Silver Catalyzed Site-Selective C(sp3)−H Bond Amination of Secondary over Primary C(sp3)−H Bonds
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Procedures
3.2. General Procedure for the Preparation of 4,5-Dimethyl-5-Phenyl-1,2,3-Oxathiazinane 2,2-Dioxide (1a and 1b)
3.3. General Procedure for the Cytotoxicity Test of Products
3.4. Density Functional Theory (DFT) Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Malini, B.; Purohit, A.; Ganeshapillai, D.; Woo, L.; Potter, B.; Reed, M.J. Inhibition of steroid sulphatase activity by tricyclic coumarin sulphamates. J. Steroid. Biochem. 2000, 75, 253–258. [Google Scholar] [CrossRef]
- Reed, J.E.; Woo, L.; Robinson, J.J.; Leblond, B.; Leese, M.P.; Purohit, A.; Reed, M.J.; Potter, B. 2-difluoromethyloestrone 3-O-sulphamate, a highly potent steroid sulphatase inhibitor. Biochem. Biophys. Res. Commun. 2004, 317, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, E.P.; Wolff, B.; Winiski, A.P.; Billich, A. 6-(2-Adamantan-2-ylidene-hydroxybenzoxazole)-O-sulfamate: A potent non-steroidal irreversible inhibitor of human steroid sulfatase. Bioorg. Med. Chem. Lett. 2003, 13, 4313–4316. [Google Scholar] [CrossRef]
- King, J.F. The Chemistry of Sulphonic Acids, Esters and their Derivatives. J. Sulfur. Chem. 1991, 249–259. [Google Scholar] [CrossRef]
- Spillane, W.J.; Ryder, C.A.; Walsh, M.R.; Curran, P.J.; Concagh, D.G.; Wall, S.N. Sulfamate sweeteners. Food Chem. 1996, 56, 255–261. [Google Scholar] [CrossRef]
- Barsby, T.; Kicklighter, C.E.; Hay, M.E.; Sullards, M.C.; Kubanek, J. Defensive 2-alkylpyrrole sulfamates from the marine annelid Cirriformia tentaculata. J. Nat. Prod. 2003, 66, 1110–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Kim, S.Q.; Zhang, Y.; Liu, Q.; Kim, K.H. Pharmacological inhibition of acyl-coenzyme A: Cholesterol acyltransferase alleviates obesity and insulin resistance in diet-induced obese mice by regulating food intake. Metabolism 2021, 123, 154861. [Google Scholar] [CrossRef]
- Homan, R.W. New anticonvulsants-advances in the treatment of epilepsy. Arch. Intern. Med. 1996, 164, 137–145. [Google Scholar]
- Spillane, W.; Malaubier, J.B. Sulfamic acid and its N-and O-substituted derivatives. Chem. Rev. 2014, 114, 2507–2586. [Google Scholar] [CrossRef]
- Qureshi, A.; Faulkner, D.J. Haplosamates A and B: New steroidal sulfamate esters from two haplosclerid sponges. Tetrahedron 1999, 55, 8323–8330. [Google Scholar] [CrossRef]
- Durán, F.J.; Edelsztein, V.C.; Ghini, A.A.; Rey, M.; Coirini, H.; Dauban, P.; Dodd, R.H.; Burton, G. Synthesis and GABAA receptor activity of 2, 19-sulfamoyl analogues of allopregnanolone. Bioorg. Med. Chem. Lett. 2009, 17, 6526–6533. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, L.; Gorojankina, T.; Dauban, P.; Faure, H.; Ruat, M.; Dodd, R.H. Design and synthesis of cyclic sulfonamides and sulfamates as new calcium sensing receptor agonists. Bioorg. Med. Chem. Lett. 2010, 20, 7483–7487. [Google Scholar] [CrossRef] [PubMed]
- Kraus, G.A.; Bae, J.; Kim, J. Phytochemicals from Echinacea and Hypericum: A direct synthesis of isoligularone. Synth. Commun. 2007, 37, 1251–1257. [Google Scholar] [CrossRef]
- Han, J.; Kang, S.; Lee, H.K. Dynamic kinetic resolution in the stereoselective synthesis of 4, 5-diaryl cyclic sulfamidates by using chiral rhodium-catalyzed asymmetric transfer hydrogenation. Chem. Commun. 2011, 47, 4004–4006. [Google Scholar] [CrossRef] [PubMed]
- Thornton, A.R.; Blakey, S.B. Catalytic metallonitrene/alkyne metathesis: A powerful cascade process for the synthesis of nitrogen-containing molecules. J. Am. Chem. Soc. 2008, 130, 5020–5021. [Google Scholar] [CrossRef] [PubMed]
- Alker, D.; Doyle, K.J.; Harwood, L.M.; McGregor, A. The direct synthesis of the cyclic sulphamidate of (S)-prolinol: SimultaneousN-protection and activation towards nucleophilic displacement of oxygen. Tetrahedron Asymmetry 1990, 1, 877–880. [Google Scholar] [CrossRef]
- Dauban, P.; Rey-Rodriguez, R.; Nasrallah, A. Stereoselective C-N bond-forming reactions through C(sp3)-H bond insertion of metal nitrenoids. In C-H Activation for Asymmetric Synthesis; Wiley: Hoboken, NJ, USA, 2019; pp. 51–76. [Google Scholar]
- van Vliet, K.M.; de Bruin, B. Dioxazolones: Stable substrates for the catalytic transfer of acyl nitrenes. ACS Catal. 2020, 10, 4751–4769. [Google Scholar] [CrossRef]
- Huang, G.H.; Li, J.M.; Huang, J.J.; Lin, J.D.; Chuang, G.J. Cooperative effect of two metals: CoPd(OAc)4-catalyzed C-H amination and aziridination. Chem. Eur. J. 2014, 20, 5240–5243. [Google Scholar] [CrossRef]
- Davies, H.M.; Manning, J.R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature 2008, 451, 417–424. [Google Scholar] [CrossRef]
- Schomaker, J.M.; Rigoli, J.W.; Scamp, R.J. Chemoselective silver-catalyzed nitrene insertion reactions. Pure Appl. Chem. 2014, 86, 381–393. [Google Scholar]
- Corbin, J.R.; Schomaker, J.M. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions. Chem. Commun. 2017, 53, 4346–4349. [Google Scholar] [CrossRef] [PubMed]
- Scamp, R.J.; Scheffer, B.; Schomaker, J.M. Regioselective differentiation of vicinal methylene C-H bonds enabled by silver-catalysed nitrene transfer. Chem. Commun. 2019, 55, 7362–7365. [Google Scholar] [CrossRef]
- Alderson, J.M.; Phelps, A.M.; Scamp, R.J.; Dolan, N.S.; Schomaker, J.M. Ligand-controlled, tunable silver-catalyzed C-H amination. J. Am. Chem. Soc. 2014, 136, 16720–16723. [Google Scholar] [CrossRef]
- Ju, M.; Zerull, E.E.; Roberts, J.M.; Huang, M.; Schomaker, J.M. Silver-catalyzed enantioselective propargylic C-H bond amination through rational ligand design. J. Am. Chem. Soc. 2020, 142, 12930–12936, Correction in J. Am. Chem. Soc. 2021, 143, 10015. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Paretsky, J.; Schomaker, J.M. Rigidifying Ag(I) complexes for selective nitrene transfer. Chem. Cat. Chem. 2020, 12, 3076–3081. [Google Scholar] [CrossRef]
- Huang, M.; Corbin, J.R.; Dolan, N.S.; Schomaker, J.M. Synthesis, Characterization, and Variable-Temperature NMR Studies of Silver(I) Complexes for Selective Nitrene Transfer. Inorg. Chem. 2017, 56, 6725–6733. [Google Scholar] [CrossRef]
- Ju, M.; Huang, M.; Vine, L.E.; Dehghany, M.; Roberts, J.M.; Schomaker, J.M. Tunable catalyst-controlled syntheses of β- and γ-amino alcohols enabled by silver-catalysed nitrene transfer. Nat. Catal. 2019, 2, 899–908. [Google Scholar] [CrossRef]
- Jarrige, L.; Zhou, Z.; Hemming, M.; Meggers, E.J. Efficient amination of activated and non-activated C(sp3)-H bonds with a simple iron–phenanthroline catalyst. Angew. Chem. Int. Ed. 2021, 133, 6384–6389. [Google Scholar] [CrossRef]
- Zhong, D.; Wu, D.; Zhang, Y.; Lu, Z.; Liu, W.B. Synthesis of sultams and cyclic N-sulfonyl ketimines via iron-catalyzed intramolecular aliphatic C-H amidation. Org. Lett. 2019, 21, 5808–5812. [Google Scholar] [CrossRef]
- Liu, W.; Zhong, D.; Yu, C.; Zhang, Y.; Wu, D. Iron-catalyzed intramolecular amination of aliphatic C-H bonds of sulfamate esters with high reactivity and chemoselectivity. Org. Lett. 2019, 21, 2673–2678. [Google Scholar] [CrossRef]
- Paradine, S.M.; White, M.C. Iron-catalyzed intramolecular allylic C-H amination. J. Am. Chem. Soc. 2012, 134, 2036–2039. [Google Scholar] [CrossRef] [PubMed]
- Paradine, S.M.; Griffin, J.R.; Zhao, J.; Petronico, A.L.; Miller, S.M.; Christina White, M. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp3)-H amination. Nat. Chem. 2016, 47, 987–994. [Google Scholar] [CrossRef]
- Clark, J.R.; Feng, K.; Sookezian, A.; White, M. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization. Nat. Chem. 2018, 10, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Tao, J.; Jones, J.E.; Wojtas, L.; Zhang, X.P. Cobalt(II)-catalyzed intramolecular C-H amination with phosphoryl azides: Formation of 6-and 7-membered cyclophosphoramidates. Org. Lett. 2010, 41, 1248–1251. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Jiang, H.; Wojtas, L.; Zhang, X.P. Selective intramolecular C-H amination through the metalloradical activation of azides: Synthesis of 1,3-diamines under neutral and nonoxidative conditions. Angew. Chem. Int. Ed. 2011, 122, 10390–10394. [Google Scholar] [CrossRef]
- Lu, H.; Li, C.; Jiang, H.; Lizardi, C.L.; Zhang, X.P. Chemoselective amination of propargylic C(sp3)-H bonds by cobalt(II)-based metalloradical catalysis. Angew. Chem. Int. Ed. 2014, 53, 7028–7032. [Google Scholar] [CrossRef]
- Li, C.; Lang, K.; Lu, H.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang, X.P. catalytic radical process for enantioselective amination of C(sp3)-H bonds. Angew. Chem. Int. Ed. 2018, 57, 16837–16841. [Google Scholar] [CrossRef]
- Liu, P.; Wong, L.M.; Yuen, W.H.; Che, C.M. Highly efficient alkene epoxidation and aziridination catalyzed by iron(II) salt + 4, 4′, 4′′-Trichloro-2, 2′: 6′, 2′′-terpyridine/4, 4′′-dichloro-4′-O-PEG-OCH3-2, 2′: 6′, 2′′-terpyridine. Org. Lett. 2008, 39, 3275–3278. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, X.; Wong, L.M.; Liu, P.; Huang, J.S.; Che, C.M. Nonheme iron-mediated amination of C(sp3)-H bonds.quinquepyridine-supported iron-imide/nitrene intermediates by experimental studies and dft calculations. J. Am. Chem. Soc. 2013, 135, 7194–7204. [Google Scholar] [CrossRef]
- Shing, K.P.; Liu, Y.; Cao, B.; Chang, X.Y.; You, T.; Che, C.M. N-heterocyclic carbene iron(III) porphyrin-catalyzed intramolecular C(sp3)-H amination of alkyl azides. Angew. Chem. Int. Ed. 2018, 130, 11947–11951. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, L. C-H bond amination by iron-imido/nitrene species. Chin. Sci. Bull. 2012, 19, 2352–2360. [Google Scholar] [CrossRef]
- Wang, P.; Deng, L. Recent advances in iron-catalyzed C-H bond amination via iron imido intermediate. Chin. J. Chem. 2018, 36, 1222–1240. [Google Scholar] [CrossRef]
- Nguyen, Q.; Nguyen, T.; Driver, T.G. Iron(II) bromide-catalyzed intramolecular C-H bond amination [1,2]-shift tandem reactions of aryl azides. J. Am. Chem. Soc. 2013, 135, 620–623. [Google Scholar] [CrossRef]
- Bagh, B.; Broere, D.L.J.; Sinha, V.; Kuijpers, P.F.; Leest, N.; Bruin, B.D.; Demeshko, S.; Siegler, M.A.; Vlugt, J. Catalytic synthesis of N-heterocycles via direct C(sp3)-H amination using an air-stable iron(III) species with a redox-active ligand. J. Am. Chem. Soc. 2017, 139, 5117–5124. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, S.; Fan, X.; Yang, T.; Yu, W. Iron-catalyzed intramolecular C-H amination of α-azidyl amides. Org. Lett. 2019, 21, 1651–1655. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Kobayashi, M.; Kono, M.; Nemoto, T. Site-selective and chemoselective C-H functionalization for the synthesis of spiroaminals via a silver-catalyzed nitrene transfer reaction. ACS Catal. 2020, 10, 13296–13304. [Google Scholar] [CrossRef]
- Kono, M.; Harada, S.; Nemoto, T. Rhodium-catalyzed stereospecific C-H amination for the construction of spiroaminal cores: Reactivity difference between nitrenoid and carbenoid species against amide functionality. Chem. Asian J. 2017, 23, 7428–7432. [Google Scholar] [CrossRef]
- Roizen, J.L.; Zalatan, D.N.; Du, B. Selective intermolecular amination of C-H bonds at tertiary carbon centers. Angew. Chem. Int. Ed. 2013, 52, 11343–11346. [Google Scholar] [CrossRef]
- Brunard, E.; Boquet, V.; Elslande, E.V.; Saget, T.; Dauban, P. Catalytic intermolecular C(sp3)-H amination: Selective functionalization of tertiary CH bonds vs. activated benzylic CH bonds. J. Am. Chem. Soc. 2021, 143, 6407–6412. [Google Scholar] [CrossRef]
- Kim, S.; Jeoung, D.; Kim, K.; Lee, S.B.; Lee, S.H.; Park, M.S.; Ghosh, P.; Mishra, N.K.; Hong, S.; Kim, I.S. Site-selective C-H amidation of 2-aryl quinazolinones using nitrene surrogates. Eur. J. Org. Chem. 2020, 46, 7134–7143. [Google Scholar] [CrossRef]
- Storch, G.; Heuvel, N.; Miller, S. Site-selective nitrene transfer to conjugated olefins directed by oxazoline peptide ligands. Adv. Synth. Catal. 2020, 362, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Choi, I.; Zerull, E.E.; Schomaker, J.M. Tunable silver-catalyzed nitrene transfer: From chemoselectivity to enantioselective C-H amination. ACS Catal. 2022, 12, 5527–5539. [Google Scholar] [CrossRef]
- Alderson, J.M.; Corbin, J.R.; Schomaker, J.M. Tunable, chemo- and site-selective nitrene transfer reactions through the rational design of silver (I) catalysts. Acc. Chem. Res. 2017, 50, 2147–2158. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Lund, C.J.; Porter, G.J.; Clarke, R.M.; Zheng, S.L.; Cundari, T.R.; Betley, T.A. Enantioselective C-H amination catalyzed by nickel iminyl complexes supported by anionic bisoxazoline (BOX) ligands. J. Am. Chem. Soc. 2021, 143, 817–829. [Google Scholar] [CrossRef]
- Fu, Y.; Zerull, E.E.; Schomaker, J.M.; Liu, P. Origins of catalyst-controlled selectivity in Ag-catalyzed regiodivergent C-H amination. J. Am. Chem. Soc. 2022, 144, 2735–2746. [Google Scholar] [CrossRef]
- Scamp, R.J.; Jirak, J.G.; Dolan, N.S.; Guzei, I.A.; Schomaker, J.M. A general catalyst for site-selective C(sp3)-H bond amination of activated secondary over tertiary alkyl C(sp3)-H Bonds. Org. Lett. 2016, 18, 3014–3017. [Google Scholar] [CrossRef]
- Fiori, K.W.; Espino, C.G.; Brodsky, B.H.; Du Bois, J. A mechanistic analysis of the Rh-catalyzed intramolecular C-H amination reaction. Tetrahedron 2009, 65, 3042–3051. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, D.; Usman, M.; Xue, P.; Liu, W.B. Iron-catalyzed primary C-H amination of sulfamate esters and its application in synthesis of azetidines†. Chin. J. Chem. 2020, 38, 1651–1655. [Google Scholar] [CrossRef]
Entry | Ligand | Silver Salts | Ag:L | Yield b (%) | 1a:1b c | dr(1a) |
---|---|---|---|---|---|---|
1 | L1 | AgOTf | 1:3 | Trace | - | - |
2 | L2 | AgOTf | 1:3 | ND | - | - |
3 | L3 | AgOTf | 1:3 | 30 | 2.5:1 | 4.4:1 |
4 | L4 | AgOTf | 1:3 | 29 | 3.7:1 | 4.7:1 |
5 | L5 | AgOTf | 1:3 | 47 | 5.6:1 | 3.7:1 |
6 | L6 | AgOTf | 1:1 | Trace | - | - |
7 | L7 | AgOTf | 1:1 | ND | - | - |
8 | L8 | AgOTf | 1:3 | Trace | - | - |
9 | L9 | AgOTf | 1:3 | 30 | 6.3:1 | 3.3:1 |
10 | L10 | AgOTf | 1:3 | 53 | >15:1 | 5.1:1 |
11 | L11 | AgOTf | 1:3 | 33 | 8.1:1 | 4.4:1 |
12 | L12 | AgOTf | 1:3 | ND | - | - |
13 | L13 | AgOTf | 1:3 | 35 | 5:1 | 3.2:1 |
14 | L14 | AgOTf | 1:3 | ND | - | - |
Entry | Ligand | Silver Salt | Temperature (°C) | Yield b (%) | 1a:1b c | dr(1a) |
---|---|---|---|---|---|---|
1 | L10 | AgOTf | 75 | 58 | >15:1 | 3.4:1 |
2 | L10 | AgOTf | 65 | 68 | >15:1 | 3.8:1 |
3 | L10 | AgOTf | 55 | 72 | >15:1 | 4.1:1 |
4 | L10 | AgOTf | 45 | 59 | >15:1 | 4.3:1 |
5 | L10 | AgOTf | 35 | 55 | >15:1 | 4.4:1 |
6 | L10 | AgOTf | 25 | 53 | >15:1 | 4.7:1 |
7 | L10 | AgOTf | 0 | 25 | >15:1 | 4.8:1 |
8 | L10 | AgBF4 | 55 | Trace | - | - |
9 | L10 | AgClO4 | 55 | 76 | >15:1 | 5.1:1 |
10 | L10 | AgN(SO2CF3)2 | 55 | 35 | >15:1 | 4.9:1 |
11 | L10 | AgSbF6 | 55 | ND | - | - |
12 | L10 | AgOAc | 55 | 32 | >15:1 | 4.8:1 |
Entry | Catalyst | Oxidant | Yield b (%) | 1a:1b c |
---|---|---|---|---|
1 | AgClO4/L10 | PhIO | 76 | >15:1 |
2 | Fe(OTf)2/bipyridine | PhI(OCOCF3)2 | 75 | 2.5:1 |
3 | [FeIII(Pc)]SbF6 | PhI(OPiv)2 | Trace | - |
4 | [Rh(OAc)2]2 | PhI(OAc)2 | 80 | 3:1 |
5 | Cu(OTf)2/bipyridine | - | Trace | - |
Entry | Products | Survival (%) |
---|---|---|
1 | - | 100% |
2 | 1a | 8.83% |
3 | 2a | 6.69% |
4 | 3a | 9.38% |
5 | 6a | 8.34% |
6 | 7a | 6.51% |
7 | 8a | 8.10% |
8 | 9a | 13.07% |
9 | 12a | 17.71% |
10 | 13a | 17.46% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, L.; Teng, D.; Wang, Z.; Cao, G. Silver Catalyzed Site-Selective C(sp3)−H Bond Amination of Secondary over Primary C(sp3)−H Bonds. Molecules 2022, 27, 6174. https://doi.org/10.3390/molecules27196174
Jiao L, Teng D, Wang Z, Cao G. Silver Catalyzed Site-Selective C(sp3)−H Bond Amination of Secondary over Primary C(sp3)−H Bonds. Molecules. 2022; 27(19):6174. https://doi.org/10.3390/molecules27196174
Chicago/Turabian StyleJiao, Luzhen, Dawei Teng, Zixuan Wang, and Guorui Cao. 2022. "Silver Catalyzed Site-Selective C(sp3)−H Bond Amination of Secondary over Primary C(sp3)−H Bonds" Molecules 27, no. 19: 6174. https://doi.org/10.3390/molecules27196174
APA StyleJiao, L., Teng, D., Wang, Z., & Cao, G. (2022). Silver Catalyzed Site-Selective C(sp3)−H Bond Amination of Secondary over Primary C(sp3)−H Bonds. Molecules, 27(19), 6174. https://doi.org/10.3390/molecules27196174