The Influence of Magnetic Composite Capsule Structure and Size on Their Trapping Efficiency in the Flow
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. SPIM-Fluid Imaging Flow Cytometer
- A light-sheet illumination subsystem: CW diode lasers of 488 nm (Cobolt MLD 06-01, Hübner Photonics, Kassel, Germany), 3.5× beam expander (formed by the pair of lenses: LA1131-A and LA1229-A, Thorlabs, Newton, NJ, USA), the light-sheet forming system that consists of a cylindrical lens (f = 50 mm, LJ1695RM-A, Thorlabs, Newton, NJ, USA) and an objective (4×, NA = 0.13, CFI Plan Fluor, Nikon, Tokyo, Japan).
- A modified image detection subsystem: spatial splitter of FITC and TRITC channel images on the camera (Dhyana 400BSI, Tucsen) placed between an objective (MO, 10×, NA = 0.3, CFI Plan Fluor, Nikon, Tokyo, Japan) and a tube lens (LBF254-200-A, Thorlabs). The spatial splitter consists of a dichroic mirror (T560lpxr, Chroma), 2 broadband silver mirrors, fluorescence filters (FITC Emission Filter-MF530-43, TRITC/CY3.5 Emission Filter-MF620-52, Thorlabs, Newton, NJ, USA), and a tilted beam splitter (BSW10R, Thorlabs, Newton, NJ, USA).
- A flow cell: UV Quartz clear flow-through cuvette (526UV0.25, FireflySci, New York, NY, USA) hermetically connected with a syringe pump (AL-1000, World Precision Instruments, Sarasota, FL, USA) by plastic tubing. The source of the magnetic field is the permanent rare earth magnet with a custom magnetic field concentrator that provides a magnetic field strength of up to 0.3 T in the position at the edge of the flow cell channel.
4.3. Preparation of Magnetic Fluorescent Polyelectrolyte Microcapsules
4.3.1. Syntheses of Calcium Carbonate Microparticles of Various Sizes
4.3.2. Magnetite Nanoparticles Synthesis
4.3.3. Preparation of the BSA-FITC Conjugate
4.3.4. Loading of Calcium Carbonate Microparticles with MNPs
4.3.5. Formation of Multilayer Shells
4.4. Characterization of Magnetic Microcapsules
4.4.1. Magnetic Force Microscopy Characterization of Magnetic Microcapsules
4.4.2. The Efficiency of the Magnetic Trapping of Capsules
4.5. Cell Model
4.5.1. Cells Preparation
4.5.2. Comparative Evaluation of Capsules’ Internalization Efficiency
4.5.3. The Efficiency of the Magnetic Capture of Cells
4.5.4. Evaluation of the Membrane Integrity of Magnetically Captured Cells
4.6. Data Analysis
Magnetic Capsules’ Capture
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Philipp, A.B.; Stieber, P.; Nagel, D.; Neumann, J.; Spelsberg, F.; Jung, A.; Lamerz, R.; Herbst, A.; Kolligs, F.T. Prognostic Role of Methylated Free Circulating DNA in Colorectal Cancer. Int. J. Cancer 2012, 131, 2308–2319. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yi, M.; Dong, B.; Tan, X.; Luo, S.; Wu, K. The Role of Exosomes in Liquid Biopsy for Cancer Diagnosis and Prognosis Prediction. Int. J. Cancer 2021, 148, 2640–2651. [Google Scholar] [CrossRef] [PubMed]
- Hiltermann, T.J.N.; Pore, M.M.; van den Berg, A.; Timens, W.; Boezen, H.M.; Liesker, J.J.W.; Schouwink, J.H.; Wijnands, W.J.A.; Kerner, G.S.M.A.; Kruyt, F.A.E.; et al. Circulating Tumor Cells in Small-Cell Lung Cancer: A Predictive and Prognostic Factor. Ann. Oncol. 2012, 23, 2937–2942. [Google Scholar] [CrossRef] [PubMed]
- Voronin, D.V.; Kozlova, A.A.; Verkhovskii, R.A.; Ermakov, A.V.; Makarkin, M.A.; Inozemtseva, O.A.; Bratashov, D.N. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int. J. Mol. Sci. 2020, 21, 2323. [Google Scholar] [CrossRef]
- Coumans, F.; Terstappen, L. Detection and Characterization of Circulating Tumor Cells by the CellSearch Approach. Methods Mol. Biol. 2015, 1347, 263–278. [Google Scholar] [CrossRef]
- Eifler, R.L.; Lind, J.; Falkenhagen, D.; Weber, V.; Fischer, M.B.; Zeillinger, R. Enrichment of Circulating Tumor Cells from a Large Blood Volume Using Leukapheresis and Elutriation: Proof of Concept. Cytom. Part B Clin. Cytom. 2011, 80B, 100–111. [Google Scholar] [CrossRef]
- Liu, P.; Jonkheijm, P.; Terstappen, L.W.M.M.; Stevens, M. Magnetic Particles for CTC Enrichment. Cancers 2020, 12, 3525. [Google Scholar] [CrossRef]
- Verkhovskii, R.A.; Kozlova, A.A.; Sindeeva, O.A.; Kozhevnikov, I.O.; Prikhozhdenko, E.S.; Mayorova, O.A.; Grishin, O.V.; Makarkin, M.A.; Ermakov, A.V.; Abdurashitov, A.S.; et al. Lightsheet-Based Flow Cytometer for Whole Blood with the Ability for the Magnetic Retrieval of Objects from the Blood Flow. Biomed. Opt. Express 2021, 12, 380. [Google Scholar] [CrossRef]
- Xue, M.; Xiang, A.; Guo, Y.; Wang, L.; Wang, R.; Wang, W.; Ji, G.; Lu, Z. Dynamic Halbach Array Magnet Integrated Microfluidic System for the Continuous-Flow Separation of Rare Tumor Cells. RSC Adv. 2019, 9, 38496–38504. [Google Scholar] [CrossRef]
- Antipina, M.N.; Sukhorukov, G.B. Remote Control over Guidance and Release Properties of Composite Polyelectrolyte Based Capsules. Adv. Drug Deliv. Rev. 2011, 63, 716–729. [Google Scholar] [CrossRef]
- Verkhovskii, R.; Ermakov, A.; Sindeeva, O.; Prikhozhdenko, E.; Kozlova, A.; Grishin, O.; Makarkin, M.; Gorin, D.; Bratashov, D. Effect of Size on Magnetic Polyelectrolyte Microcapsules Behavior: Biodistribution, Circulation Time, Interactions with Blood Cells and Immune System. Pharmaceutics 2021, 13, 2147. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, E.; Mateos-Maroto, A.; Ruano, M.; Ortega, F.; Rubio, R.G. Layer-by-Layer Polyelectrolyte Assemblies for Encapsulation and Release of Active Compounds. Adv. Colloid Interface Sci. 2017, 249, 290–307. [Google Scholar] [CrossRef] [PubMed]
- Valdepérez, D.; del Pino, P.; Sánchez, L.; Parak, W.J.; Pelaz, B. Highly Active Antibody-Modified Magnetic Polyelectrolyte Capsules. J. Colloid Interface Sci. 2016, 474, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Voronin, D.V.; Sindeeva, O.A.; Kurochkin, M.A.; Mayorova, O.; Fedosov, I.V.; Semyachkina-Glushkovskaya, O.; Gorin, D.A.; Tuchin, V.V.; Sukhorukov, G.B. In Vitro and in Vivo Visualization and Trapping of Fluorescent Magnetic Microcapsules in a Bloodstream. ACS Appl. Mater. Interfaces 2017, 9, 6885–6893. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Zeng, J.; Mu, B.; Liu, P. Biocompatible Magnetic and Molecular Dual-Targeting Polyelectrolyte Hybrid Hollow Microspheres for Controlled Drug Release. Mol. Pharm. 2013, 10, 1705–1715. [Google Scholar] [CrossRef]
- De Koker, S.; De Geest, B.G.; Cuvelier, C.; Ferdinande, L.; Deckers, W.; Hennink, W.E.; De Smedt, S.C.; Mertens, N. In Vivo Cellular Uptake, Degradation, and Biocompatibility of Polyelectrolyte Microcapsules. Adv. Funct. Mater. 2007, 17, 3754–3763. [Google Scholar] [CrossRef]
- Sindeeva, O.A.; Verkhovskii, R.A.; Abdurashitov, A.S.; Voronin, D.V.; Gusliakova, O.I.; Kozlova, A.A.; Mayorova, O.A.; Ermakov, A.V.; Lengert, E.V.; Navolokin, N.A.; et al. Effect of Systemic Polyelectrolyte Microcapsule Administration on the Blood Flow Dynamics of Vital Organs. ACS Biomater. Sci. Eng. 2020, 6, 389–397. [Google Scholar] [CrossRef]
- Wattendorf, U.; Kreft, O.; Textor, M.; Sukhorukov, G.B.; Merkle, H.P. Stable Stealth Function for Hollow Polyelectrolyte Microcapsules through a Poly(Ethylene Glycol) Grafted Polyelectrolyte Adlayer. Biomacromolecules 2008, 9, 100–108. [Google Scholar] [CrossRef]
- German, S.V.; Novoselova, M.V.; Bratashov, D.N.; Demina, P.A.; Atkin, V.S.; Voronin, D.V.; Khlebtsov, B.N.; Parakhonskiy, B.V.; Sukhorukov, G.B.; Gorin, D.A. High-Efficiency Freezing-Induced Loading of Inorganic Nanoparticles and Proteins into Micron- and Submicron-Sized Porous Particles. Sci. Rep. 2018, 8, 17763. [Google Scholar] [CrossRef]
- De Geest, B.G.; Sukhorukov, G.B.; Möhwald, H. The Pros and Cons of Polyelectrolyte Capsules in Drug Delivery. Expert Opin. Drug Deliv. 2009, 6, 613–624. [Google Scholar] [CrossRef]
- Salem, S.; Tuchin, V.V. Trapping of Magnetic Nanoparticles in the Blood Stream under the Influence of a Magnetic Field. Izv. Saratov Univ. New Ser. Ser. Phys. 2020, 20, 72–79. [Google Scholar] [CrossRef]
- Salem, S.; Tuchin, V. Magnetic Particle Trapping in a Branched Blood Vessel in the Presence of Magnetic Field. J. Biomed. Photonics Eng. 2020, 6, 040302. [Google Scholar] [CrossRef]
- Manshadi, M.K.D.; Saadat, M.; Mohammadi, M.; Shamsi, M.; Dejam, M.; Kamali, R.; Sanati-Nezhad, A. Delivery of Magnetic Micro/Nanoparticles and Magnetic-Based Drug/Cargo into Arterial Flow for Targeted Therapy. Drug Deliv. 2018, 25, 1963–1973. [Google Scholar] [CrossRef] [PubMed]
- Heidsieck, A.; Vosen, S.; Zimmermann, K.; Wenzel, D.; Gleich, B. Analysis of Trajectories for Targeting of Magnetic Nanoparticles in Blood Vessels. Mol. Pharm. 2012, 9, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Ram, P. Capturing of Magnetic Nanoparticles in a Fluidic Channel for Magnetic Drug Targeting. J. Nanosci. Nanotechnol. 2021, 21, 3588–3595. [Google Scholar] [CrossRef]
- Zebli, B.; Susha, A.S.; Sukhorukov, G.B.; Rogach, A.L.; Parak, W.J. Magnetic Targeting and Cellular Uptake of Polymer Microcapsules Simultaneously Functionalized with Magnetic and Luminescent Nanocrystals. Langmuir 2005, 21, 4262–4265. [Google Scholar] [CrossRef] [PubMed]
- Verkhovskii, R.; Kozlova, A.; Ermakov, A.; Lengert, E.; Bratashov, D. Investigation of Polyelectrolyte Microcapsule Aggregation in Human Blood. In Proceedings of the Saratov Fall Meeting 2018: Optical and Nano-Technologies for Biology and Medicine, Saratov, Russia, 24–28 September 2018; Tuchin, V.V., Genina, E.A., Eds.; SPIE: Washington, DC, USA, 2019; p. 85. [Google Scholar]
- Markov, M.S. Magnetic Field Therapy: A Review. Electromagn. Biol. Med. 2007, 26, 1–23. [Google Scholar] [CrossRef]
- Stafford, R.J. The Physics of Magnetic Resonance Imaging Safety. Magn. Reson. Imaging Clin. N. Am. 2020, 28, 517–536. [Google Scholar] [CrossRef]
- Ziegelberger, G. Guidelines for Limiting Exposure to Electric Fields Induced by Movement of the Human Body in a Static Magnetic Field and by Time-Varying Magnetic Fields below 1 Hz. Health Phys. 2014, 106, 418–425. [Google Scholar] [CrossRef]
- Vavaev, E.S.; Novoselova, M.; Shchelkunov, N.M.; German, S.; Komlev, A.S.; Mokrousov, M.D.; Zelepukin, I.V.; Burov, A.M.; Khlebtsov, B.N.; Lyubin, E.V.; et al. CaCO 3 Nanoparticles Coated with Alternating Layers of Poly-L-Arginine Hydrochloride and Fe 3 O 4 Nanoparticles as Navigable Drug Carriers and Hyperthermia Agents. ACS Appl. Nano Mater. 2022, 5, 2994–3006. [Google Scholar] [CrossRef]
- Trushina, D.B.; Sulyanov, S.N.; Bukreeva, T.V.; Kovalchuk, M.V. Size Control and Structure Features of Spherical Calcium Carbonate Particles. Crystallogr. Rep. 2015, 60, 570–577. [Google Scholar] [CrossRef]
- Febrida, R.; Cahyanto, A.; Herda, E.; Muthukanan, V.; Djustiana, N.; Faizal, F.; Panatarani, C.; Joni, I.M. Synthesis and Characterization of Porous CaCO3 Vaterite Particles by Simple Solution Method. Materials 2021, 14, 4425. [Google Scholar] [CrossRef] [PubMed]
- Pomeransky, A.A.; Khriplovich, I.B. Equations of Motion of Spinning Relativistic Particle in External Fields. Surv. High Energy Phys. 1999, 14, 145–173. [Google Scholar] [CrossRef]
- Shevkoplyas, S.S.; Siegel, A.C.; Westervelt, R.M.; Prentiss, M.G.; Whitesides, G.M. The Force Acting on a Superparamagnetic Bead Due to an Applied Magnetic Field. Lab Chip 2007, 7, 1294. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, F.; Yoneda, K.; Kondo, N.; Hashimoto, M.; Takuwa, T.; Matsumoto, S.; Okumura, Y.; Rahman, S.; Tsubota, N.; Tsujimura, T.; et al. Circulating Tumor Cell as a Diagnostic Marker in Primary Lung Cancer. Clin. Cancer Res. 2009, 15, 6980–6986. [Google Scholar] [CrossRef]
- Mocellin, S.; Hoon, D.; Ambrosi, A.; Nitti, D.; Rossi, C.R. The Prognostic Value of Circulating Tumor Cells in Patients with Melanoma: A Systematic Review and Meta-Analysis. Clin. Cancer Res. 2006, 12, 4605–4613. [Google Scholar] [CrossRef]
- Riethdorf, S.; Fritsche, H.; Müller, V.; Rau, T.; Schindlbeck, C.; Rack, B.; Janni, W.; Coith, C.; Beck, K.; Jänicke, F.; et al. Detection of Circulating Tumor Cells in Peripheral Blood of Patients with Metastatic Breast Cancer: A Validation Study of the CellSearch System. Clin. Cancer Res. 2007, 13, 920–928. [Google Scholar] [CrossRef]
- Lu, X.; Tan, S.; Wu, M.; Ju, H.; Liang, X.; Li, P. Evaluation of a New Magnetic Bead as an Integrated Platform for Systematic CTC Recognition, Capture and Clinical Analysis. Colloids Surf. B Biointerfaces 2021, 199, 111542. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, X.; Chen, Q.; Jiang, P.; Lan, F.; Yi, Q.; Wu, Y. Multi-Targeting Magnetic Hyaluronan Capsules Efficiently Capturing Circulating Tumor Cells. J. Colloid Interface Sci. 2019, 545, 94–103. [Google Scholar] [CrossRef]
- Sun, B.; Sun, Y.; Li, X.; Jiang, S.; Sun, L. Particle and Bacteria Uptake by Japanese Flounder (Paralichthys Olivaceus) Red Blood Cells: Size Dependence and Pathway Specificity. Tissue Cell 2019, 61, 79–88. [Google Scholar] [CrossRef]
- White, J.G. Platelets Are Covercytes, Not Phagocytes: Uptake of Bacteria Involves Channels of the Open Canalicular System. Platelets 2005, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Demina, P.A.; Sindeeva, O.A.; Abramova, A.M.; Prikhozhdenko, E.S.; Verkhovskii, R.A.; Lengert, E.V.; Sapelkin, A.V.; Goryacheva, I.Y.; Sukhorukov, G.B. Fluorescent Convertible Capsule Coding Systems for Individual Cell Labeling and Tracking. ACS Appl. Mater. Interfaces 2021, 13, 19701–19709. [Google Scholar] [CrossRef] [PubMed]
- Caruso, F.; Susha, A.S.; Giersig, M.; Möhwald, H. Magnetic Core-Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres. Adv. Mater. 1999, 11, 950–953. [Google Scholar] [CrossRef]
- Gaponik, N.; Radtchenko, I.L.; Sukhorukov, G.B.; Rogach, A.L. Luminescent Polymer Microcapsules Addressable by a Magnetic Field. Langmuir 2004, 20, 1449–1452. [Google Scholar] [CrossRef]
- Koo, H.Y.; Chang, S.T.; Choi, W.S.; Park, J.-H.; Kim, D.-Y.; Velev, O.D. Emulsion-Based Synthesis of Reversibly Swellable, Magnetic Nanoparticle-Embedded Polymer Microcapsules. Chem. Mater. 2006, 18, 3308–3313. [Google Scholar] [CrossRef]
- Gorin, D.A.; Portnov, S.A.; Inozemtseva, O.A.; Luklinska, Z.; Yashchenok, A.M.; Pavlov, A.M.; Skirtach, A.G.; Möhwald, H.; Sukhorukov, G.B. Magnetic/Gold Nanoparticle Functionalized Biocompatible Microcapsules with Sensitivity to Laser Irradiation. Phys. Chem. Chem. Phys. 2008, 10, 6899. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Nie, W.; Song, L.; Li, J.; Yang, B. Fabrication of Uniform “Smart” Magnetic Microcapsules and Their Controlled Release of Sodium Salicylate. J. Mater. Chem. B 2013, 1, 4331. [Google Scholar] [CrossRef]
- Lu, Z.; Prouty, M.D.; Guo, Z.; Golub, V.O.; Kumar, C.S.S.R.; Lvov, Y.M. Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles. Langmuir 2005, 21, 2042–2050. [Google Scholar] [CrossRef]
- Zheng, C.; Ding, Y.; Liu, X.; Wu, Y.; Ge, L. Highly Magneto-Responsive Multilayer Microcapsules for Controlled Release of Insulin. Int. J. Pharm. 2014, 475, 17–24. [Google Scholar] [CrossRef]
- Hu, S.-H.; Tsai, C.-H.; Liao, C.-F.; Liu, D.-M.; Chen, S.-Y. Controlled Rupture of Magnetic Polyelectrolyte Microcapsules for Drug Delivery. Langmuir 2008, 24, 11811–11818. [Google Scholar] [CrossRef]
- Katagiri, K.; Nakamura, M.; Koumoto, K. Magnetoresponsive Smart Capsules Formed with Polyelectrolytes, Lipid Bilayers and Magnetic Nanoparticles. ACS Appl. Mater. Interfaces 2010, 2, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, P.; Hall, J.B.; McLeland, C.B.; Dobrovolskaia, M.A.; McNeil, S.E. Nanoparticle Interaction with Plasma Proteins as It Relates to Particle Biodistribution, Biocompatibility and Therapeutic Efficacy. Adv. Drug Deliv. Rev. 2009, 61, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, A.; Rezvani, Z.; Ramedani, A.; Gholipourmalekabadi, M.; Chauhan, N.P.S.; Moztarzadeh, S.; Urbanska, A.; Mozafari, M. Nanobiomaterials Set to Revolutionize Drug-Delivery Systems for the Treatment of Diabetes. In Nanobiomaterials in Drug Delivery; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 9, pp. 487–514. ISBN 9780323428897. [Google Scholar]
- Burmistrov, I.A.; Trushina, D.B.; Borodina, T.N.; Veselov, M.M.; Klyachko, N.L.; Zaitsev, V.B.; González-Alfaro, Y.; Bukreeva, T.V. The Influence of a Low-Frequency Magnetic Field on Polyelectrolyte Capsules with Magnetite Nanoparticles. Tech. Phys. 2020, 65, 1370–1376. [Google Scholar] [CrossRef]
- Deng, Z.J.; Liang, M.; Toth, I.; Monteiro, M.; Minchin, R.F. Plasma Protein Binding of Positively and Negatively Charged Polymer-Coated Gold Nanoparticles Elicits Different Biological Responses. Nanotoxicology 2012, 7, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Kendall, M.; Ding, P.; Kendall, K. Particle and Nanoparticle Interactions with Fibrinogen: The Importance of Aggregation in Nanotoxicology. Nanotoxicology 2011, 5, 55–65. [Google Scholar] [CrossRef]
- Ge, L.; Tan, X.; Sheng, R.; Xiao, J. Layer-by-Layer Self-Assembly of Giant Polyelectrolyte Microcapsules Templated by Microbubbles as Potential Hydrophilic or Hydrophobic Drug Delivery System. Colloid Interface Sci. Commun. 2022, 47, 100603. [Google Scholar] [CrossRef]
- Camaro, C.; Aengevaeren, W.R.M. Acute Myocardial Infarction Due to Coronary Artery Embolism in a Patient with Atrial Fibrillation. Neth. Heart J. 2009, 17, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Chueh, J.-Y.; Kühn, A.L.; Puri, A.S.; Wilson, S.D.; Wakhloo, A.K.; Gounis, M.J. Reduction in Distal Emboli With Proximal Flow Control During Mechanical Thrombectomy. Stroke 2013, 44, 1396–1401. [Google Scholar] [CrossRef]
- Verkhovskii, R.A.; Lengert, E.V.; Saveleva, M.S.; Kozlova, A.A.; Tuchin, V.V.; Svenskaya, Y.I. Cellular Uptake Study of Antimycotic-Loaded Carriers Using Imaging Flow Cytometry and Confocal Laser Scanning Microscopy. Opt. Spectrosc. 2020, 128, 799–808. [Google Scholar] [CrossRef]
- Jiskoot, W.; van Schie, R.M.F.; Carstens, M.G.; Schellekens, H. Immunological Risk of Injectable Drug Delivery Systems. Pharm. Res. 2009, 26, 1303–1314. [Google Scholar] [CrossRef]
- Uribe-Querol, E.; Rosales, C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front. Immunol. 2020, 11, 1066. [Google Scholar] [CrossRef] [PubMed]
- Gualda, E.J.; Pereira, H.; Vale, T.; Estrada, M.F.; Brito, C.; Moreno, N. SPIM-Fluid: Open Source Light-Sheet Based Platform for High-Throughput Imaging. Biomed. Opt. Express 2015, 6, 4447. [Google Scholar] [CrossRef] [PubMed]
- Volodkin, D.V.; Larionova, N.I.; Sukhorukov, G.B. Protein Encapsulation via Porous CaCO3 Microparticles Templating. Biomacromolecules 2004, 5, 1962–1972. [Google Scholar] [CrossRef]
- Kozlova, A.A.; German, S.V.; Atkin, V.S.; Zyev, V.V.; Astle, M.; Bratashov, D.N.; Svenskaya, Y.I.; Gorin, D.A. Magnetic Composite Submicron Carriers with Structure-Dependent MRI Contrast. Inorganics 2020, 8, 11. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verkhovskii, R.; Ermakov, A.; Grishin, O.; Makarkin, M.A.; Kozhevnikov, I.; Makhortov, M.; Kozlova, A.; Salem, S.; Tuchin, V.; Bratashov, D. The Influence of Magnetic Composite Capsule Structure and Size on Their Trapping Efficiency in the Flow. Molecules 2022, 27, 6073. https://doi.org/10.3390/molecules27186073
Verkhovskii R, Ermakov A, Grishin O, Makarkin MA, Kozhevnikov I, Makhortov M, Kozlova A, Salem S, Tuchin V, Bratashov D. The Influence of Magnetic Composite Capsule Structure and Size on Their Trapping Efficiency in the Flow. Molecules. 2022; 27(18):6073. https://doi.org/10.3390/molecules27186073
Chicago/Turabian StyleVerkhovskii, Roman, Alexey Ermakov, Oleg Grishin, Mikhail A. Makarkin, Ilya Kozhevnikov, Mikhail Makhortov, Anastasiia Kozlova, Samia Salem, Valery Tuchin, and Daniil Bratashov. 2022. "The Influence of Magnetic Composite Capsule Structure and Size on Their Trapping Efficiency in the Flow" Molecules 27, no. 18: 6073. https://doi.org/10.3390/molecules27186073
APA StyleVerkhovskii, R., Ermakov, A., Grishin, O., Makarkin, M. A., Kozhevnikov, I., Makhortov, M., Kozlova, A., Salem, S., Tuchin, V., & Bratashov, D. (2022). The Influence of Magnetic Composite Capsule Structure and Size on Their Trapping Efficiency in the Flow. Molecules, 27(18), 6073. https://doi.org/10.3390/molecules27186073