Evaluation of the Nutritional and Health Values of Selected Polish Mushrooms Considering Fatty Acid Profiles and Lipid Indices
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Research Material
4.2. Analytical Methods
4.2.1. Lipid Extraction and Determination
4.2.2. Fatty Acid Profile Determination
4.2.3. Fatty Acid Chromatographic Separation and Identification
4.3. Lipid Quality Indices
4.3.1. Atherogenic Index (AI) Developed by Ulbritcht and Southgate [33]
4.3.2. Thrombogenic Index (TI) Developed by Ulbritcht and Southgate [33]
4.3.3. Hypocholesterolaemic/Hypercholesterolaemic Ratio (HH) Developed by Santos-Silva and Santos-Silva [41]
4.3.4. Health-Promoting Index (HPI) Developed by Chen et al. [36]
4.4. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanu, P.J.; Zhu, K.; Kanu, J.B.; Zhou, H.; Qian, H.; Zhu, K. Biologically active components and nutraceuticals in sesame and related products: A review and prospect. Trends Food Sci. Technol. 2007, 18, 599–608. [Google Scholar] [CrossRef]
- Decker, E.A. The role of stereospecific saturated fatty acid positions on lipid nutrition. Nutr. Rev. 1996, 54, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Bałasińska, B.; Jank, M.; Kulasek, G. Właściwości i rola wielonienasyconych kwasów tłuszczowych w utrzymaniu zdrowia ludzi i zwierząt. Życie Wet. 2010, 85, 749–756. (In Polish) [Google Scholar]
- Wu, H.; Xu, L.; Ballantyne, C.M. Dietary and pharmacological fatty acids and cardiovascular health. J. Clin. Endocrinol. Metab. 2020, 105, 1030–1045. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef]
- Bird, J.K.; Calder, P.C.; Eggersdorfer, M. The role of n-3 long chain polyunsaturated fatty acids in cardiovascular disease prevention, and interactions with statins. Nutrients 2018, 10, 775. [Google Scholar] [CrossRef] [PubMed]
- Langley, M.R.; Triplet, E.M.; Scarisbrick, I.A. Dietary influence on central nervous system myelin production, injury, and regeneration. Biochim. Biophys. Acta-Mol. Basis Dis. 2020, 1866, 165779. [Google Scholar] [CrossRef]
- Chang, J.P.; Chang, S.; Yang, H.; Chen, H.; Chien, Y.; Yang, B.; Su, H.; Su, K. Omega-3 polyunsaturated fatty acids in cardiovascular diseases comorbid major depressive disorder-results from a randomized controlled trial. Brain Behav. Immun. 2020, 85, 14–20. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Xu, Q.; Chen, S. Omega-3 fatty acids as a treatment for non-alcoholic fatty liver disease in children: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2018, 37, 516–521. [Google Scholar] [CrossRef]
- Magnusson, J.; Ekström, S.; Kull, I.; Håkansson, N.; Nilsson, S.; Wickman, M.; Melén, E.; Risérus, U.; Bergström, A. Polyunsaturated fatty acids in plasma at 8 years and subsequent allergic disease. J. Allergy Clin. Immunol. 2018, 142, 510–516. [Google Scholar] [CrossRef]
- Khalid, A.; Siddiqui, A.J.; Huang, J.; Shamsi, T.; Musharraf, S.G. Alteration of serum free fatty acids are indicators for progression of pre-leukaemia diseases to leukaemia. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Wu, K.; Zhao, T.; Hogstrand, C.; Xu, Y.; Ling, S.; Chen, G.; Luo, Z. FXR-mediated inhibition of autophagy contributes to FA-induced TG accumulation and accordingly reduces FA-induced lipotoxicity. Cell Commun. Signal. 2020, 18, 1–16. [Google Scholar] [CrossRef]
- Cui, Y.Y.; Feng, B.; Wu, G.; Xu, J.; Yang, Z.L. Porcini mushrooms (Boletus sect. Boletus) from China. Fungal Divers. 2016, 81, 189–212. [Google Scholar] [CrossRef]
- Giannaccini, G.; Betti, L.; Palego, L.; Mascia, G.; Schmid, L.; Lanza, M.; Mela, A.; Fabbrini, L.; Biondi, L.; Lucacchini, A. The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environ. Monit. Assess. 2012, 184, 7579–7595. [Google Scholar] [CrossRef] [PubMed]
- García, M.M.; Paula, V.B.; Olloqui, N.D.; García, D.F.; Combarros-Fuertes, P.; Estevinho, L.M.; Gonzalez Arias, L.; Renes Banuelos, E.; Fresno Baro, J.M. Effect of different cooking methods on the total phenolic content, antioxidant activity and sensory properties of wild Boletus edulis mushroom. Int. J. Gastron. Food Sci. 2021, 26, 100416. [Google Scholar] [CrossRef]
- Tan, Y.; Zeng, N.; Xu, B. Chemical profiles and health-promoting effects of porcini mushroom (Boletus edulis): A narrative review. Food Chem. 2022, 390, 133199. [Google Scholar] [CrossRef]
- Muszyńska, B.; Kała, K.; Lazur, J.; Włodarczyk, A. Imleria badia culinary-medicinal mushroom with interesting biological properties. Food Biosci. 2020, 37, 100663. [Google Scholar] [CrossRef]
- Gdula-Argasińska, J.; Grzywacz, A.; Krakowska, A.; Opoka, W.; Muszyńska, B. Anti-inflammatory properties of Cantharellus cibarius from in vitro culture enriched in zinc. Acta Pol. Pharm.-Drug Res 2018, 75, 423–433. [Google Scholar]
- Nowacka-Jechalke, N.; Nowak, R.; Juda, M.; Malm, A.; Lemieszek, M.; Rzeski, W.; Kaczyński, Z. New biological activity of the polysaccharide fraction from Cantharellus cibarius and its structural characterization. Food Chem. 2018, 268, 355–361. [Google Scholar] [CrossRef]
- Heleno, S.A.; Ferreira, R.C.; Antonio, A.L.; Queiroz, M.R.P.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, bioactive compounds and antioxidant properties of three edible mushrooms from Poland. Food Biosci. 2015, 11, 48–55. [Google Scholar] [CrossRef]
- Bengu, A.S. The fatty acid composition in some economic and wild edible mushrooms in Turkey. Prog. Nutr. 2020, 22, 185–192. [Google Scholar] [CrossRef]
- Lopes, L.D.; Böger, B.R.; Cavalli, K.F.; Silveira-Júnior, J.F.; Osório, D.V.C.L.; de Oliveira, D.F.; Luchetta, L.; Tonial, I.B. Fatty acid profile, quality lipid index and bioactive compounds of flour from grape residues. Cienc. Investig. Agrar. 2014, 41, 225–234. [Google Scholar] [CrossRef]
- Zhang, K.; Li, D.; Zang, M.; Zhang, Z.; Li, X.; Wang, S.; Zhang, S.; Zhao, B. Comparative characterization of fatty acids, reheating volatile compounds, and warmed-over flavor (WOF) of Chinese indigenous pork and hybrid pork. LWT-Food Sci. Technol. 2020, 155, 112981. [Google Scholar] [CrossRef]
- Paszczyk, B.; Łuczyńska, J. The comparison of fatty acid composition and lipid quality indices in hard cow, sheep, and goat cheeses. Foods 2020, 9, 1667. [Google Scholar] [CrossRef]
- Nantapo, C.; Muchenje, V.; Hugo, A. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian—Jersey cross cow milk under a pasture-based dairy system. Food Chem. 2014, 146, 127–133. [Google Scholar] [CrossRef]
- Ghaeni, M.; Ghahfarokhi, K.N.; Zaheri, L. Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices in Leiognathusbindus and Upeneussulphureus. J. Mar. Sci. Res. Dev. 2013, 3, 4. [Google Scholar] [CrossRef]
- Farajzadeh Alan, D.; Naeli, M.H.; Naderi, M.; Jafari, S.M.; Tavakoli, H.R. Production of trans-free fats by chemical interesterified blends of palm stearin and sunflower oil. Food Sci. Nutr. 2019, 7, 3722–3730. [Google Scholar] [CrossRef]
- González-Félix, M.L.; Maldonado-Othón, C.A.; Perez-Velazquez, M. Effect of dietary lipid level and replacement of fish oil by soybean oil in compound feeds for the shortfin corvina (Cynoscion parvipinnis). Aquaculture 2016, 454, 217–228. [Google Scholar] [CrossRef]
- Monteiro, M.; Matos, E.; Ramos, R.; Campos, I.; Valente, L.M. A blend of land animal fats can replace up to 75% fish oil without effecting growth and nutrient utilization of European seabass. Aquaculture 2018, 487, 22–31. [Google Scholar] [CrossRef]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Filip, S.; Hribar, J.; Vidrih, R. Influence of natural antioxidants on the formation of trans fatty acid isomers during heat treatment of sunflower oil. Eur. J. Lipid Sci. Technol. 2011, 113, 224–230. [Google Scholar] [CrossRef]
- Ulbricht, T.; Southgate, D. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Íñiguez-González, G.; Fehrmann-Cartes, K.; Toro-Mujica, P.; Garnsworthy, P.C. Influence of fish oil alone or in combination with hydrogenated palm oil on sensory characteristics and fatty acid composition of bovine cheese. Anim. Feed Sci. Technol. 2015, 205, 60–68. [Google Scholar] [CrossRef]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive Compounds, nutritional quality and oxidative stability of cold-pressed Camelina (Camelina sativa L.) oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric.Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef]
- Ivanova, S.; Angelov, L. Assessment of the content of dietary trans fatty acids and biologically active substances in cow’s milk and curd. Generations 2017, 4, 86–92. [Google Scholar]
- Bonanno, A.; Di Grigoli, A.; Vitale, F.; Alabiso, M.; Giosuè, C.; Mazza, F.; Todaro, M. Legume grain-based supplements in dairy sheep diet: Effects on milk yield, composition and fatty acid profile. Anim. Prod. Sci. 2016, 56, 130–140. [Google Scholar] [CrossRef]
- Cequier-Sánchez, E.; Rodríguez, C.; Ravelo, A.G.; Zárate, R. Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J. Agric. Food Chem. 2008, 56, 4297–4303. [Google Scholar] [CrossRef]
- EN ISO 12966–1:2014/AC:2015; Animal and Vegetable Fats and Oils-Gas Chromatography of Fatty Acid Methyl Esters. Part 1. Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. Polish Committee for Standardization: Warsaw, Poland, 2015.
- Santos-Silva, J.; Bessa, R.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
FA | Common/IUPAC Name | Imleria badia | Boletus edulis | Cantharellus cibarius | |
---|---|---|---|---|---|
SFA | C12:0 | lauric acid/dodecanoic acid | + | + | + |
C14:0 | myristic acid/tetradecanoic acid | + | + | + | |
C15:0 | pentadecanoic | + | + | + | |
C16:0 | palmitic acid/hexadecanoic acid | + | + | + | |
C17:0 | margaric acid/[heptadecanoic acid | + | + | + | |
C18:0 | stearic acid/octadecanoic acid | + | + | + | |
C20:0 | arachidic acid/icosanoic acid | + | + | + | |
C22:0 | behenic acid/docosanoic acid | + | + | + | |
MUFA | C16:1 | palmitoleic acid/(Z)-hexadec-9-enoic acid | + | + | + |
C17:1 | heptadecenoic acid/(Z)-heptadec-10-enoic acid | + | + | nd | |
C18:1 cis-9 | oleic acid/(Z)-octadec-9-enoic acid | + | + | + | |
C18:1 cis-11 | vaccenic acid/(E)-octadec-11-enoic acid | + | nd | + | |
C20:1 | gadoleic acid/(Z)-icos-9-enoic acid | + | + | + | |
C22:1 n-11 | cetoleic acid/(Z)-docos-11-enoic acid | + | + | nd | |
C22:1 n-9 | erucic acid/(Z)-docos-13-enoic acid | + | + | nd | |
PUFA | C18:2 | linoleic acid/(9Z,12Z)-octadeca-9,12-dienoic acid | + | + | + |
C18:3 | linolenic acid/(9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid | + | + | + | |
C20:2 | 8Z,11Z-eicosadienoic acid/(8Z,11Z)-icosa-8,11-dienoic acid | + | + | + |
FA | Imleria badia | Boletus edulis | Cantharellus cibarius | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Regions | Regions | Regions | ||||||||||
A | B | C | Mean | A | B | C | Mean | A | B | C | Mean | |
C12:0 | 0.09 ± 0.03 a | 0.07 ± 0.02 b | 0.08 ± 0.02 a | 0.08 ± 0.02 b | 0.06 ± 0.01 b | 0.07 ± 0.01 a | 0.07 ± 0.02 ab | 0.06 ± 0.03 b | 0.21 ± 0.15 a | 0.07 ± 0.10 a | 0.10 ± 0.0 a | 0.12 ± 0.08 a |
C14:0 | 0.18 ± 0.02 a | 0.16 ± 0.003 a | 0.17 ± 0.02 a | 0.17 ± 0.01 a | 0.15 ± 0.03 a | 0.16 ± 0.04 a | 0.15 ± 0.04 a | 0.15 ± 0.03 a | 0.19 ± 0.01 a | 0.14 ± 0.03 b | 0.15 ± 0.03 b | 0.16 ± 0.03 a |
C15:0 | 0.49 ± 0.05 b | 0.69 ± 0.07 a | 0.55 ± 0.11 b | 0.58 ± 0.11 a | 0.09 ± 0.003 c | 0.17 ± 0.03 a | 0.13 ± 0.05 b | 0.13 ± 0.04 b | 0.17 ± 0.02 a | 0.17 ± 0.03 a | 0.18 ± 0.03 a | 0.17 ± 0.03 b |
C16:0 | 15.29 ± 0.67 a | 15.81 ± 0.59 a | 15.28 ± 0.97 a | 15.56 ± 0.72 a | 7.68 ± 0.24 c | 10.37 ± 0.53 a | 9.03 ± 1.47 b | 9.21 ± 1.11 c | 12.14 ± 1.13 a | 12.63 ± 2.00 a | 12.69 ± 1.27 a | 12.49 ± 1.53 b |
C17:0 | 0.07 ± 0.01 b | 0.10 ± 0.01 a | 0.08 ± 0.02 b | 0.09 ± 0.02 c | 0.092 ± 0.00 b | 0.12 ± 0.02 a | 0.10 ± 0.02 b | 0.11 ± 0.02 b | 0.11 ± 0.02 a | 0.13 ± 0.03 a | 0.13 ± 0.02 a | 0.12 ± 0.02 a |
C18:0 | 2.53 ± 0.22 a | 1.82 ± 0.14 b | 2.33 ± 0.31 a | 2.21 ± 0.39 c | 3.13 ± 0.05 a | 3.00 ± 0.39 a | 3.03 ± 0.33 a | 3.06 ± 0.27 b | 3.53 ± 0.15 a | 3.56 ± 0.25 a | 3.61 ± 0.13 a | 3.56 ± 0.19 a |
C20:0 | 0.32 ± 0.05 a | 0.27 ± 0.07 a | 0.31 ± 0.04 a | 0.30 ± 0.06 c | 0.55 ± 0.02 a | 0.60 ± 0.09 a | 0.58 ± 0.06 a | 0.57 ± 0.06 b | 0.62 ± 0.11 a | 0.71 ± 0.32 a | 0.77 ± 0.31 a | 0.70 ± 0.27 a |
C22:0 | 0.50 ± 0.13 c | 1.78 ± 0.60 a | 0.87 ± 0.83 b | 1.08 ± 0.78 a | 0.62 ± 0.21 b | 1.43 ± 0.75 a | 0.78 ± 0.41 b | 0.95 ± 0.60 a | 0.00 ± 0.00 b | 0.68 ± 0.48 a | 0.54 ± 0.37 a | 0.42 ± 0.46 b |
C16:1 | 0.83 ± 0.05 a | 0.74 ± 0.06 a | 0.79 ± 0.09 a | 0.79 ± 0.07 a | 0.82 ± 0.03 a | 0.66 ± 0.22 a | 0.75 ± 0.019 a | 0.74 ± 0.17 a | 0.39 ± 0.02 a | 0.38 ± 0.07 a | 0.40 ± 0.07 a | 0.39 ± 0.06 b |
C17:1 | 0.03 ± 0.03 a | 0.00 ± 0.00 a | 0.03 ± 0.04 a | 0.02 ± 0.01 a | 0.06 ± 0.01 a | 0.00 ± 0.00 c | 0.02 ± 0.03 b | 0.03 ± 0.03 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 b |
C18:1 cis-9 | 43.74 ± 3.01 a | 27.34 ± 2.16 c | 37.66 ± 9.30 b | 36.31 ± 8.74 a | 42.25 ± 0.42 a | 25.55 ± 2.10 c | 31.65 ± 8.38 b | 34.20 ± 8.52 a | 6.62 ± 0.53 a | 6.87 ± 0.65 a | 6.79 ± 0.64 a | 6.76 ± 0.60 b |
C18:1 cis-11 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 c | 2.85 ± 0.07 b | 6.80 ± 3.15 a | 4.71 ± 3.34 ab | 4.72 ± 2.95 b | 21.65 ± 1.98 a | 19.98 ± 1.56b | 19.85 ± 0.70 b | 20.57 ± 1.69 a |
C20:1 | 0.28 ± 0.03 a | 0.14 ± 0.01 c | 0.21 ± 0.07 b | 0.21 ± 0.07 b | 0.79 ± 0.02 a | 0.47 ± 0.02 c | 0.59 ± 0.16 b | 0.63 ± 0.16 a | 0.00 ± 0.00 b | 0.10 ± 0.06 a | 0.08 ± 0.08 a | 0.06 ± 0.03 c |
C22:1 n-11 | 0.06 ± 0.10 b | 0.00 ± 0.00 c | 0.08 ± 0.10 a | 0.04 ± 0.02 a | 0.05 ± 0.05 a | 0.00 ± 0.00 c | 0.02 ± 0.00 b | 0.03 ± 0.05 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 b |
C22:1 n-9 | 0.04 ± 0.09 a | 0.00 ± 0.00 b | 0.06 ± 0.02 a | 0.03 ± 0.01 a | 0.05 ± 0.04 a | 0.00 ± 0.00 c | 0.02 ± 0.03 b | 0.03 ± 0.04 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 b |
C18:2 | 35.31 ± 3.54 c | 50.81 ± 4.08 a | 41.24 ± 9.06 b | 42.25 ± 8.14 b | 40.16 ± 0.51 c | 49.99 ± 1.48 a | 47.77 ± 5.19 b | 44.80 ± 5.04 b | 53.87 ± 2.99 a | 54.03 ± 1.68 a | 54.18 ± 2.53 a | 53.94 ± 2.30 a |
C18:3 | 0.07 ± 0.02 c | 0.134 ± 0.02 a | 0.10 ± 0.04 b | 0.10 ± 0.04 b | 0.34 ± 0.01 a | 0.33 ± 0.15 a | 0.33 ± 0.11 a | 0.33 ± 0.10 a | 0.10 ± 0.02 b | 0.13 ± 0.03 a | 0.11 ± 0.02 ab | 0.11 ± 0.03 b |
C20:2 | 0.17 ± 0.03 a | 0.14 ± 0.03 b | 0.16 ± 0.03 a | 0.15 ± 0.03 c | 0.26 ± 0.004 b | 0.28 ± 0.002 a | 0.27 ± 0.02 ab | 0.27 ± 0.02 b | 0.397 ± 0.05 a | 0.41 ± 0.03 a | 0.41 ± 0.06 a | 0.40 ± 0.12 a |
Ʃ SFA | 19.47 ± 0.77 a | 20.69 ± 1.20 a | 19.68 ± 1.43 a | 19.80 ± 1.20 a | 12.37 ± 0.24 c | 15.91 ± 0.82 a | 13.87 ± 1.81 b | 14.05 ± 1.81 c | 16.97 ± 1.34 a | 18.09 ± 2.72 a | 18.17 ± 1.82 a | 17.75 ± 2.11 b |
ƩMUFA | 44.99 ± 3.10 a | 28.22 ± 1.27 c | 38.82 ± 8.89 b | 37.40 ± 5.19 a | 46.87 ± 0.44 a | 33.48 ± 0.98 c | 37.77 ± 5.41 b | 40.28 ± 4.88 a | 28.67 ± 2.52 a | 27.34 ± 1.87 a | 27.13 ± 0.69 a | 27.79 ± 1.91 b |
Ʃ PUFA | 35.55 ± 3.56 c | 51.09 ± 4.08 a | 41.51 ± 9.08 b | 42.81 ± 5.16 b | 40.76 ± 0.51 c | 50.60 ± 1.57 a | 48.37 ± 5.20 b | 45.67 ± 5.91 b | 54.37 ± 2.96 a | 54.57 ± 1.70 a | 54.71 ± 2.50 a | 54.46 ± 2.28 a |
MUFA/SFA | PUFA/SFA | UFA/SFA | AI | TI | H/H | HPI | |
---|---|---|---|---|---|---|---|
I. badia | 1.89 ± 0.45 ab | 2.16 ± 0.41 b | 4.05 ±0.30 b | 0.21 ± 0.01 a | 0.45 ± 0.02 a | 4.97 ± 0.33 b | 4.90 ± 0.30 b |
B. edulis | 2.87 ± 0.83 a | 3.25 ± 0.17 a | 6.12 ± 0.88 a | 0.12 ± 0.02 b | 0.28 ± 0.04 c | 8.42 ± 1.66 a | 8.70 ± 1.49 a |
C. cibarius | 1.57 ± 0.25 b | 3.07 ± 0.46 a | 4.63 ± 0.67 b | 0.16 ± 0.02 b | 0.39 ± 0.05 b | 4.76 ± 0.74 b | 6.21 ± 0.93 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gałgowska, M.; Pietrzak-Fiećko, R. Evaluation of the Nutritional and Health Values of Selected Polish Mushrooms Considering Fatty Acid Profiles and Lipid Indices. Molecules 2022, 27, 6193. https://doi.org/10.3390/molecules27196193
Gałgowska M, Pietrzak-Fiećko R. Evaluation of the Nutritional and Health Values of Selected Polish Mushrooms Considering Fatty Acid Profiles and Lipid Indices. Molecules. 2022; 27(19):6193. https://doi.org/10.3390/molecules27196193
Chicago/Turabian StyleGałgowska, Michalina, and Renata Pietrzak-Fiećko. 2022. "Evaluation of the Nutritional and Health Values of Selected Polish Mushrooms Considering Fatty Acid Profiles and Lipid Indices" Molecules 27, no. 19: 6193. https://doi.org/10.3390/molecules27196193
APA StyleGałgowska, M., & Pietrzak-Fiećko, R. (2022). Evaluation of the Nutritional and Health Values of Selected Polish Mushrooms Considering Fatty Acid Profiles and Lipid Indices. Molecules, 27(19), 6193. https://doi.org/10.3390/molecules27196193