The Synthesis and Biological Evaluation of Aloe-Emodin-Coumarin Hybrids as Potential Antitumor Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Chemistry
3.2.1. General Procedures for O-Propargyl and O-Butynyl Coumarin Derivatives (2a–m)
3.2.2. General Procedure for the Synthesis of 3-(Bromomethyl)-1,8-Dihydroxyanthracene-9,10-Dione (3)
3.2.3. General Procedure for the Synthesis of 3-(Azidomethyl)-1,8-Dihydroxyanthracene-9,10-Dione (4)
3.2.4. General Procedures for the Synthesis of Aloe-Emodin–Coumarin Hybrids (5)
3.2.5. Procedure for the Synthesis of Compound 6a and 6b
3.2.6. Procedure for the Synthesis of Compound 6c and 6d
3.2.7. Procedure for the Synthesis of Compound 6e
3.2.8. General Procedures for the Synthesis of Aloe-Emodin–Coumarin Hybrids (7a–e)
3.3. Evaluation of the Biological Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Suboj, P.; Babykutty, S.; Gopi, D.R.V.; Nairc, R.S.; Srinivasc, P.; Gopala, S. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-Κb. Eur. J. Pharm. Sci. 2012, 45, 581–591. [Google Scholar] [CrossRef]
- Chen, S.H.; Lin, K.Y.; Chang, C.C.; Fang, C.L.; Lin, C.P. Aloe-emodin-induced apoptosis in human gastric carcinoma cells. Food Chem. Toxicol. 2007, 45, 2296–2303. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Chiang, S.Y.; Lin, J.G.; Yang, J.S.; Ma, Y.S.; Liao, V.L.; Lai, T.Y.; Tang, N.Y.; Chung, J.G. Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells. Anticancer Res. 2010, 30, 945–951. [Google Scholar]
- Tabolacci, C.; Cordella, M.; Turcano, L.; Rossi, S.; Lentini, A.; Mariotti, S.; Nisini, R.; Sette, G.; Eramo, A.; Piredda, L.; et al. Aloe-emodin exerts a potent anticancer and immunomodulatory activity on BRAF-mutated human melanoma cells. Eur. J. Pharmacol. 2015, 762, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.G.; Ge, C.P.; Yuan, P. Aloe-emodin induces autophagy and apoptotic cell death in non-small cell lung cancer cells via Akt/mTOR and MAPK signaling. Eur. J. Pharmacol. 2020, 886, 173550. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhang, H.; Meng, X.; Wang, F.; Wang, P. Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J. Ethnopharmacol. 2014, 153, 846–853. [Google Scholar] [CrossRef]
- Park, M.Y.; Kwon, H.J.; Sung, M.K. Evaluation of aloin and aloe-emodin as anti-inflammatory agents in aloe by using murine macrophages. Biosci. Biotechnol. Biochem. 2009, 73, 828–832. [Google Scholar] [CrossRef]
- Li, S.W.; Yang, T.C.; Lai, C.C.; Huang, S.H.; Liao, J.M.; Lei, W.; Line, Y.J.; Lina, C.W. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur. J. Pharmacol. 2014, 738, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Singh, S.S.; Verma, S.; Kumar, S. Antifungal activity of anthraquinone derivatives from Rheum emodi. J. Ethnopharmacol. 2000, 72, 43–46. [Google Scholar] [CrossRef]
- Dou, F.; Liu, Y.; Liu, L.; Wang, J.; Sun, T.; Mu, F.; Guo, Q.; Guo, C.; Jia, N.; Liu, W.; et al. Aloe-emodin ameliorates renal fibrosis via inhibiting PI3K/Akt/mTOR signaling pathway in vivo and in vitro. Rejuvenation Res. 2019, 22, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Dong, W. Aloe-emodin induces endoplasmic reticulum stress-dependent apoptosis in colorectal cancer cells. Med. Sci. Monit. 2018, 24, 6331–6339. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.L.; Lu, Y.C.; Chung, J.G.; Li, Y.C.; Wang, S.G.; Ng, S.H.; Wu, C.Y.; Su, H.L.; Chen, S.S. Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway. Cancer Lett. 2010, 291, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.Q.; Zhang, J.; Tao, Z.H.; Wang, C.C.; Yan, S.Y.; Zhang, X.W.; Huang, M.Z. Aloe emodin exerts potent anticancer effects in MIAPaCa-2 and PANC-1 human pancreatic adenocarcinoma cell lines through activation of both apoptotic and autophagic pathways, sub-G1 cell cycle arrest and disruption of mitochondrial membrane potential (ΛΨm). J. Buon 2019, 24, 746–753. [Google Scholar]
- Quan, Y.; Gong, L.; He, J.; Zhou, Y.; Liu, M.; Cao, Z.; Li, Y.; Peng, C. Aloe emodin induces hepatotoxicity by activating NF-κB inflammatory pathway and P53 apoptosis pathway in zebrafish. Toxicol. Lett. 2019, 306, 66–79. [Google Scholar] [CrossRef]
- Dong, X.; Fu, J.; Yin, X.; Qu, C.; Yang, C.; He, H.; Ni, J. Induction of apoptosis in HepaRG cell line by aloe-emodin through generation of reactive oxygen species and the mitochondrial pathway. Cell. Physiol. Biochem. 2017, 42, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem. 2014, 22, 3806–3814. [Google Scholar] [CrossRef] [PubMed]
- Salehian, F.; Nadri, H.; Jalili-Baleh, L.; Youseftabar-Miri, L.; Abbas Bukhari, S.N.; Foroumadi, A.; Tüylü Küçükkilinç, T.; Sharifzadeh, M.; Khoobi, M. A review: Biologically active 3,4-heterocycle-fused coumarins. Eur. J. Med. Chem. 2021, 212, 113034. [Google Scholar] [CrossRef] [PubMed]
- Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des. 2004, 10, 3813–3833. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.L.; Zhang, Z.W.; Ravindar, L.; Rakesh, K.P. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur. J. Med. Chem. 2020, 207, 112832. [Google Scholar] [CrossRef]
- Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 2015, 101, 476–495. [Google Scholar] [CrossRef]
- Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem. 2015, 102, 611–630. [Google Scholar] [CrossRef]
- Rubab, L.; Afroz, S.; Ahmad, S.; Hussain, S.; Nawaz, I.; Irfan, A.; Batool, F.; Kotwica-Mojzych, K.; Mojzych, M. An Update on synthesis of coumarin sulfonamides as enzyme inhibitors and anticancer agents. Molecules 2022, 27, 1604. [Google Scholar] [CrossRef]
- Musa, A.M.; Cooperwood, J.S.; Khan, M.O.F. A Review of coumarin derivatives in pharmacotherapy of breast Cancer. Curr. Med. Chem. 2008, 15, 2664–2679. [Google Scholar] [CrossRef]
- Chen, S.; Cho, M.; Karlsberg, K.; Zhou, D.Y.; Yuan, C. Biochemical and biological characterization of a novel anti-aromatase coumarin derivative. J. Biol. Chem. 2004, 279, 48071–48078. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, H.; Wang, X.; Huang, J.; Li, S.; Liu, C.; Dong, R.; Zhu, G.; Duan, C.; Jiang, F.; et al. Discovery of coumarin derivatives as potent and selective cyclin-dependent kinase 9 (CDK9) inhibitors with high antitumour activity. Eur. J. Med. Chem. 2020, 200, 112424. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.; Rawal, R.K. Coumarin Hybrids: Promising scaffolds in the treatment of breast cancer. Mini Rev. Med. Chem. 2019, 19, 1443–1458. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem. 2019, 181, 111587. [Google Scholar] [CrossRef]
- Belluti, F.; Fontana, G.; Dal Bo, L.; Carenini, N.; Giommarelli, C.; Zunino, F. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorg. Med. Chem. 2010, 18, 3543–3550. [Google Scholar] [CrossRef]
- Yu, H.; Hou, Z.; Tian, Y.; Mou, Y.; Guo, C. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer agents. Eur. J. Med. Chem. 2018, 151, 434–449. [Google Scholar] [CrossRef]
- Cui, X.R.; Takahashi, K.; Shimamura, T.; Koyanagi, J.; Komada, F.; Saito, S. Preparation of 1,8-di-O-alkylaloe-emodins and 15-amino-, 15-thiocyano-, and 15-selenocyanochrysophanol derivatives from aloe-emodin and studying their cytotoxic effects. Chem. Pharm. Bull. 2008, 56, 497–503. [Google Scholar] [CrossRef]
- Raushel, J.; Fokin, V.V. Efficient synthesis of 1-sulfonyl-1,2,3-triazoles. Org. Lett. 2010, 12, 4952–4955. [Google Scholar] [CrossRef] [Green Version]
Comp. | Structure | Yield | M.p. | Comp. | Structure | Yield | M.p. |
---|---|---|---|---|---|---|---|
5a | 57% | 252.3–254.1 °C | 5j | 94% | 265.2–266.9 °C | ||
5b | 46% | 272.5–273.8 °C | 5k | 88% | 233.7–235.6 °C | ||
5c | 49% | 274.9–276.9 °C | 5l | 54% | 258.4–260.2 °C | ||
5d | 82% | 286.3–288.1 °C | 5m | 82% | 250.4–251.8 °C | ||
5e | 58% | 245.9–247.8 °C | 7a | 82% | 251.8–252.6 °C | ||
5f | 85% | 283.3–284.8 °C | 7b | 40% | 258.3–259.8 °C | ||
5g | 48% | 281.1–283.3 °C | 7c | 55% | 245.6–247.2 °C | ||
5h | 80% | 248.3–250.2 °C | 7d | 83% | 231.1–232.6 °C | ||
5i | 79% | 249.7–251.5 °C | 7e | 95% | 195.6–197.1 °C |
Compound | IC50 (μmol/L) a, b | |||||
---|---|---|---|---|---|---|
A549 | SGC-7901 | HepG2 | MCF-7 | HCT-8 | Hk-2 | |
5a | 2.57 ± 0.48 | 3.28 ± 0.67 | 7.06 ± 0.27 | 2.34 ± 0.48 | 1.56 ± 0.45 | <1.0 |
5b | >40 | >40 | 21.86 ± 0.75 | 25.27 ± 6.072 | >40 | - |
5c | >40 | 19.30 ± 1.28 | 14.23 ± 2.38 | 31.34 ± 0.62 | 34.07 ± 1.38 | - |
5d | 1.12 ± 0.09 | 0.90 ± 0.12 | 0.99 ± 0.12 | 1.59± 0.58 | 0.48 ± 0.06 | <1.0 |
5e | >40 | >40 | >40 | >40 | >40 | |
5f | 3.82 ± 0.31 | 2.17 ± 0.24 | 1.02 ± 0.44 | 1.68 ± 0.21 | 4.49 ± 0.24 | <10 |
5g | 4.05 ± 1.99 | 9.04 ± 1.17 | 5.01 ± 1.27 | 3.60 ± 0.92 | 5.79 ± 1.24 | <10 |
5h | >40 | >40 | 14.95 ± 1.52 | >40 | >40 | - |
5i | >40 | 16.92 ± 0.12 | 6.96 ± 1.02 | >40 | >40 | - |
5j | 15.34 ± 4.87 | 10.01 ± 1.21 | 4.68 ± 0.66 | 11.16 ± 3.75 | 24.23 ± 1.07 | - |
5k | >40 | 13.45 ± 0.93 | 2.04 ± 0.71 | 9.26 ± 1.00 | >40 | - |
5l | >40 | >40 | >40 | 21.87 ± 2.16 | >40 | - |
5m | >40 | 10.67 ± 0.40 | 3.56 ± 1.03 | 2.35 ± 0.65 | 2.84 ± 1.88 | - |
7a | >40 | 13.95 ± 2.79 | 3.14 ± 1.33 | 3.12 ± 1.31 | >40 | - |
7b | >40 | >40 | >40 | >40 | >40 | - |
7c | >40 | 1.29 ± 0.32 | 1.94 ± 0.74 | 1.56 ± 1.00 | 3.53 ± 0.91 | <10 |
7d | >40 | 32.09 ± 1.23 | >40 | >40 | >40 | - |
7e | >40 | >40 | >40 | >40 | >40 | - |
aloe-emodin | 16.38 ± 2.82 | 10.78 ± 3.54 | 3.61 ± 0.81 | 10.8 ± 0.41 | 16.33 ± 0.67 | - |
etoposide | 3.18 ± 1.36 | 8.30 ± 1.09 | 5.77 ± 0.99 | 5.45 ± 1.14 | 3.40 ± 0.42 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, H.; Hu, Y.; Li, J.; Li, L.; Tian, Y.; Li, X.; Wu, Q.; Zou, Z. The Synthesis and Biological Evaluation of Aloe-Emodin-Coumarin Hybrids as Potential Antitumor Agents. Molecules 2022, 27, 6153. https://doi.org/10.3390/molecules27196153
Shang H, Hu Y, Li J, Li L, Tian Y, Li X, Wu Q, Zou Z. The Synthesis and Biological Evaluation of Aloe-Emodin-Coumarin Hybrids as Potential Antitumor Agents. Molecules. 2022; 27(19):6153. https://doi.org/10.3390/molecules27196153
Chicago/Turabian StyleShang, Hai, Yue Hu, Jingrong Li, Lingyu Li, Yu Tian, Xiaoxue Li, Qi Wu, and Zhongmei Zou. 2022. "The Synthesis and Biological Evaluation of Aloe-Emodin-Coumarin Hybrids as Potential Antitumor Agents" Molecules 27, no. 19: 6153. https://doi.org/10.3390/molecules27196153
APA StyleShang, H., Hu, Y., Li, J., Li, L., Tian, Y., Li, X., Wu, Q., & Zou, Z. (2022). The Synthesis and Biological Evaluation of Aloe-Emodin-Coumarin Hybrids as Potential Antitumor Agents. Molecules, 27(19), 6153. https://doi.org/10.3390/molecules27196153