholar] [CrossRef]
- Lv, X.; Meng, G.; Li, W.; Fan, D.; Wang, X.; Espinoza-Pinochet, C.A.; Cespedes-Acuña, C.L. Sulforaphane and Its Antioxidative Effects in Broccoli Seeds and Sprouts of Different Cultivars. Food Chem. 2020, 316, 126216. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Bala, M.; Rai, P.K. Fatty Acid Composition and Seed Meal Characteristics of Brassica and Allied Genera. Natl. Acad. Sci. Lett. 2014, 37, 219–226. [Google Scholar] [CrossRef]
- Lee, J.-E.; Kim, A.-J.; Lee, J.-E.; Kim, A.-J. Antioxidant Activity, Whitening and Anti-Wrinkle Effects of Leaf and Seed Extracts of Brassica Juncea L. Czern. Asian J. Beauty. Cosmetol. 2020, 18, 283–295. [Google Scholar] [CrossRef]
- Jun, H.-I.; Wiesenborn, D.P.; Kim, Y.-S. Antioxidant Activity of Phenolic Compounds from Canola (Brassica Napus) Seed. Food Sci. Biotechnol. 2014, 23, 1753–1760. [Google Scholar] [CrossRef]
- Teh, S.-S.; Bekhit, A.E.-D.; Birch, J. Antioxidative Polyphenols from Defatted Oilseed Cakes: Effect of Solvents. Antioxidants 2014, 3, 67–80. [Google Scholar] [CrossRef]
- Villaño, D.; López-Chillón, M.T.; Zafrilla, P.; Moreno, D.A. Bioavailability of Broccoli Sprouts in Different Human Overweight Populations. J. Funct. Foods 2019, 59, 337–344. [Google Scholar] [CrossRef]
- Thomas, M.; Badr, A.; Desjardins, Y.; Gosselin, A.; Angers, P. Characterization of Industrial Broccoli Discards (Brassica Oleracea Var. Italica) for Their Glucosinolate, Polyphenol and Flavonoid Contents Using UPLC MS/MS and Spectrophotometric Methods. Food Chem. 2018, 245, 1204–1211. [Google Scholar] [CrossRef]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2010, 16, 251–280. [Google Scholar] [CrossRef]
- Vallejo, F.; Tomás-Barberán, F.A.; Ferreres, F. Characterisation of Flavonols in Broccoli (Brassica oleracea L. Var. Italica) by Liquid Chromatography–UV Diode-Array Detection–Electrospray Ionisation Mass Spectrometry. J. Chromatogr. A 2004, 1054, 181–193. [Google Scholar] [CrossRef]
- Price, K.R.; Casuscelli, F.; Colquhoun, I.J.; Rhodes, M.J.C. Hydroxycinnamic Acid Esters from Broccoli Florets. Phytochemistry 1997, 45, 1683–1687. [Google Scholar] [CrossRef]
- Shao, Y.; Jiang, J.; Ran, L.; Lu, C.; Wei, C.; Wang, Y. Analysis of Flavonoids and Hydroxycinnamic Acid Derivatives in Rapeseeds (Brassica napus L. Var. Napus) by HPLC-PDA–ESI (−)-MS n/HRMS. J. Agric. Food Chem. 2014, 62, 2935–2945. [Google Scholar] [CrossRef]
- Auger, B.; Marnet, N.; Gautier, V.; Maia-Grondard, A.; Leprince, F.; Renard, M.; Guyot, S.; Nesi, N.; Routaboul, J.-M. A Detailed Survey of Seed Coat Flavonoids in Developing Seeds of Brassica napus L. J. Agric. Food Chem. 2010, 58, 6246–6256. [Google Scholar] [CrossRef] [PubMed]
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate Structural Diversity, Identification, Chemical Synthesis and Metabolism in Plants. Phytochemistry 2020, 169, 112100. [Google Scholar] [CrossRef]
- Pardini, A.; Tamasi, G.; De Rocco, F.; Bonechi, C.; Consumi, M.; Leone, G.; Magnani, A.; Rossi, C. Kinetics of Glucosinolate Hydrolysis by Myrosinase in Brassicaceae Tissues: A High-Performance Liquid Chromatography Approach. Food Chem. 2021, 355, 129634. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Mao, X.; Du, M. Metabolism, Absorption, and Anti-Cancer Effects of Sulforaphane: An Update. Crit. Rev. Food Sci. Nutr. 2022, 62, 3437–3452. [Google Scholar] [CrossRef]
- Eisenschmidt-Bönn, D.; Schneegans, N.; Backenköhler, A.; Wittstock, U.; Brandt, W. Structural Diversification during Glucosinolate Breakdown: Mechanisms of Thiocyanate, Epithionitrile and Simple Nitrile Formation. Plant J. 2019, 99, 329–343. [Google Scholar] [CrossRef]
- Van Eylen, D.; Hendrickx, M.; Van Loey, A. Temperature and Pressure Stability of Mustard Seed (Sinapis alba L.) Myrosinase. Food Chem. 2006, 97, 263–271. [Google Scholar] [CrossRef]
- Wang, N.; Shen, L.; Qiu, S.; Wang, X.; Wang, K.; Hao, J.; Xu, M. Analysis of the Isothiocyanates Present in Three Chinese Brassica Vegetable Seeds and Their Potential Anticancer Bioactivities. Eur. Food Res. Technol. 2010, 231, 951–958. [Google Scholar] [CrossRef]
- Bassan, P.; Bhushan, S.; Kaur, T.; Arora, R.; Arora, S.; Vig, A.P. Extraction, Profiling and Bioactivity Analysis of Volatile Glucosinolates Present in Oil Extract of Brassica juncea Var. Raya. Physiol. Mol. Biol. Plants 2018, 24, 399–409. [Google Scholar] [CrossRef]
- Truscott, R.J.W.; Burke, D.G.; Minchinton, I.R. The Characterisation of a Novel Hydroxindole Glucosinolate. Biochem. Biophys. Res. Commun. 1982, 107, 1258–1264. [Google Scholar] [CrossRef]
- Devi, J.R.; Thangam, E.B. Mechanisms of Anticancer Activity of Sulforaphane from Brassica Oleracea in HEp-2 Human Epithelial Carcinoma Cell Line. Asian Pac. J. Cancer Prev. 2012, 13, 2095–2100. [Google Scholar] [CrossRef]
- Liang, H.; Li, C.; Yuan, Q.; Vriesekoop, F. Separation and Purification of Sulforaphane from Broccoli Seeds by Solid Phase Extraction and Preparative High-Performance Liquid Chromatography. J. Agric. Food Chem. 2007, 55, 8047–8053. [Google Scholar] [CrossRef]
- Liang, H.; Li, C.; Yuan, Q.; Vriesekoop, F. Application of High-Speed Countercurrent Chromatography for the Isolation of Sulforaphane from Broccoli Seed Meal. J. Agric. Food Chem. 2008, 56, 7746–7749. [Google Scholar] [CrossRef]
- Jing, W.; Zhao, X.; Liu, A.; Wei, F.; Ma, S. Two New Nitrogenous Compounds from the Seeds of Brassica napus. Chem. Nat. Compd. 2022, 58, 501–505. [Google Scholar] [CrossRef]
- Ferreres, F.; Sousa, C.; Valentão, P.; Seabra, R.M.; Pereira, J.A.; Andrade, P.B. Tronchuda Cabbage (Brassica oleracea L. Var. Costata DC) Seeds: Phytochemical Characterization and Antioxidant Potential. Food Chem. 2007, 101, 549–558. [Google Scholar] [CrossRef]
- Park, S.-A.; Chung, I.-M.; Ahmad, A. Chemical Composition of the Essential Oil and Petroleum Ether Extract of Brassica napus Seeds. J. Essent. Oil Bear. Plants. 2012, 15, 858–863. [Google Scholar] [CrossRef]
- Peng, C.; Zhao, S.-Q.; Zhang, J.; Huang, G.-Y.; Chen, L.-Y.; Zhao, F.-Y. Chemical Composition, Antimicrobial Property and Microencapsulation of Mustard (Sinapis alba) Seed Essential Oil by Complex Coacervation. Food Chem. 2014, 165, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Grygier, A. Mustard Seeds as a Bioactive Component of Food. Food Rev. Int. 2022, 1–14. [Google Scholar] [CrossRef]
- Rasera, G.B.; Hilkner, M.H.; de Castro, R.J.S. Free and Insoluble-Bound Phenolics: How Does the Variation of These Compounds Affect the Antioxidant Properties of Mustard Grains during Germination? Food Res. Int. 2020, 133, 109115. [Google Scholar] [CrossRef] [PubMed]
- Rasera, G.B.; Hilkner, M.H.; de Alencar, S.M.; de Castro, R.J.S. Biologically Active Compounds from White and Black Mustard Grains: An Optimization Study for Recovery and Identification of Phenolic Antioxidants. Ind. Crops Prod. 2019, 135, 294–300. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Sharma, A.; Rai, P.K. Impact of Soxhlet Extraction Method on Oil Yield and Antioxidant Potential of Brassica juncea. J. Pharmacogn. Phytochem. 2019, 8, 1134–1137. [Google Scholar]
- Almushayti, A.Y.; Brandt, K.; Carroll, M.A.; Scotter, M.J. Current Analytical Methods for Determination of Glucosinolates in Vegetables and Human Tissues. J. Chromatogr. A 2021, 1643, 462060. [Google Scholar] [CrossRef]
- Cirilli, R.; Gallo, F.R.; Multari, G.; Palazzino, G.; Mustazza, C.; Panusa, A. Study of Solvent Effect on the Stability of Isothiocyanate Iberin, a Breakdown Product of Glucoiberin. J. Food Compos. Anal. 2020, 92, 103515. [Google Scholar] [CrossRef]
- Rochfort, S.J.; Jones, R. Glucosinolate Phytochemicals from Broccoli (Brassica oleracea L. Var. Botrytis L.) Seeds and Their Potential Health Effects. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 253–261. [Google Scholar] [CrossRef]
- Zhang, C.; Di, H.; Lin, P.; Wang, Y.; Li, Z.; Lai, Y.; Li, H.; Sun, B.; Zhang, F. Genotypic Variation of Glucosinolates and Their Breakdown Products in Mustard (Brassica juncea) Seeds. Sci. Hortic. 2022, 294, 110765. [Google Scholar] [CrossRef]
- Franco, P.; Spinozzi, S.; Pagnotta, E.; Lazzeri, L.; Ugolini, L.; Camborata, C.; Roda, A. Development of a Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry Method for the Simultaneous Analysis of Intact Glucosinolates and Isothiocyanates in Brassicaceae Seeds and Functional Foods. J. Chromatogr. A 2016, 1428, 154–161. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, M.; Chen, P. GLS-Finder: A Platform for Fast Profiling of Glucosinolates in Brassica Vegetables. J. Agric. Food Chem. 2016, 64, 4407–4415. [Google Scholar] [CrossRef]
- Olsen, C.E.; Huang, X.-C.; Hansen, C.I.C.; Cipollini, D.; Ørgaard, M.; Matthes, A.; Geu-Flores, F.; Koch, M.A.; Agerbirk, N. Glucosinolate Diversity within a Phylogenetic Framework of the Tribe Cardamineae (Brassicaceae) Unraveled with HPLC-MS/MS and NMR-Based Analytical Distinction of 70 Desulfoglucosinolates. Phytochemistry 2016, 132, 33–56. [Google Scholar] [CrossRef]
- Fabre, N.; Bon, M.; Moulis, C.; Fouraste, I.; Stanislas, E. Three Glucosinolates from Seeds of Brassica juncea. Phytochemistry 1997, 45, 525–527. [Google Scholar] [CrossRef]
- Nicácio, A.E.; Rodrigues, C.A.; Visentainer, J.V.; Maldaner, L. Evaluation of the QuEChERS Method for the Determination of Phenolic Compounds in Yellow (Brassica alba), Brown (Brassica juncea), and Black (Brassica nigra) Mustard Seeds. Food Chem. 2021, 340, 128162. [Google Scholar] [CrossRef]
- Aziz, S.S.; El-Zayat, M.M.; El-Khateeb, A.Y. Phytochemical Characterization, Antioxidant and Antimicrobial Activities of Brassica juncea (L.) Mustard Seeds Aqueous and Ethanolic Extracts. J. Plant Prod. 2020, 11, 85–88. [Google Scholar] [CrossRef]
- Baumert, A.; Milkowski, C.; Schmidt, J.; Nimtz, M.; Wray, V.; Strack, D. Formation of a Complex Pattern of Sinapate Esters in Brassica Napus Seeds, Catalyzed by Enzymes of a Serine Carboxypeptidase-like Acyltransferase Family? Phytochemistry 2005, 66, 1334–1345. [Google Scholar] [CrossRef]
- Wang, J.; Yu, H.; Zhao, Z.; Sheng, X.; Shen, Y.; Gu, H. Natural Variation of Glucosinolates and Their Breakdown Products in Broccoli (Brassica oleracea Var. Italica) Seeds. J. Agric. Food Chem. 2019, 67, 12528–12537. [Google Scholar] [CrossRef]
- Arora, S.; Vig, A.P. Inhibition of DNA Oxidative Damage and Antimutagenic Activity by Dichloromethane Extract of Brassica Rapa Var. Rapa L. Seeds. Ind. Crops Prod. 2015, 74, 585–591. [Google Scholar] [CrossRef]
- Matsumoto, T.; Shimizu, N.; Shigemoto, T.; Itoh, T.; Iida, T.; Nishioka, A. Isolation of 22-Dehydrocampesterol from the Seeds of Brassica Juncea. Phytochemistry 1983, 22, 789–790. [Google Scholar] [CrossRef]
- Valette, L.; Fernandez, X.; Poulain, S.; Lizzani-Cuvelier, L.; Loiseau, A. Chemical Composition of the Volatile Extracts from Brassica oleracea L. Var. Botrytis ‘Romanesco’Cauliflower Seeds. Flavour Fragr. J. 2006, 21, 107–110. [Google Scholar] [CrossRef]
- Shabana, M.M.; Fathy, F.I.; Salama, M.M.; Hashem, M.M. Cytotoxic and Antioxidant Activities of the Volatile Constituents of Brassica Tournefortii Gouan: Growing in Egypt. Cancer. Sci. Res. 2013, 1, 1–4. [Google Scholar] [CrossRef]
- Dua, A.; Chander, S.; Agrawal, S.; Mahajan, R. Antioxidants from Defatted Indian Mustard (Brassica juncea) Protect Biomolecules against in Vitro Oxidation. Physiol. Mol. Biol. Plants 2014, 20, 539–543. [Google Scholar] [CrossRef]
- Mullen, W.; Marks, S.C.; Crozier, A. Evaluation of Phenolic Compounds in Commercial Fruit Juices and Fruit Drinks. J. Agric. Food Chem. 2007, 55, 3148–3157. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Callaghan, D.; Juzwik, C.; Xiong, H.; Huang, P.; Zhang, W. ABCG2 Reduces ROS-mediated Toxicity and Inflammation: A Potential Role in Alzheimer’s Disease. J. Neurochem. 2010, 114, 1590–1604. [Google Scholar] [CrossRef] [PubMed]
- Podsędek, A. Natural Antioxidants and Antioxidant Capacity of Brassica Vegetables: A Review. LWT Food Sci. Technol. 2007, 40, 1–11. [Google Scholar] [CrossRef]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An Insight into Anticancer, Antioxidant, Antimicrobial, Antidiabetic and Anti-Inflammatory Effects of Quercetin: A Review. Polym. Bull. 2022, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.P.; Chaudhary, V.; Sharma, N.; Bansal, V.; Ozogul, F.; Lorenzo, J.M. Kaempferol: A Flavonoid with Wider Biological Activities and Its Applications. Crit. Rev. Food Sci. Nutr. 2022, 1–25. [Google Scholar] [CrossRef]
- Parikh, H.; Khanna, A. Pharmacognosy and Phytochemical Analysis of Brassica Juncea Seeds. Pharmacogn. J. 2014, 6. [Google Scholar] [CrossRef]
- Chaudhary, A.; Choudhary, S.; Sharma, U.; Vig, A.P.; Arora, S. In Vitro Evaluation of Brassica Sprouts for Its Antioxidant and Antiproliferative Potential. Indian J. Pharm. Sci. 2016, 78, 615–623. [Google Scholar] [CrossRef]
- Bopitiya, D.; Hearn, M.T.W.; Zhang, J.; Bennett, L.E. Demonstration of Anti-Oxidant Properties of Mustard Seed (Brassica juncea) Protein Isolate in Orange Juice. Food Chem. 2022, 396, 133648. [Google Scholar] [CrossRef]
- Choe, U.; Li, Y.; Gao, B.; Yu, L.U.; Wang, T.T.Y.; Sun, J.; Chen, P.; Liu, J.; Yu, L. Chemical Compositions of Cold-Pressed Broccoli, Carrot, and Cucumber Seed Flours and Their in Vitro Gut Microbiota Modulatory, Anti-Inflammatory, and Free Radical Scavenging Properties. J. Agric. Food Chem. 2018, 66, 9309–9317. [Google Scholar] [CrossRef]
- Asaad, N.K.; Razooqi, Q.A. Protective Role of the Aqueous Extract of Brassica Nigra Seed against Cadmium Chloride Toxicity in Lung Tissue and Hematological Parameters of Female Rats. Mater. Today Proc. 2022, 60, 1497–1501. [Google Scholar] [CrossRef]
- Yuan, H.; Zhu, M.; Guo, W.; Jin, L.; Chen, W.; Brunk, U.T.; Zhao, M. Mustard Seeds (Sinapis alba Linn) Attenuate Azoxymethane-Induced Colon Carcinogenesis. Redox Report 2011, 16, 38–44. [Google Scholar] [CrossRef]
- Xu, X.; Dai, M.; Lao, F.; Chen, F.; Hu, X.; Liu, Y.; Wu, J. Effect of Glucoraphanin from Broccoli Seeds on Lipid Levels and Gut Microbiota in High-Fat Diet-Fed Mice. J. Funct. Foods. 2020, 68, 103858. [Google Scholar] [CrossRef]
- Virk, P.; Alajmi, S.T.A.; Awad, M.; Elobeid, M.; Ortashi, K.M.O.; Asiri, A.M.; Merghani, N.M.; Fouad, D. Attenuating Effect of Indian Mustard (Brassica juncea) Seed and Its Nano Formulation on Arsenic Induced-Oxidative Stress and Associated Genotoxicity in Rat. J. King Saud Univ. Sci. 2022, 34, 102134. [Google Scholar] [CrossRef]
- Chaudhary, A.; Sharma, U.; Vig, A.P.; Singh, B.; Arora, S. Free Radical Scavenging, Antiproliferative Activities and Profiling of Variations in the Level of Phytochemicals in Different Parts of Broccoli (Brassica oleracea italica). Food Chem. 2014, 148, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Anwar, F.; Kalsoom, U.; Sultana, B.; Mushtaq, M.; Mehmood, T.; Arshad, H.A. Effect of Drying Method and Extraction Solvent on the Total Phenolics and Antioxidant Activity of Cauliflower (Brassica oleracea L.) Extracts. Int. Food Res. J. 2013, 20, 653. [Google Scholar]
- Kwak, Y.; Lee, J.; Ju, J. Anti-Cancer Activities of Brassica Juncea Leaves in Vitro. EXCLI J. 2016, 15, 699. [Google Scholar] [CrossRef]
- Mori, N.; Shimazu, T.; Sasazuki, S.; Nozue, M.; Mutoh, M.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Inoue, M.; Takachi, R. Cruciferous Vegetable Intake Is Inversely Associated with Lung Cancer Risk among Current Nonsmoking Men in the Japan Public Health Center (JPHC) Study. J. Nutr. 2017, 147, 841–849. [Google Scholar] [CrossRef]
- Fang, Y.; Yang, C.; Yu, Z.; Li, X.; Mu, Q.; Liao, G.; Yu, B. Natural Products as LSD1 Inhibitors for Cancer Therapy. Acta Pharm. Sin. B 2021, 11, 621–631. [Google Scholar] [CrossRef]
- Ghanbari-Movahed, M.; Jackson, G.; Farzaei, M.H.; Bishayee, A. A Systematic Review of the Preventive and Therapeutic Effects of Naringin against Human Malignancies. Front. Pharmacol. 2021, 12, 639840. [Google Scholar] [CrossRef]
- Ackland, M.L.; Van De Waarsenburg, S.; Jones, R. Synergistic Antiproliferative Action of the Flavonols Quercetin and Kaempferol in Cultured Human Cancer Cell Lines. In Vivo 2005, 19, 69–76. [Google Scholar]
- Almatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Verma, A.K.; Aloliqi, A.; Allemailem, K.S.; Khan, A.A.; Rahmani, A.H. Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways. Molecules 2021, 26, 1315. [Google Scholar] [CrossRef]
- Imani, A.; Maleki, N.; Bohlouli, S.; Kouhsoltani, M.; Sharifi, S.; Maleki Dizaj, S. Molecular Mechanisms of Anticancer Effect of Rutin. Phytother. Res. 2021, 35, 2500–2513. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lin, J.; Wei, J.; Zhou, L.; Wang, P.; Qu, S. Sinigrin Impedes the Breast Cancer Cell Growth through the Inhibition of PI3K/AKT/MTOR Phosphorylation-Mediated Cell Cycle Arrest. J. Environ. Pathol. Toxicol. Oncol. 2022, 41, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Jie, M.; Cheung, W.M.; Yu, V.; Zhou, Y.; Tong, P.H.; Ho, J.W.S. Anti-Proliferative Activities of Sinigrin on Carcinogen-Induced Hepatotoxicity in Rats. PLoS ONE 2014, 9, e110145. [Google Scholar] [CrossRef] [PubMed]
- Melim, C.; Lauro, M.R.; Pires, I.M.; Oliveira, P.J.; Cabral, C. The Role of Glucosinolates from Cruciferous Vegetables (Brassicaceae) in Gastrointestinal Cancers: From Prevention to Therapeutics. Pharmaceutics 2022, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Ağagündüz, D.; Şahin, T.Ö.; Yılmaz, B.; Ekenci, K.D.; Duyar Özer, Ş.; Capasso, R. Cruciferous Vegetables and Their Bioactive Metabolites: From Prevention to Novel Therapies of Colorectal Cancer. Evid. Based Complement. Altern. Med. 2022, 2022, 1534083. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Tsai, F.; Bau, D.; Hsu, Y.; Yang, J.; Tu, M.; Chiang, S. Potential Effects of Allyl Isothiocyanate on Inhibiting Cellular Proliferation and Inducing Apoptotic Pathway in Human Cisplatin-Resistant Oral Cancer Cells. J. Formos. Med. Assoc. 2021, 120, 515–523. [Google Scholar] [CrossRef]
- Kaiser, A.E.; Baniasadi, M.; Giansiracusa, D.; Giansiracusa, M.; Garcia, M.; Fryda, Z.; Wong, T.L.; Bishayee, A. Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers 2021, 13, 4796. [Google Scholar] [CrossRef]
- Dinh, T.N.; Parat, M.-O.; Ong, Y.S.; Khaw, K.Y. Anticancer Activities of Dietary Benzyl Isothiocyanate: A Comprehensive Review. Pharmacol. Res. 2021, 169, 105666. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Li, M.; Liu, M.; Bahena, A.; Zhang, Y.; Zhang, Y.; Nambiar, C.; Liu, G. Sulforaphane Promotes Apoptosis, and Inhibits Proliferation and Self-Renewal of Nasopharyngeal Cancer Cells by Targeting STAT Signal through MiRNA-124-3p. Biomed. Pharmacother. 2018, 103, 473–481. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Dong, N.; Su, X.; Duan, M.; Wei, Y.; Wei, J.; Liu, G.; Peng, Q.; Zhao, Y. Sulforaphane Induces S-Phase Arrest and Apoptosis via P53-Dependent Manner in Gastric Cancer Cells. Sci. Rep. 2021, 11, 2504. [Google Scholar] [CrossRef]
- El-Daly, S.M.; Gamal-Eldeen, A.M.; Gouhar, S.A.; Abo-Elfadl, M.T.; El-Saeed, G. Modulatory Effect of Indoles on the Expression of MiRNAs Regulating G1/S Cell Cycle Phase in Breast Cancer Cells. Appl. Biochem. Biotechnol. 2020, 192, 1208–1223. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, W.; Liu, C.; Jin, J.; Shao, B.; Shen, L. Inhibition of Growth and Induction of Apoptosis in A549 Cells by Compounds from Oxheart Cabbage Extract. J. Sci. Food Agric. 2016, 96, 3813–3820. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.G.; Hussein, U.K.; Ahmed, A.E.; Kim, K.M.; Mahmoud, H.M.; Hammouda, O.; Jang, K.Y.; Bishayee, A. Mustard Seed (Brassica Nigra) Extract Exhibits Antiproliferative Effect against Human Lung Cancer Cells through Differential Regulation of Apoptosis, Cell Cycle, Migration, and Invasion. Molecules 2020, 25, 2069. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, H.; Kanazawa, A.; Wakamatu, D.; Morimura, S.; Kida, K.; Akaike, T.; Maeda, H. Antioxidative and Antimutagenic Activities of 4-Vinyl-2, 6-Dimethoxyphenol (Canolol) Isolated from Canola Oil. J. Agric. Food Chem. 2004, 52, 4380–4387. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Yuan, H.; Guo, W.; Li, X.; Jin, L.; Brunk, U.T.; Han, J.; Zhao, M.; Lu, Y. Dietary Mustard Seeds (Sinapis alba Linn) Suppress 1, 2-Dimethylhydrazine-Induced Immuno-Imbalance and Colonic Carcinogenesis in Rats. Nutr. Cancer 2012, 64, 464–472. [Google Scholar] [CrossRef]
- Salman, I.N.; Hanna, D.B.; Mshimesh, B.A.-R. Antiproliferative Activity of Brassica Nigra Seeds Extract in Liver Tissue of Mice Exposed to Phenobarbital. Al Mustansiriyah J. Pharm. Sci. 2022, 22, 8–22. [Google Scholar] [CrossRef]
- Muluye, A.B.; Melese, E.; Adinew, G.M. Antimalarial Activity of 80% Methanolic Extract of Brassica nigra (L.) Koch. (Brassicaceae) Seeds against Plasmodium Berghei Infection in Mice. BMC Complement. Altern. Med. 2015, 15, 367. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, R.Y.K.; Britton, W.J.; Chan, H.-K. Advances in the Development of Antimicrobial Peptides and Proteins for Inhaled Therapy. Adv. Drug Deliv. Rev. 2022, 180, 114066. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Zhang, W.; Yuan, S.; Ng, T.; Ye, X. Purification of an Antifungal Peptide from Seeds of Brassica oleracea Var. Gongylodes and Investigation of Its Antifungal Activity and Mechanism of Action. Molecules 2019, 24, 1337. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Cano, R.D.; Salcedo-Hernández, R.; Casados-Vázquez, L.E.; Wrobel, K.; Bideshi, D.K.; Barboza-Corona, J.E. Class I Defensins (BraDef) from Broccoli (Brassica oleracea Var. Italica) Seeds and Their Antimicrobial Activity. World J. Microbiol. Biotechnol. 2020, 36, 30. [Google Scholar] [CrossRef]
- Thery, T.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Isolation, Characterisation and Application of a New Antifungal Protein from Broccoli Seeds–New Food Preservative with Great Potential. Food Control 2020, 117, 107356. [Google Scholar] [CrossRef]
- Mignone, G.; Shwaiki, L.N.; Arendt, E.K.; Coffey, A. Isolation of the Mustard Napin Protein Allergen Sin a 1 and Characterisation of Its Antifungal Activity. Biochem. Biophys. Rep. 2022, 29, 101208. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, B.; Abdalla, M.; Mehmood, S.; Saeed, A.; Munawar, A.; Saeed, M.Q.; Saeed, Q.; Ibrahim, M.; Ali, Z.; Hussain, S. Comprehensive Structural and Functional Characterization of a Seed γ-Thionin as a Potent Bioactive Molecule against Fungal Pathogens and Insect Pests. Curr. Med. Chem. 2022. [Google Scholar] [CrossRef] [PubMed]
- Bellostas, N.; Casanova, E.; Garcia-Mina, J.M.; Hansen, L.M.; Jørgensen, L.N.; Kudsk, P.; Madsen, P.H.; Sørensen, J.C.; Sørensen, H. Biological Activity of Glucosinolate Derived Compounds Isolated from Seed Meal of Brassica Crops and Evaluated as Plant and Food Protection Agents. In Proceedings of the 12th International Rapeseed Congress, Wuhan, China, 26–30 March 2007; Available online: https://orgprints.org/11398 (accessed on 4 July 2022).
- García-Saldaña, J.S.; Parra-Delgado, J.; Campas-Baypoli, O.N.; Sánchez-Machado, D.I.; Cantú-Soto, E.U.; López-Cervantes, J. Changes in Growth Kinetics and Motility Characteristics of Escherichia coli in the Presence of Sulphoraphane Isolated from Broccoli Seed Meal. Int. J. Food Sci. Technol. 2020, 55, 851–860. [Google Scholar] [CrossRef]
- Bousquet, J.; Le Moing, V.; Blain, H.; Czarlewski, W.; Zuberbier, T.; de la Torre, R.; Lozano, N.P.; Reynes, J.; Bedbrook, A.; Cristol, J.-P. Efficacy of Broccoli and Glucoraphanin in COVID-19: From Hypothesis to Proof-of-Concept with Three Experimental Clinical Cases. World Allergy Organ. J. 2021, 14, 100498. [Google Scholar] [CrossRef]
- Grover, J.K.; Yadav, S.; Vats, V. Hypoglycemic and Antihyperglycemic Effect of Brassica Juncea Diet and Their Effect on Hepatic Glycogen Content and the Key Enzymes of Carbohydrate Metabolism. Mol. Cell. Biochem. 2002, 241, 95–101. [Google Scholar] [CrossRef]
- Grover, J.K.; Yadav, S.P.; Vats, V. Effect of Feeding Murraya Koeingii and Brassica Juncea Diet Kidney Functions and Glucose Levels in Streptozotocin Diabetic Mice. J. Ethnopharmacol. 2003, 85, 1–5. [Google Scholar] [CrossRef]
- Thirumalai, T.; Therasa, S.V.; Elumalai, E.K.; David, E. Hypoglycemic Effect of Brassica juncea (Seeds) on Streptozotocin Induced Diabetic Male Albino Rat. Asian Pac. J. Trop. Biomed. 2011, 1, 323–325. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, S.; Vasudeva, N. In Vivo Assessment of Antihyperglycemic and Antioxidant Activity from Oil of Seeds of Brassica Nigra in Streptozotocin Induced Diabetic Rats. Adv. Pharm. Bull. 2013, 3, 359. [Google Scholar] [CrossRef]
- Kay, B.A.; Trigatti, K.; MacNeil, M.B.; Klingel, S.L.; Repin, N.; Goff, H.D.; Wright, A.J.; Duncan, A.M. Pudding Products Enriched with Yellow Mustard Mucilage, Fenugreek Gum or Flaxseed Mucilage and Matched for Simulated Intestinal Viscosity Significantly Reduce Postprandial Peak Glucose and Insulin in Adults at Risk for Type 2 Diabetes. J. Funct. Foods 2017, 37, 603–611. [Google Scholar] [CrossRef]
- Wu, G.-X.; Lin, Y.-X.; Ou, M.-R.; Tan, D.-F. An Experimental Study (I) on the Inhibition of Prostatic Hyperplasia with Extract of Seeds of Brassica alba. Zhongguo Zhong Yao Za Zhi 2002, 27, 766–768. [Google Scholar] [PubMed]
- Wu, G.-X.; Lin, Y.; Ou, M.-R.; Tan, D. An Experimental Study (II) on the Inhibition of Prostatic Hyperplasia by Extract of Seeds of Brassica alba. Zhongguo Zhong Yao Za Zhi 2003, 28, 643–646. [Google Scholar] [PubMed]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The Metabolic Syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Chew, S.C. Cold-Pressed Rapeseed (Brassica napus) Oil: Chemistry and Functionality. Food Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef] [PubMed]
- Palomäki, A.; Pohjantähti-Maaroos, H.; Wallenius, M.; Kankkunen, P.; Aro, H.; Husgafvel, S.; Pihlava, J.-M.; Oksanen, K. Effects of Dietary Cold-Pressed Turnip Rapeseed Oil and Butter on Serum Lipids, Oxidized LDL and Arterial Elasticity in Men with Metabolic Syndrome. Lipids Health Dis. 2010, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Paul, K.; Mallick, P.; Pradhan, S.; Das, K.; Chakrabarti, S.; Nandi, D.K.; Bhattacharjee, P. Consortia of Bioactives in Supercritical Carbon Dioxide Extracts of Mustard and Small Cardamom Seeds Lower Serum Cholesterol Levels in Rats: New Leads for Hypocholesterolaemic Supplements from Spices. J. Nutr. Sci. 2019, 8, e32/1–e32/15. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R.; Kaur, J.; Kaur, S.; Kuhad, A. The Nrf2 Pathway in Psychiatric Disorders: Pathophysiological Role and Potential Targeting. Expert Opin. Ther. Targets. 2021, 25, 115–139. [Google Scholar] [CrossRef]
- Bent, S.; Lawton, B.; Warren, T.; Widjaja, F.; Dang, K.; Fahey, J.W.; Cornblatt, B.; Kinchen, J.M.; Delucchi, K.; Hendren, R.L. Identification of Urinary Metabolites That Correlate with Clinical Improvements in Children with Autism Treated with Sulforaphane from Broccoli. Mol. Autism 2018, 9, 35. [Google Scholar] [CrossRef]
- Lietzow, J. Biologically Active Compounds in Mustard Seeds: A Toxicological Perspective. Foods 2021, 10, 2089. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B. Erucic Acid in Feed and Food. EFSA J. 2016, 14, e04593. [Google Scholar]
- FSANZ (Australia New Zealand Food Standards Code). Maximum Levels of Contaminants and Natural Toxicants. 19 2016, 1991, 3. Available online: https://www.foodstandards.gov.au/code/Documents/Sched%2019%20Contaminant%20MLs%20v157.pdf (accessed on 4 July 2022).
- Russo, M.; Yan, F.; Stier, A.; Klasen, L.; Honermeier, B. Erucic Acid Concentration of Rapeseed (Brassica napus L.) Oils on the German Food Retail Market. Food Sci. Nutr. 2021, 9, 3664–3672. [Google Scholar] [CrossRef] [PubMed]
- Beszterda, M.; Nogala-Kałucka, M. Current Research Developments on the Processing and Improvement of the Nutritional Quality of Rapeseed (Brassica napus L.). Eur. J. Lipid Sci. Technol. 2019, 121, 1800045. [Google Scholar] [CrossRef]
- Lei, W.U.; JIA, Y.; Gang, W.U.; LU, C. Molecular Evidence for Blocking Erucic Acid Synthesis in Rapeseed (Brassica napus L.) by a Two-Base-Pair Deletion in FAE1 (Fatty Acid Elongase 1). J. Integr. Agric. 2015, 14, 1251–1260. [Google Scholar] [CrossRef]
- Chao, H.; Guo, L.; Zhao, W.; Li, H.; Li, M. A Major Yellow-Seed QTL on Chromosome A09 Significantly Increases the Oil Content and Reduces the Fiber Content of Seed in Brassica Napus. Theor. Appl. Genet. 2022, 135, 1293–1305. [Google Scholar] [CrossRef]
- Lang, C.; Wang, F.; Liu, R.; Zheng, T.; Hu, Z.; Wu, X.; Wu, G. Genetic Regulation of Fatty Acid Biosynthesis in Brassica napus Seeds Based on FAE1 and FAD2 Genes. Mol. Plant Breed. 2022, 13, 1–9. [Google Scholar] [CrossRef]
- Pałgan, K.; Żbikowska-Gotz, M.; Bartuzi, Z. Dangerous Anaphylactic Reaction to Mustard. Arch. Med. Sci. 2018, 14, 477–479. [Google Scholar] [CrossRef]
- Sikorska-Zimny, K.; Beneduce, L. The Glucosinolates and Their Bioactive Derivatives in Brassica: A Review on Classification, Biosynthesis and Content in Plant Tissues, Fate during and after Processing, Effect on the Human Organism and Interaction with the Gut Microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 2544–2571. [Google Scholar] [CrossRef]
- Matthews, Z.M.; Parton, K.H.; Collett, M.G. Investigating the Cause of Brassica-Associated Liver Disease (BALD) in Cattle: Progoitrin-Derived Nitrile Toxicosis in Rats. Toxicon X 2020, 5, 100021. [Google Scholar] [CrossRef]
- Collett, M.G.; Stegelmeier, B.L.; Tapper, B.A. Could Nitrile Derivatives of Turnip (Brassica rapa) Glucosinolates Be Hepato-or Cholangiotoxic in Cattle? J. Agric. Food Chem. 2014, 62, 7370–7375. [Google Scholar] [CrossRef]
- Griffiths, D.W.; Birch, A.N.E.; Hillman, J.R. Antinutritional Compounds in the Brasi Analysis, Biosynthesis, Chemistry and Dietary Effects. J. Hortic. Sci. Biotechnol. 1998, 73, 1–18. [Google Scholar] [CrossRef]
- Mithen, R.F. Glucosinolates and Their Degradation Products. Adv. Bot. Res. 2001, 35, 213–232. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Mishra, A.S. Glucosinolates in Animal Nutrition: A Review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- Hebert, M.; Mhemdi, H.; Vorobiev, E. Selective and Eco-Friendly Recovery of Glucosinolates from Mustard Seeds (Brassica Juncea) Using Process Optimization and Innovative Pretreatment (High Voltage Electrical Discharges). Food Bioprod. Process. 2020, 124, 11–23. [Google Scholar] [CrossRef]
- Chandra, A.K. Goitrogen in Food: Cyanogenic and Flavonoids Containing Plant Foods in the Development of Goiter. In Bioactive Foods in Promoting Health; Elsevier: Amsterdam, The Netherlands, 2010; pp. 691–716. [Google Scholar] [CrossRef]
- Truong, T.; Baron-Dubourdieu, D.; Rougier, Y.; Guénel, P. Role of Dietary Iodine and Cruciferous Vegetables in Thyroid Cancer: A Countrywide Case–Control Study in New Caledonia. Cancer Causes Control 2010, 21, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Scientific Opinion on the Safety of Allyl Isothiocyanate for the Proposed Uses as a Food Additive. EFSA J. 2010, 8, 1943. [Google Scholar]
- Tan, Z.; Xie, Z.; Dai, L.; Zhang, Y.; Zhao, H.; Tang, S.; Wan, L.; Yao, X.; Guo, L.; Hong, D. Genome-and Transcriptome-wide Association Studies Reveal the Genetic Basis and the Breeding History of Seed Glucosinolate Content in Brassica Napus. Plant Biotechnol. J. 2022, 20, 211–225. [Google Scholar] [CrossRef]
Species | Subspecies/var. | Common Name |
---|---|---|
Brassica nigra | Koch L. | Black mustard |
Viridis | Collards | |
Brassica oleracea | Capitata F. alba | White cabbage |
Capitata F. rubra | Red or purple cabbage | |
Capitata L. | Green cabbage | |
Italica | Italian broccoli, Chinese broccoli | |
Gemmifera | Brussels sprouts | |
Sabellica L. | Curly kale | |
Acephala L. | Kale | |
Alboglabra | Chinese kale, kailan | |
Botrytis | Cauliflower, Italian cauliflower | |
Sabauda | Savoy cabbage | |
Gongylodes | Kohlrabi, stem turnip, Knol khol | |
Costata | Portuguese cole, Tronchuda cabbage | |
Brassica carinata | Ethiopian rapeseed | |
Brassica juncea | Czern L. | Mustard, Indian mustard, leaf mustard |
Coss L., | Green mustard | |
Integrifolia | Korean leaf mustard, multi-shoot mustard | |
Crispifolia | Curled mustard | |
Rosularis | Tatsoi | |
Brassica napus | Napobrassica | Oilseed rape, rape, canola |
Brassica hirta | Sinapis alba | White or yellow mustard |
Brassica tournefortii | Gouan | Asian mustard, Africain mustard |
Brassica rapa/campestris | Rapifera L./Rapa L. | Sarson, turnip rape, field mustard, bird, rape, canola, turnip top |
Pekinensis L. | Chinese cabbage | |
Parachinesis | Chines cabbage, Choi sum, Sawi |
Fatty Acid Composition in the Oil | |||||||||
---|---|---|---|---|---|---|---|---|---|
Species | Oil Content | Palmitic Acid | Stearic Acid | Oleic Acid | Eicosenoic Acid | Linoleic Acid | Linolenic Acid | Erucic Acid | Reference |
B. nigra | 37.68 | 3.16 | 1.41 | 27.1 | 6.83 | 14.87 | 7.98 | 32.96 | [12,34] |
B. oleracea L. var. acephala | 10 | 10 | 10 | >50 | [35] | ||||
B. oleracea. L. var. italica cv. Legacy | 7.43 | 1.10 | 15.44 | 4.64 | 18.15 | 12.37 | 9.36 | [36] | |
B. rapa | 47.3 | 12 | 8–9 | 13 | 8–9 | 50–51 | [37] | ||
B. carinata | 40 | [38] | |||||||
B. napus | 42.8; 46.4 | 12 | 8–9 | 13 | 8–9 | 42–54 | [37,39] | ||
B. hirta | 14.55 | 9.67 | [40] | ||||||
Sinapis alba | 23.90 | [41] |
Species | Subspecies/var | Sample Analyzed | Extracting Solvent | DPPH | FRAP | ORAC | ABTS | ROS | Reducing Power | SOA | Hydroxyl Radical | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B. nigra | Cold-press oil | Ethanol | 89.25% (10% oil–methanol) | 23.85% (10% oil–methanol) | [78] | |||||||
Seeds | Hexane, ethyl acetate, and methanol | 36.30% (1 mL of crude extracts) | [63] | |||||||||
B. oleracea | L. var. costata DC | Lyophilized extract | H2O | IC25 at 197 µg/mL | IC25 = 4 µg/mL | [103] | ||||||
italica | 5 day old sprout (PS5) Seeds | H2O | 94.25% (2 mg/mL) | [141] | ||||||||
Seeds (USA) | 50% acetone | 633.50 μM TE/g (133 mg/mL) | 175.88 μM TE/g (133 mg/mL) | [136] | ||||||||
botrytis | 5 day sprouts (C5D) 7 day sprouts (C7D) | DCM | 62.2%; 39.63% (2 mg/mL) | [134] | ||||||||
IC50 = 1510 µg/mL, IC50 = 2750 µg/mL | IC50 = 170 µg/mL, IC50 = 260 µg/mL | |||||||||||
Seeds | 80% methanol | 70% (25 µg/mL) | [142] | |||||||||
B. rapa | RCN | Seed meal | methanol | 2947.2 µmol/L (10 mg/L) | 1852.1 µmol/L (10 mg/L) | [51] | ||||||
Rapifera L. | (T5D) (T7D) | DCM | 21.98%; 40.45% (2 mg/mL) | [134] | ||||||||
IC50 = 5920 µg/mL, IC50 = 2780 µg/mL | IC50 = 53 µg/mL, IC50 = 0.32 µg/mL | |||||||||||
B. juncea | Seeds | 80% alcohol | IC50 = 103 µg/mL | [133] | ||||||||
L. Czern and Coss | Seeds | Hydromethanol (80:20 ratio) | IC50 = 103.37 µg AAE/mg | IC50 = 83.26 µg AAE/mg | IC50 = 1115 µM GAE/mL | IC50 = 83.05 µg GAE/mL | Post-treatment (700 µg/mL): 58.37 to 15.55% Pretreatment (1000 µg/mL): 90.5% | IC50 = 345.22 µg AAE/mg | [62] | |||
(M5D)/(M7D) | DCM | 40.78%; 19.67% (2 mg/mL) | [134] | |||||||||
IC50 = 2760 µg/mL, IC50 = 5790 µg/mL | IC50 = 59 µg/mL, IC50 = 463 µg/mL | |||||||||||
Seeds | Ethanol | 83.17% (200 mg/mL) | 60.57% (200 mg/mL) | [81] | ||||||||
Seeds | 30% ethanol, water | IC50 = 170 µg/mL, IC50 = 390 µg/mL | 75.5% 68.9% (50 mg/mL) | [120] | ||||||||
B. napus | Canola | Defatted oilseed cake | Methanol/acetone/water (MAW) | 33.03% (60 mg/mL) | 8.78 μmol Fe(II)/g FW (60 mg/mL) | [83] | ||||||
B. hirta | Seeds | H2O | 6.4 mg/g (75 mg/mL) | [76] | ||||||||
Sinapis alba | Cold-press oil | Ethanol | 94.24% (10% oil–methanol) | 8.92% (10% oil–methanol) | [78] | |||||||
B. tournefortii | Gouan | Essential oil | Diethyl ether | 45.17 vitamin C (IC50 = 75.28 µg/mL) | [126] |
Species | Subspecies/var | Sample Analyzed | Extracting Solvent | A-549 | MCF-7 | MDA-MB-231 | PC-3 | HeLa | HCT-116 | LAC | HepG-2 | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B. oleracea | capitata | ITCs: fraction II | Ethyl acetate, hexane | 27.32 | 23.85% (10% oil–methanol) | [160] | ||||||
ITCs: fraction III | 15.56 | |||||||||||
italica (broccoli) | Seeds | Hexane, ethyl acetate, methanol | 14.38 mg/g | 19.45 mg/g | 10.38 mg/g | 26.75 mg/g | [96] | |||||
botrytis | Sprouts C5D; C7D | DCM | 95.57, 71.58 | [134] | ||||||||
B. rapa | Rapifera L. | 63.5, 43.61 | ||||||||||
B. juncea | raya | Volatile oil | Ethyl acetate, DCM | 32.93 | 37.16 | 54.73 | 67.25 | 61.50 | [97] | |||
L. Czern | M5D; M7D | DCM | 111.6, 81.11 | [134] | ||||||||
B. tournefortii | Gouan | Essential oil | Diethyl ether | 1.34 | 4.5 | [126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayadi, J.; Debouba, M.; Rahmani, R.; Bouajila, J. Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules 2022, 27, 6008. https://doi.org/10.3390/molecules27186008
Ayadi J, Debouba M, Rahmani R, Bouajila J. Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules. 2022; 27(18):6008. https://doi.org/10.3390/molecules27186008
Chicago/Turabian StyleAyadi, Jawaher, Mohamed Debouba, Rami Rahmani, and Jalloul Bouajila. 2022. "Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties" Molecules 27, no. 18: 6008. https://doi.org/10.3390/molecules27186008
APA StyleAyadi, J., Debouba, M., Rahmani, R., & Bouajila, J. (2022). Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules, 27(18), 6008. https://doi.org/10.3390/molecules27186008