Characterization of Triadica sebifera (L.) Small Extracts, Antifeedant Activities of Extracts, Fractions, Seed Oil and Isolated Compounds against Plutella xylostella (L.) and Their Effect on Detoxification Enzymes
Abstract
:1. Introduction
2. Results
2.1. Identification and Characterization of Metabolites in Leaf and Bark Ethanol Aqueous Extract of T. sebifera
2.2. Antifeedant/Feeding Deterrent Activity of Leaf, Bark Extracts, Seed Oil, Isolated Compounds, Binary Mixtures, and Fractions against P. xylostella
2.2.1. Leaf, Bark Extracts, and Seed Oil
2.2.2. Binary Mixtures of Seed Oil with Leaf and Bark Extracts
2.2.3. Leaf and Bark Fractions
Leaf Fractions
Bark Fractions
2.2.4. Isolated Compounds
2.3. Growth Inhibition Activity of Leaf, Bark Extracts, Its Fractions, Seed Oil, Isolated Compounds, and Binary Mixture
2.3.1. Leaf, Bark Extracts, and Seed Oil
2.3.2. Leaf and Bark Fractions
2.3.3. Isolated Compounds
2.3.4. Binary Mixtures
2.4. Repellent Activity of Leaf and Bark Fractions
2.5. Joint Action Studies of Binary Mixtures of Seed Oil with Leaf and Bark Ethanol Aqueous Extract of T. sebifera against Larvae of P. xylostella
2.6. Detoxification Enzyme Inhibition Activities of Leaf, Bark, and Seed Oil of T. sebifera in P. xylostella
3. Discussion
4. Material and Methods
4.1. Plant Material
4.2. Preparation of Leaf, Bark Extracts, and Fractions
4.3. Ultra-High-Performance Liquid Chromatography-Quadrupole Time of Flight-Ion Mobility Mass Spectrometry (UHPLC-QTOF-IMS) of Leaf and Bark Ethanol Aqueous Extract of T. sebifera
4.4. Antifeedant Activities of Leaf, Bark Extracts, Fractions, Seed Oil, and Isolated Compounds of T. sebifera against P. xylostella
4.5. Growth Inhibition Activity
4.6. Joint Action Studies
4.7. Repellent Activity
4.8. Detoxification Enzyme Inhibition Activities of Leaf, Bark Extracts, and Seed Oil of T. sebifera against P. xylostella
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RT | Retention time |
GC-MS | Gas Chromatography–Mass spectrometry |
UHPLC-QTOF-IMS | Ultra-high-performance liquid chromatography–quadrupole time of flight–Ion mobility mass spectrometry |
GST | Glutathione S-transferase |
AChE | Acetylcholine esterase |
DC50 | Deterrence concentration to deter 50% of tested insect population |
RC50 | Repellence concentration to repel 50% of tested insect population |
FDI | Feeding deterrence index |
GIR | Growth inhibition rate |
FEI | Fractional effect indices |
PR | Percent repellency |
References
- Dolma, S.K.; Suresh, P.S.; Singh, P.P.; Sharma, U.; Reddy, S.G.E. Insecticidal activity of the extract, fractions, and pure steroidal saponins of Trillium govanianum Wall. ex D. Don for the control of diamondback moth (Plutella xylostella L.) and aphid (Aphis craccivora Koch). Pest Manag. Sci. 2020, 77, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Thorsteinson, A.J. The chemotactic responses that determine host specificity in an oligophagous insect [Plutella maculipennis (Curt.)] (Lepidoptera). Can. J. Zool. 2011, 31, 52–72. [Google Scholar] [CrossRef]
- Jouraku, A.; Kuwazaki, S.; Miyamoto, K.; Uchiyama, M.; Kurokawa, T.; Mori, E.; Mori, M.X.; Mori, Y.; Sonoda, S. Ryanodine receptor mutations (G4946E and 14790K) differentially responsible for diamide insecticide resistance in diamondback moth, Plutella xylostella L. Insect Biochem. Mol. Biol. 2020, 118, 103308. [Google Scholar] [CrossRef] [PubMed]
- Passos, D.A.; Silva–Torres, C.S.A.; Siqueira, H.A.A. Behavioral response and adaptive cost in resistant and susceptible Plutella xylostella to chlorantraniliprole. Bull. Entomol. Res. 2020, 110, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Zhang, Y.T.; Guo, Y.R.; Huang, Q.L.; Peng, T.; Xu, Y.; Tang, L.; Chen, F. Antioxidant and anti-inflammatory activities of the phenolic extracts of Sapium sebiferum (L.) Roxb. leaves. J. Ethnopharmacol. 2013, 147, 517–524. [Google Scholar] [CrossRef]
- Chaudhary, H.J.; Zeb, A.; Bano, A.; Rasul, F.; Munis, M.F.H.; Fahad, S.; Naseem, W. Antimicrobial activities of Sapium sebiferum L. belonging to family Euphorbiaceae. J. Med. Plant Res. 2011, 5, 5916–5919. [Google Scholar]
- Gao, Y.; Ho, G.; He, X.; Chen, C. Studies on in vitro antioxidant activities of leaf extracts of Sapium sebiferum. Food Sci. 2003, 24, 141–145. [Google Scholar]
- Huang, B.; Zenggiong, H.; Xu, X.; Wei, J.; Lai, S.; Pan, Y.G. Analgesic and anti-inflammatory effect of extract of Sapium sebiferum leaves on animal model. Chin. Tradit. Pat. Med. 2004, 26, 476–479. [Google Scholar]
- Breitenbeck, G.A. Chinese tallow trees as a biodiesel feedstock [2009]. La. Agric. 2009, 53, 26–27. [Google Scholar]
- Kim, Y.; Welt, B.A.; Talcott, S.T. The impact of packaging materials on the antioxidant phytochemical stability of aqueous infusions of green tea (Camellia sinensis) and yaupon holly (Ilex vomitoria) during cold storage. J. Agric. Food Chem. 2011, 59, 4676–4683. [Google Scholar] [CrossRef] [PubMed]
- Duke, J.A.; Ayensu, E.S. Medicinal Plants of China; 2 Vols 05 S., 1300 Strichzeichnungen; Reference Publ., Inc.: Algonac, MI, USA, 1985; ISBN 0-917266-20-4. [Google Scholar]
- Atkinson, A.T. The Himalayan Gazetteer Vol I-III; Cosmo Publication: New Delhi, India, 1989. [Google Scholar]
- Rikhari, H.C.; Palni, L.M.S. Adoption of a potential plantation tree crop as an agroforestry species but for the wrong reasons: A case study of the Chinese tallow tree from central Himalaya. Int. Tree Crops J. 1996, 9, 37–45. [Google Scholar]
- Pradhan, B.P.; Nath, S.D.A.; Shoolery, J.N. Triterpenoid acids from Sapium Sebiferum. Phytochemistry 1984, 23, 2593–2595. [Google Scholar] [CrossRef]
- Kumar, R.; Bhagat, N. Ethnomedicinal plants of district Kathua (J and K). Int. J. Med. Aromat. Plants 2012, 4, 603–611. [Google Scholar]
- Haines, H.H. The Botany of Bihar and Orissa; Part 1; Bishen Singh Mahindra Pal Singh: Dehradun, India, 1988. [Google Scholar]
- Gamble, J.S. Flora of the Presidency of Madras; Vol II; Bishen Singh Mahindra Pal Singh: Dehradun, India, 1993. [Google Scholar]
- Dolma, S.K.; Singh, P.P.; Reddy, S.G.E. Insecticidal and enzyme inhibition activities of leaf/bark extracts, fractions, seed oil and isolated compounds from Triadica sebifera (L.) Small against Aphis craccivora Koch. Molecules 2022, 27, 1967. [Google Scholar] [CrossRef]
- Wang, H.Q.; Zhao, C.Y.; Chen, R.Y. Studies on chemical constituents from leaves of Sapium sebiferum. China J. Chin. Mater. Med. 2007, 32, 1179–1181. [Google Scholar]
- Gao, R.; Su, Z.; Yin, Y.; Sun, L.; Li, S. Germplasm, chemical constituents, biological activities, utilization, and control of Chinese tallow (Triadica sebifera (L.) Small). Biol. Invasions 2016, 18, 809–829. [Google Scholar] [CrossRef]
- Yang, P.; Kinghorn, A.D. Coumarin constituents of the Chinese tallow tree (Sapium sebiferum). J. Nat. Prod. 1985, 48, 486–488. [Google Scholar] [CrossRef]
- Kane, C.J.; Menna, J.H.; Yeh, Y.C. Methyl gallate, methyl-3, 4, 5-trihydroxy-benzoate, is a potent and highly specific inhibitor of herpes simplex virus in vitro. I. Purification and characterization of methyl gallate from Sapium sebiferum. Biosci. Rep. 1988, 8, 85–94. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Maoka, T. Allenic and cumulenic lipids. Prog. Lipid Res. 2007, 46, 328–375. [Google Scholar] [CrossRef]
- Kouno, I.; Saishoji, T.; Sugiyama, M.; Kawano, N. A xylosylglucoside of xanthoxylin from Sapium sebiferum root bark. Phytochemistry 1983, 22, 790–791. [Google Scholar] [CrossRef]
- Bernays, E.A.; Chapman, R. Taste cell responses in a polyphagous arctiid: Towards a general pattern for caterpillars. J. Insect Physiol. 2001, 47, 1029–1044. [Google Scholar] [CrossRef]
- Badenes-Pérez, F.R.; Reichelt, M.; Gershenzon, J.; Heckel, D.G. Phylloplane location of glucosinolates in Barbarea spp. (Brassicaceae) and misleading assessment of host suitability by a specialist herbivore. New Phytol. 2011, 189, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Badenes-Pérez, F.R.; Reichelt, M.; Gershenzon, J.; Heckel, D.G. Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans. Phytochemistry 2013, 86, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.F. Mechanics of food handling by chewing insects. In Regulatory Mechanisms in Insect Feeding; Chapman, R.F., de Boer, G., Eds.; Chapman & Hall: New York, NY, USA, 1995; pp. 3–31. [Google Scholar]
- Chapman, R.F. Chemical inhibition of feeding by phytophagous insects: A review. Bull. Entomol. Res. 1974, 64, 339–363. [Google Scholar] [CrossRef]
- Yang, M.; Lin, M. Isolation of insecticidal components in Inula salsoloides Ostenf. and characterization of their activities. Nat. Prod. Res. 2017, 31, 2049–2052. [Google Scholar] [CrossRef]
- Selvaraj, C.; Kennedy, J.S.; Suganthy, M. Antifeedant Effect of Strychnusnux-vomica L. against Plutella xylostella Linn. Res. J. Agric. Sci. 2017, 8, 988–993. [Google Scholar]
- Perera, D.R.; Armstrong, G.; Senanayake, N. Effect of antifeedants on the diamondback moth (Plutella xylostella) and its parasitoid Cotesia plutellae. Pest Manag. Sci. 2000, 56, 486–490. [Google Scholar] [CrossRef]
- Yooboon, T.; Pengsook, A.; Ratwatthananon, A.; Pluempanupat, W.; Bullangpoti, V. A plant-based extract mixture for controlling Spodoptera litura (Lepidoptera: Noctuidae). Chem. Biol. Technol. Agric. 2019, 6, 5–15. [Google Scholar] [CrossRef]
- Yooboon, T.; Bullangpoti, V.; Kainoh, Y. Contact toxicity and antifeedant activity of binarymixtures of piperine and β-asarone against the crop pests, Spodoptera litura and Mythimna separata (Lepidoptera: Noctuidae). Int. J. Pest. Manag. 2021. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, F.C.; Xu, D.; Afzal, M.; Bashir, M.H.; Ali, S.; Freed, S. Antifeedant activities of secondary metabolites from Ajuga nipponensis against Plutella xylostella. Pak. J. Bot. 2008, 40, 1983–1992. [Google Scholar]
- Pavunraj, M.; Muthu, C.; Ignacimuthu, S.; Janarthanan, S.; Duraipandiyan, V.; Raja, N.; Vimalraj, S. Antifeedant activity of a novel 6-(4,7-hydroxy-heptyl) quinone® from the leaves of the milkweed Pergularia daemia on the cotton bollworm Helicoverpa armigera (Hub.) and the tobacco armyworm Spodoptera litura (Fab.). Phytoparasitica 2011, 39, 145–150. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Ge, L.; Qin, Z. Isolation of triterpenoids from Catunaregam spinosa. Adv. Mat. Res. 2011, 236–238, 1731–1737. [Google Scholar] [CrossRef]
- Babu, G.D.K.; Dolma, S.K.; Sharma, M.; Reddy, S.G.E. Chemical composition of essential oil and oleoresins of Zingiber officinale and toxicity of extracts/essential oil against diamondback moth (Plutella xylostella). Toxin Rev. 2020, 39, 226–235. [Google Scholar] [CrossRef]
- Farag, M.; Ahmed, H.M.M.; Yousef, H.; Rahman, A.H.H.A. Repellent and insecticidal activities of Melia azedarach L., against cotton leafworm, Spodoptera littoralis (Boisd.). Zeitschrift Für Naturforschung 2011, 66, 129–135. [Google Scholar] [CrossRef]
- Bulla, U.A.; Suárez, M.M.; Murillo, M.B. Biological activity of phenolic compounds from Alchornea glandulosa. Fitoterapia 2004, 75, 392–394. [Google Scholar] [CrossRef]
- Minli, Y.; Rui, L.; Fengia, H. Insecticidal, antifeedant and growth-inhibition activities of different extracts from Pedicularis spicata against Plutella xylostella. In International Conference on Information Technology and Agricultural Engineering; Springer: Berlin/Heidelberg, Germany, 2011; Volume 134, pp. 425–431. [Google Scholar]
- Tian, X.; Li, Y.; Hao, N.; Su, X.; Du, J.; Hu, J.; Tian, X. The antifeedant, insecticidal and insect growth inhibitory activities of triterpenoid saponins from Clematis aethusifolia Turcz against Plutella xylostella (L.). Pest Manag. Sci. 2021, 77, 455–463. [Google Scholar] [CrossRef]
- Shao, X.; Lai, D.; Xiao, W.; Yang, W.; Yan, Y.; Kuang, S. The botanical eurycomanone is a potent growth regulator of the diamondback moth. Ecotoxicol. Environ. Saf. 2021, 208, 111647. [Google Scholar] [CrossRef]
- Nebapure, S.M.; Srivastava, C.; Walia, S. Antifeedant and insect growth inhibitory activity of seed extracts from Kari hari, Gloriosa superba Linn. (Colchicaceae) against tobacco leaf eating caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Natl. Acad. Sci. Lett. 2015, 8, 295–299. [Google Scholar] [CrossRef]
- Lu, M.; Wu, W.; Liu, H. Insecticidal and feeding deterrent effects of Fraxinellone from Dictamnus dasycarpus against four major pests. Molecules 2013, 18, 2754–2762. [Google Scholar] [CrossRef]
- Wei, H.; Liu, J.; Li, B.; Zhan, Z.; Chen, Y.; Tian, H.; Lin, S.; Gu, X. The toxicity and physiological effect of essential oil from Chenopodium ambrosioides against the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Crop Prot. 2015, 76, 68–74. [Google Scholar] [CrossRef]
- Russell, R.J.; Scott, C.; Jackson, C.J.; Pandey, R.; Pandey, G.; Taylor, M.C.; Coppin, C.W.; Liu, J.W.; Oakeshott, J.G. The evolution of new enzyme function: Lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evol. Appl. 2011, 4, 225–248. [Google Scholar] [CrossRef]
- Ramsey, J.S.; Rider, D.S.; Walsh, T.K.; Vos, M.D.; Gordon, K.H.J.; Ponnala, L.; Macmil, S.L.; Roe, B.A.; Jander, G. Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae. Insect Mol. Biol. 2010, 19, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.Y.; Hsu, E.L. Induction of detoxification enzymes in phytophagous insects: Role of insecticide synergists, larval age, and species. Arch. Insect Biochem. Physiol. 1993, 24, 21–32. [Google Scholar]
- Bouayad, N.; Rharrabe, K.; Ghailani, N.N.; Jbilou, R.; Castañera, P.; Ortego, F. Insecticidal effects of Moroccan plant extracts on development, energy reserves and enzymatic activities of Plodia interpunctella. Span. J. Agric. Res. 2013, 11, 189–198. [Google Scholar] [CrossRef]
- Clark, A.G.; Shamaan, N.A.; Sinclair, M.D.; Dauterman, W.C. Insecticide metabolism by multiple glutathione S-transferases in two strains of the house fly, Musca domestica (L). Pestic. Biochem. Phys. 1986, 25, 169–175. [Google Scholar] [CrossRef]
- Hu, Z.D.; Feng, X.; Lin, Q.S.; Chen, H.Y.; Li, Z.Y.; Yin, F.; Gao, X.W. Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. J. Integr. Agric. 2014, 13, 2452–2459. [Google Scholar] [CrossRef]
- Yang, H.; Pia, X.; Zhang, L.; Song, S.; Xu, Y. Ginsenosides from the stems and leaves of Panax ginseng show antifeedant activity against Plutella xylostella (Linnaeus). Ind. Crops Prod. 2018, 124, 412–417. [Google Scholar] [CrossRef]
- Tak, J.H.; Isman, M.B. Metabolism of citral, the major constituent of lemongrass oil, in the cabbage looper, Trichoplusia ni, and effects of enzyme inhibitors on toxicity and metabolism. Pestic. Biochem. Phys. 2017, 133, 20–25. [Google Scholar] [CrossRef]
- Gao, X.W. Insect Adaptation to Plant Allelochemicals Based on Detoxification: Helicoverpa armigera as an Example; China Agricultural University Press: Beijing, China, 2012. [Google Scholar]
- Zhou, B.G.; Wang, S.; Dou, T.T.; Liu, S.; Li, M.Y.; Hua, R.M.; Li, S.G.; Lin, H.F. Aphicidal activity of Illicium verum fruit extracts and their effects on the acetylcholinesterase and glutathione S-transferases activities in Myzus persicae (Hemiptera: Aphididae). J. Insect Sci. 2016, 16, 11. [Google Scholar] [CrossRef] [Green Version]
- Grant, D.F.; Matsumura, F. Glutathione S-transferase 1 and 2 in susceptible and insecticide resistant Aedes aegypti. Pestic. Biochem. Physiol. 1989, 33, 132–143. [Google Scholar] [CrossRef]
- Sun, H.X.; Zhou, Q.; Tang, W.C.; Shu, Y.H.; Zhang, G.R. Effects of dietary nickel on detoxification enzyme activities in the midgut of Spodoptera litura Fabricius larvae. Chin. Sci. Bull. 2008, 53, 3324–3330. [Google Scholar] [CrossRef]
- Yang, S.; Wu, H.; Xie, J.; Rantala, M.J. Depressed performance and detoxification enzyme activities of Helicoverpa armigera fed with conventional cotton foliage subjected to methyl jasmonate exposure. Entomol. Exp. Appl. 2013, 147, 186–195. [Google Scholar] [CrossRef]
- Shahriari, M.; Zibaee, A.; Shamakhi, L.; Sahebzadeh, N.; Naseri, D.; Hoda, H. Bio-efficacy and physiological effects of Eucalyptus globulus and Allium sativum essential oils against Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Toxin Rev. 2019, 39, 422–433. [Google Scholar] [CrossRef]
- Reddy, S.G.E.; Dolma, S.K.; Koundal, R.; Singh, B. Chemical composition and insecticidal activities of essential oils against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Nat. Prod. Res. 2016, 30, 1834–1838. [Google Scholar] [CrossRef]
- Dadwal, V.; Joshi, R.; Gupta, M. A multidimensional UHPLC-DAD-QTOF-IMS gradient approach for qualitative and quantitative investigation of citrus and malus fruit phenolic extracts and edibles. ACS Food Sci. Technol. 2021, 1, 2006–2018. [Google Scholar] [CrossRef]
- Akhtar, Y.; Yeoung, Y.R.; Isman, M.B. Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars Trichoplusia ni and Pseudaletiaun ipuncta. Phytochem. Rev. 2008, 7, 77–88. [Google Scholar] [CrossRef]
- Guo, H.; Yang, M.; Qi, Q. Insecticidal and antifeedant effects of two alkaloids from Cynanchum komarrovii against larvae of Plutella xylostella L. J. Appl. Entomol. 2014, 138, 133–140. [Google Scholar] [CrossRef]
- Houghton, P. Synergy and polyvalence: Paradigms to explain the activity of herbal products. In Evaluation of Herbal Medicinal Products: Perspectives on Quality, Safety and Efficacy; Mukherjee, P.K., Houghton, P., Eds.; Pharmaceutical Press: London, UK, 2009; pp. 85–94. [Google Scholar]
- Bassole, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef]
- Chauhan, N.; Kashyap, U.; Dolma, S.K.; Reddy, S.G.E. Chemical composition, insecticidal, persistence and detoxification enzyme inhibition activities of essential oil of Artemisia maritima against the Pulse Beetle. Molecules 2022, 27, 1547. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- Allen, M. The Sage Encyclopedia of Communication Research Methods (Vols. 1–4); SAGE Publications Inc.: Thousand Oaks, CA, USA, 2017. [Google Scholar]
RT | Identified Compounds | Chemical Formula | Observed Mass (M+H)+/(M+Na)+ | Mass Fragments | Leaf Extract * | Bark Extract * | References |
---|---|---|---|---|---|---|---|
4.155 | Shikimic acid (1) | C7H10O5 | 175.15 (M+H)+ | 175 (M+H)+, 174 [C7H10O5 (M)]+, 130 [C6H10O3 (M-COOH)]+ | + | + | [20,21] |
4.155 | Xanthoxylin (2) | C10H12O4 | 197.13 (M+H)+ | 197 (M+H)+, 196 [C10H12O4 (M)]+, 180 [C10H12O3 (M-OH)]+ | + | + | [22] |
4.705 | Quercetin (3) | C15H10O7 | 303.10 (M+H)+ | 303 (M+H)+, 197 [C9H8O5 (M+H-C6H6O2)]+ | + | + | [20,21] |
4.889 | Kaempferol (4) | C15H10O6 | 287.11 (M+H)+ | 287 (M+H)+, 182 [C9H8O4 (M+2H-C6H6O2)]+ | + | + | [20,21] |
5.739 | Methyl gallate (5) | C8H8O5 | 207.02 (M+Na)+, 185.04 (M+H)+ | 207.02 (M+Na)+, 185.04 (M+H)+ | + | + | [21,23] |
6.538 | Coumarin derivative compound (6) | C24H30O4 | 383.13 (M+H)+ | 383 (M+H)+, 163 (C9H6O3+H)+ | - | + | |
7.455 | Glycosidic compound (7) | - | 503.16 (M+H)+ | 503 (M+H)+, 341 ((M+H-glu)+) | - | + | |
7.557 | Cinnamic acid (8) | C9H8O2 | 149.11 (M+H)+ | 149(M+H)+, 148 (M)+ | + | - | [21,24] |
7.639 | Scopoletin (9) | C10H8O4 | 193.05 (M+H)+ | 193 (M+H)+, 163 [C9H6O3 (M+H-OCH3)]+ | - | + | [21,22] |
7.682 | Gallic acid (10) | C7H6O5 | 341.11 (2M+H)+, 171.09 (M+H)+ | 171.09 (M+H)+, 127 [C6H6O3 (M+H-COOH)]+ | + | - | [20,21] |
8.187 | β-sitosterol (11) | C29H50O | 415.15 (M+H)+ | 415 (M+H)+, 398 [C29H50 (M-OH)]+ | - | + | [21,25] |
8.367 | Stigmasterol (12) | C29H48O | 413.20 (M+H)+ | 413.20 (M+H)+, 397 [C29H48 (M+H-OH)]+ | + | + | [21,25] |
12.647 | Stigmasterol glycoside (13) | C35H58O6 | 575.20 (M+H)+ | 575 (M+H)+, 413 [C29H48O (M+H-glu)]+ | - | + | |
12.759 | Astragalin (14) | C21H20O11 | 449.17 (M+H)+ | 449 (M+H)+, 287 [C15H10O6 (M+H-glu)]+ | + | - | [20,21] |
13.187 | Isoquercetin (15) | C21H20O12 | 487.07 (M+Na)+, 465.09 (M+H)+ | 487 (M+Na)+, 465 (M+H)+, 303 [C15H10O7 (M+H-glu)]+ | + | - | [20,21] |
15.474 | Kaempferitrin (16) | C27H30O14 | 579 (M+H)+ | 579 (M+H)+, 433 [C21H20O10 (M+H-rha)]+, 287 [C15H10O6 (M+H-rha-rha)]+ | - | + | [21] |
18.794 | Unidentified (17) | - | 325.22 | + | + |
Extracts/Oils | DC50 (mg/L) | Confidence Limits (mg/L) | Slope ± SE | Chi Square | p Value |
---|---|---|---|---|---|
With choice | |||||
Leaf extract | 3624.80 | 3001.45–4477.46 | 1.45 ± 0.15 | 4.56 | 0.21 |
Bark extract | 2420.83 | 1843.70–3159.31 | 1.01 ± 0.14 | 5.28 | 0.15 |
Seed oil | 9079.59 | 6076.20–17,945.33 | 0.86 ± 0.14 | 1.17 | 0.76 |
Without choice | |||||
Leaf extract | 3944.50 | 3352.00–4733.27 | 1.76 ± 0.16 | 1.70 | 0.64 |
Bark extract | 3678.02 | 3022.92–4595.49 | 1.39 ± 0.15 | 5.04 | 0.17 |
Seed oil | 4019.85 | 3277.78–5106.26 | 1.35 ± 0.15 | 4.61 | 0.20 |
Binary mixtures | |||||
With choice | |||||
Seed oil + Leaf extract | 1328.66 | 935.19–2202.52 | 0.86 ± 0.11 | 3.94 | 0.41 |
Seed oil + Bark extract | 1053.05 | 704.34–2069.16 | 0.93 ± 0.15 | 2.03 | 0.57 |
Without choice | |||||
Seed oil + Leaf extract | 383.28 | 318.71–473.16 | 1.51 ± 0.15 | 4.99 | 0.17 |
Seed oil + Bark extract | 317.10 | 272.38–371.91 | 1.86 ± 0.16 | 4.68 | 0.20 |
Indo-Neem (Choice) | 2024.58 | 1016.54–9451.10 | 0.38 ± 0.13 | 0.32 | 0.96 |
Indo-Neem (No choice) | 2873.99 | 2219.32–4079.19 | 1.15 ± 0.15 | 0.63 | 0.89 |
Leaf Fractions | DC50 (mg/L) | Confidence Limits (mg/L) | Slope ± SE | Chi Square | p Value |
---|---|---|---|---|---|
With choice | |||||
n-Hexane | 755.51 | 543.88–1247.65 | 0.99 ± 0.14 | 1.53 | 0.67 |
Ethyl acetate | 265.16 | 218.95–322.17 | 1.43 ± 0.15 | 4.73 | 0.19 |
n-Butanol | 1063.14 | 742.51–1785.27 | 0.77 ± 0.11 | 2.23 | 0.69 |
Water | 1504.53 | 960.59–3110.55 | 0.68 ± 0.11 | 1.42 | 0.84 |
Without choice | |||||
n-Hexane | 577.71 | 432.70–868.70 | 1.02 ± 0.14 | 2.67 | 0.44 |
Ethyl acetate | 283.68 | 235.77–343.68 | 1.47 ± 0.15 | 2.31 | 0.51 |
n-Butanol | 235.75 | 191.66–288.37 | 1.35 ± 0.15 | 4.31 | 0.23 |
Water | 219.88 | 173.71–274.58 | 1.20 ± 0.14 | 4.66 | 0.20 |
Bark fractions | |||||
With choice | |||||
n-Hexane | 455.41 | 361.78–606.92 | 1.21 ± 0.15 | 4.97 | 0.17 |
Ethyl acetate | 727.68 | 505.14–1311.72 | 0.86 ± 0.14 | 0.15 | 0.97 |
n-Butanol | 2189.43 | 1344.16–4921.91 | 0.73 ± 0.11 | 3.67 | 0.45 |
Water | 1447.12 | 1040.79–2305.51 | 0.96 ± 0.11 | 3.32 | 0.51 |
Without choice | |||||
n-Hexane | 573.02 | 435.01–839.05 | 1.07 ± 0.14 | 1.53 | 0.68 |
Ethyl acetate | 318.37 | 270.53–378.44 | 1.71 ± 0.16 | 3.98 | 0.26 |
n-Butanol | 411.09 | 356.19–481.11 | 2.07 ± 0.17 | 4.89 | 0.18 |
Water | 488.20 | 414.43–590.65 | 1.84 ± 0.17 | 5.28 | 0.15 |
Indo-Neem (Choice) | 2024.58 | 1016.54–9451.10 | 0.38 ± 0.13 | 0.32 | 0.96 |
Indo-Neem (No choice) | 2873.99 | 2219.32–4079.19 | 1.15 ± 0.15 | 0.63 | 0.89 |
Compounds | Percent Feeding Deterrence Index (±SE) after 48 h of Treatment * | Percent Growth Inhibition (±SE) | |
---|---|---|---|
With Choice | Without Choice | Without Choice | |
Kaempferol-3-O-glucoside | 66.15 ± 2.10 a | 55.75 ± 1.25 b | 45.08 ± 2.50 c |
Quercetin-3-O-glucoside | 64.63 ± 1.96 a | 57.63 ± 1.54 ab | 57.34 ± 2.29 b |
Gallic acid | 67.48 ± 1.99 a | 63.8 ± 2.39 a | 59.02 ± 1.57 b |
Shikimic acid | 56.50 ± 1.78 b | 55.45 ± 1.48 b | 57.52 ± 1.58 b |
Indo-Neem (5 mL L−1) | 54.97 ± 2.25 b | 58.02 ± 2.56 a | 65.68 ± 1.60 a |
F4,49 | 8.20; p < 0.0001 | 3.13; p < 0.024 | 14.56; p < 0.0001 |
Leaf/Bark Extracts/Oil | RC50 (mg/L) | Confidence Limit (mg/L) | Slope ± SE | Chi Square | p Value |
---|---|---|---|---|---|
Leaf extract | 575.74 | 249.81–910.78 | 0.80 ± 0.14 | 0.74 | 0.86 |
Bark extract | 628.02 | 288.20–972.01 | 0.81 ± 0.14 | 0.60 | 0.90 |
Seed oil | 630.87 | 382.65–874.28 | 1.16 ± 0.16 | 3.93 | 0.27 |
Fractions (Leaf) | |||||
n-Hexane | 557.49 | 274.05–845.48 | 0.92 ± 0.15 | 0.52 | 0.91 |
Ethyl acetate | 638.63 | 230.69–1059.34 | 0.67 ± 0.14 | 1.81 | 0.61 |
n-Butanol | 565.18 | 223.21–920.87 | 0.75 ± 0.14 | 1.54 | 0.67 |
Water | 540.05 | 247.03–840.55 | 0.87 ± 0.15 | 0.92 | 0.82 |
Fractions (Bark) | |||||
n-Hexane | 629.58 | 388.77–866.07 | 1.12 ± 0.16 | 0.77 | 0.86 |
Ethyl acetate | 773.76 | 494.19–1047.82 | 1.13 ± 0.15 | 2.24 | 0.52 |
n-Butanol | 414.61 | 82.32–807.53 | 0.59 ± 0.14 | 1.03 | 0.79 |
Water | 834.48 | 445.86–1219.92 | 0.83 ± 0.14 | 0.46 | 0.93 |
Binary Mixtures | % FDI (mg/L) | FEI | Interaction Type |
With choice | |||
Seed oil + leaf extract (1:1) | 49.57 | 1.634 | Indifferent |
Seed oil + bark extract (1:1) | 51.91 | 1.493 | Indifferent |
Without choice | |||
Seed oil + leaf extract (1:1) | 79.62 | 2.211 | Indifferent |
Seed oil + bark extract (1:1) | 77.75 | 2.122 | Indifferent |
Binary mixtures | DC50 (mg/L) | FEI | Interaction type |
With choice | |||
Seed oil + leaf extract (1:1) | 1328.66 | 0.513 | Synergistic |
Seed oil + bark extract (1:1) | 1053.05 | 0.726 | Additive |
Without choice | |||
Seed oil + leaf extract (1:1) | 383.28 | 0.193 | Synergistic |
Seed oil + bark extract (1:1) | 317.10 | 0.167 | Synergistic |
Binary mixtures | % GIR (mg/L) | FEI | Interaction type |
Without choice | |||
Seed oil + leaf extract (1:1) | 99.87 | 2.329 | Indifferent |
Seed oil + bark extract (1:1) | 98.77 | 2.090 | Indifferent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolma, S.K.; Reddy, S.G.E. Characterization of Triadica sebifera (L.) Small Extracts, Antifeedant Activities of Extracts, Fractions, Seed Oil and Isolated Compounds against Plutella xylostella (L.) and Their Effect on Detoxification Enzymes. Molecules 2022, 27, 6239. https://doi.org/10.3390/molecules27196239
Dolma SK, Reddy SGE. Characterization of Triadica sebifera (L.) Small Extracts, Antifeedant Activities of Extracts, Fractions, Seed Oil and Isolated Compounds against Plutella xylostella (L.) and Their Effect on Detoxification Enzymes. Molecules. 2022; 27(19):6239. https://doi.org/10.3390/molecules27196239
Chicago/Turabian StyleDolma, Shudh Kirti, and S. G. Eswara Reddy. 2022. "Characterization of Triadica sebifera (L.) Small Extracts, Antifeedant Activities of Extracts, Fractions, Seed Oil and Isolated Compounds against Plutella xylostella (L.) and Their Effect on Detoxification Enzymes" Molecules 27, no. 19: 6239. https://doi.org/10.3390/molecules27196239
APA StyleDolma, S. K., & Reddy, S. G. E. (2022). Characterization of Triadica sebifera (L.) Small Extracts, Antifeedant Activities of Extracts, Fractions, Seed Oil and Isolated Compounds against Plutella xylostella (L.) and Their Effect on Detoxification Enzymes. Molecules, 27(19), 6239. https://doi.org/10.3390/molecules27196239