GC-MS Studies on the Conversion and Derivatization of γ-Glutamyl Peptides to Pyroglutamate (5-Oxo-Proline) Methyl Ester Pentafluoropropione Amide Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Derivatization Procedures
2.2.1. Derivatization with HCl/Methanol and Pentafluoropropionic Anhydride
2.2.2. Derivatization with Pentafluorobenzyl Bromide
2.3. GC-MS Conditions
3. Results
3.1. Formation of Pyroglutamate from GSH
3.2. Formation of Pyroglutamate from Ophthalmic Acid
3.3. Kinetics of Pyroglutamate Formation from GSH
3.4. Quantitative GC-MS Analysis of GSH-Derived pGlu as Me-PFP Derivative
3.5. Quantitative GC-MS Analysis of GSSG-Derived pGlu as Me-PFP Derivative
3.6. GC-MS Discrimination between GSH and GSSG as Me-PFP Derivatives
3.7. GC-MS Analysis of pGlu as Pentafluorobenzyl Ester
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef]
- Lu, S.C. Regulation of glutathione synthesis. Mol. Asp. Med. 2009, 30, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J. Possible treatment of end-stage hyperammonemic encephalopathy by inhibition of glutamine synthetase. Metab. Brain Dis. 2013, 28, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Grill, E.; Winnacker, E.L.; Zenk, M.H. Phytochelatins: The principal heavy-metal complexing peptides of higher plants. Science 1985, 230, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Giustarini, D.; Dalle-Donne, I.; Tsikas, D.; Rossi, R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 2009, 46, 241–281. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Colombo, G.; Giustarini, D.; Milzani, A. Protein S-glutathionylation: A regulatory device from bacteria to humans. Trends Biochem. Sci. 2009, 34, 85–96. [Google Scholar] [CrossRef]
- Giustarini, D.; Dalle-Donne, I.; Milzani, A.; Braconi, D.; Santucci, A.; Rossi, R. Membrane skeletal protein S-glutathionylation in human red blood cells as index of oxidative stress. Chem. Res. Toxicol. 2019, 32, 1096–1102. [Google Scholar] [CrossRef]
- Giustarini, D.; Colombo, G.; Garavaglia, M.L.; Astori, E.; Portinaro, N.M.; Reggiani, F.; Badalamenti, S.; Aloisi, A.M.; Santucci, A.; Rossi, R.; et al. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic Biol. Med. 2017, 112, 360–375. [Google Scholar] [CrossRef]
- Capitan, P.; Malmezat, T.; Breuillé, D.; Obled, C. Gas chromatographic-mass spectrometric analysis of stable isotopes of cysteine and in biological samples. J. Chromatogr. B 1999, 732, 127–135. [Google Scholar] [CrossRef]
- Küster, A.; Tea, I.; Sweeten, S.; Rozé, J.C.; Robins, R.J.; Darmaun, D. Simultaneous determination of glutathione and cysteine concentrations and 2H enrichments in microvolumes of neonatal blood using gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2008, 390, 1403–1412. [Google Scholar] [CrossRef]
- Manca, A.; Alladio, E.; Massarenti, P.; Puccinelli, M.P.; De Francesco, A.; Del Grosso, E.; Mengozzi, G.; Pazzi, M.; Vincenti, M. “One-pot” ethyl chloroformate derivatization and liquid-liquid extraction of reduced glutathione in erythrocyte and its quantitative GC-MS analysis. J. Chromatogr. B 2017, 1070, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D.; Hanff, E.; Kayacelebi, A.A.; Böhmer, A. Gas chromatographic-mass spectrometric analysis of the tripeptide glutathione in the electron-capture negative-ion chemical ionization mode. Amino Acids 2016, 48, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Pentafluorobenzyl bromide-A versatile derivatization agent in chromatography and mass spectrometry: I. Analysis of inorganic anions and organophosphates. J. Chromatogr B Anal. Technol Biomed. Life Sci. 2017, 1043, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Hanff, E.; Ruben, S.; Kreuzer, M.; Bollenbach, A.; Kayacelebi, A.A.; Das, A.M.; von Versen-Höynck, F.; von Kaisenberg, C.; Haffner, D.; Ückert, S.; et al. Development and validation of GC-MS methods for the comprehensive analysis of amino acids in plasma and urine and applications to the HELLP syndrome and pediatric kidney transplantation: Evidence of altered methylation, transamidination, and arginase activity. Amino Acids 2019, 51, 529–547. [Google Scholar]
- Bollenbach, A.; Tsikas, D. Measurement of the Tripeptides Glutathione and Ophthalmic Acid by Gas Chromatography-Mass Spectrometry. Anal. Biochem. 2022, 644, 113841. [Google Scholar] [CrossRef] [PubMed]
- Bollenbach, A.; Baskal, S.; Mels, C.; Kruger, R.; Tsikas, D. Unusual Derivatization of Methylmalonic Acid with Pentafluorobenzyl Bromide to a Tripentafluorobenzyl Derivative and Its Stable-Isotope Dilution GC-MS Measurement in Human Urine. Molecules 2022, 27, 5202. [Google Scholar] [CrossRef]
- Baskal, S.; Bollenbach, A.; Henzi, B.; Hafner, P.; Fischer, D.; Tsikas, D. Stable-Isotope Dilution GC–MS Measurement of Metformin in Human Serum and Urine after Derivatization with Pentafluoropropionic Anhydride and Its Application in Becker Muscular Dystrophy Patients Administered with Metformin, L-Citrulline, or Their Combination. Molecules 2022, 27, 3850. [Google Scholar] [CrossRef]
- Baskal, S.; Bollenbach, A.; Tsikas, D. GC-MS Discrimination of Citrulline from Ornithine and Homocitrulline from Lysine by Chemical Derivatization: Evidence of Formation of N5-Carboxy-Ornithine and N6-Carboxy-Lysine. Molecules 2021, 26, 2301. [Google Scholar] [CrossRef]
- Baskal, S.; Bollenbach, A.; Tsikas, D. Two-Step Derivatization of Amino Acids for Stable-Isotope Dilution Gc–Ms Analysis: Long-Term Stability of Methyl Ester-Pentafluoropropionic Derivatives in Toluene Extracts. Molecules 2021, 26, 1726. [Google Scholar] [CrossRef]
- Orlowski, M.; Richman, P.G.; Meister, A. Isolation and properties of gamma-L-glutamylcyclotransferase from human brain. Biochemistry 1969, 8, 1048–1055. [Google Scholar] [CrossRef]
- Purwaha, P.; Silva, L.P.; Hawke, D.H.; Weinstein, J.N.; Lorenzi, P.L. An artifact in LC-MS/MS measurement of glutamine and glutamic acid: In-source cyclization to pyroglutamic acid. Anal. Chem. 2014, 86, 5633–5637. [Google Scholar] [CrossRef]
- Tsikas, D. GC-MS Analysis of Biological Nitrate and Nitrite Using Pentafluorobenzyl Bromide in Aqueous Acetone: A Dual Role of Carbonate/Bicarbonate as an Enhancer and Inhibitor of Derivatization. Molecules 2021, 26, 7003. [Google Scholar] [CrossRef] [PubMed]
- Márquez, C.D.; Weintraub, S.T.; Smith, P.C. Femtomole detection of amino acids and dipeptides by gas chromatography-negative-ion chemical ionization mass spectrometry following alkylation with pentafluorobenzyl bromide. J. Chromatogr. B 1994, 658, 213–221. [Google Scholar] [CrossRef]
- Márquez, C.D.; Weintraub, S.T.; Smith, P.C. Quantitative analysis of exogenous peptides in plasma using immobilized enzyme cleavage and gas chromatography-mass spectrometry with negative ion chemical ionization. J. Chromatogr. B 1977, 1700, 9–21. [Google Scholar] [CrossRef]
- Stressler, T.; Eisele, T.; Schlayer, M.; Fischer, L. Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. Lactis DSM 20481. AMB Express 2012, 2, 39. [Google Scholar] [CrossRef] [PubMed]
- Mitoma, C.; Smith, T.E.; Dacosta, F.M.; Udenfriend, S.; Patchett, A.A.; Witkop, B. Studies on 4-keto-L-proline. Science 1959, 129, 95–96. [Google Scholar] [CrossRef]
- Palekar, A.G.; Tate, S.S.; Meister, A. Formation of 5-oxoproline from glutathione in erythrocytes by the gamma-glutamyltranspeptidase-cyclotransferase pathway. Proc. Natl. Acad. Sci. USA 1974, 71, 293–297. [Google Scholar] [CrossRef]
- Wilk, S.; Orlowski, M. Determination of pyrrolidine carboxylate and gamma-glutamyl amino acids by gas chromatography. Anal. Biochem. 1975, 69, 100–113. [Google Scholar] [CrossRef]
- Cooper, A.J.; Dhar, A.K.; Kutt, H.; Duffy, T.E. Determination of 2-pyrrolidone-5-carboxylic and alpha-ketoglutaramic acids in human cerebrospinal fluid by gas chromatography. Anal. Biochem. 1980, 103, 118–126. [Google Scholar] [CrossRef]
- Kobayashi, S.; Tokairin, Y.; Miyakoshi, T.; Saito, T.; Nagaoka, K.; Ikeda, Y.; Fujii, J.; Konno, H. Quantitative analysis of γ-glutamylpeptides by liquid chromatography-mass spectrometry and application for γ-glutamyltransferase assays. Anal. Biochem. 2019, 578, 13–22. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Gowda, Y.N.; Raftery, D. Massive glutamine cyclization to pyroglutamic acid in human serum discovered using NMR spectroscopy. Anal. Chem. 2015, 87, 3800–3805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csekő, K.; Pécsi, D.; Kajtár, B.; Hegedűs, I.; Bollenbach, A.; Tsikas, D.; Szabó, I.L.; Szabó, S.; Helyes, Z. Upregulation of the TRPA1 Ion Channel in the Gastric Mucosa after Iodoacetamide-Induced Gastritis in Rats: A Potential New Therapeutic Target. Int. J. Mol. Sci. 2020, 21, 5591. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bollenbach, A.; Tsikas, D. GC-MS Studies on the Conversion and Derivatization of γ-Glutamyl Peptides to Pyroglutamate (5-Oxo-Proline) Methyl Ester Pentafluoropropione Amide Derivatives. Molecules 2022, 27, 6020. https://doi.org/10.3390/molecules27186020
Bollenbach A, Tsikas D. GC-MS Studies on the Conversion and Derivatization of γ-Glutamyl Peptides to Pyroglutamate (5-Oxo-Proline) Methyl Ester Pentafluoropropione Amide Derivatives. Molecules. 2022; 27(18):6020. https://doi.org/10.3390/molecules27186020
Chicago/Turabian StyleBollenbach, Alexander, and Dimitrios Tsikas. 2022. "GC-MS Studies on the Conversion and Derivatization of γ-Glutamyl Peptides to Pyroglutamate (5-Oxo-Proline) Methyl Ester Pentafluoropropione Amide Derivatives" Molecules 27, no. 18: 6020. https://doi.org/10.3390/molecules27186020
APA StyleBollenbach, A., & Tsikas, D. (2022). GC-MS Studies on the Conversion and Derivatization of γ-Glutamyl Peptides to Pyroglutamate (5-Oxo-Proline) Methyl Ester Pentafluoropropione Amide Derivatives. Molecules, 27(18), 6020. https://doi.org/10.3390/molecules27186020