Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Lipid Extraction
3.3. Hydrolysis with Phospholipase A1
3.4. Phospholipid Analysis Using HPLC-ELSD
3.5. Phospholipid Analysis Using 31P-NMR and Neutral Lipid Analysis Using 1H-NMR
3.6. Isolation of Phospholipids Using Solid Phase Extraction Column
3.7. Thin-Layer Chromatography (TLC)
3.8. Fatty Acid Analysis Using Gas Chromatography
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
PL | Phospholipid |
PtdCho | Phosphatidyl choline |
PtdEtn | Phosphatidyl ethanolamine |
PtdSer | Phosphatidyl serine |
PtdIns | Phosphatidyl inositol |
PtdGro | Phosphatidyl glycerol |
LPC | Lysophosphatidyl choline |
PlsCho | Plasmalogen choline |
PlsEtn | Plasmalogen ethanolamine |
PLA1 | Phospholipase A1 |
References
- Panevska, A.; Skočaj, M.; Križaj, I.; Maček, P.; Sepčić, K. Ceramide phosphoethanolamine, an enigmatic cellular membrane sphingolipid. Biochim. Biophys. Acta Biomembr. 2019, 1861, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Phospholipids of animal and marine origin: Structure, function, and anti-inflammatory properties. Molecules 2017, 22, 1964. [Google Scholar] [CrossRef] [PubMed]
- Goldfine, H. The appearance, disappearance and reappearance of plasmalogens in evolution. Prog. Lipid Res. 2010, 49, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Lessig, J.; Fuchs, B. Plasmalogens in biological systems: Their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr. Med. Chem. 2009, 16, 2021–2041. [Google Scholar] [CrossRef]
- Yamashita, S.; Kiko, T.; Fujiwara, H.; Hashimoto, M.; Nakagawa, K.; Kinoshita, M.; Furukawa, K.; Arai, H.; Miyazawa, T. Alterations in the levels of amyloid-β, phospholipid hydroperoxide, and plasmalogen in the blood of patients with Alzheimer’s disease: Possible interactions between amyloid-β and these lipids. J. Alzheimer’s Dis. 2016, 50, 527–537. [Google Scholar] [CrossRef]
- Yamashita, S.; Abe, A.; Nakagawa, K.; Kinoshita, M.; Miyazawa, T. Separation and detection of plasmalogen in marine invertebrates by high-performance liquid chromatography with evaporative light-scattering detection. Lipids 2014, 49, 1261–1273. [Google Scholar] [CrossRef]
- Duan, B.; Hong, E.-S.; Shin, J.-A.; Qin, Y.; Lee, J.-H.; Lee, C.-W.; Lee, K.-T. Correlations of fat content in human milk with fat droplet size and phospholipid species. Molecules 2021, 26, 1596. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, F.; Wu, S.; Yang, B.; Liang, X. Facile preparation of polyvinyl alcohol coated SiO2 stationary phases for high performance liquid chromatography. Analyst 2014, 139, 5594–5599. [Google Scholar] [CrossRef]
- Mawatari, S.; Hazeyama, S.; Morisaki, T.; Fujino, T. Enzymatic measurement of ether phospholipids in human plasma after hydrolysis of plasma with phospholipase A1. Pract. Lab. Med. 2018, 10, 44–51. [Google Scholar] [CrossRef]
- Yamashita, S.; Honjo, A.; Aruga, M.; Nakagawa, K.; Miyazawa, T. Preparation of marine plasmalogen and selective identification of molecular species by LC-MS/MS. J. Oleo Sci. 2014, 63, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Contarini, G.; Povolo, M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef]
- Burri, L.; Hoem, N.; Banni, S.; Berge, K. Marine omega-3 phospholipids: Metabolism and biological activities. Int. J. Mol. Sci. 2012, 13, 15401–15419. [Google Scholar] [CrossRef]
- Mecheta, A.; Hanachi, A.; Jeandel, C.; Arab-Tehrany, E.; Bianchi, A.; Velot, E.; Mezali, K.; Linder, M. Physicochemical properties and liposomal formulations of hydrolysate fractions of four sea cucumbers (Holothuroidea: Echinodermata) from the Northwestern Algerian Coast. Molecules 2020, 25, 2972. [Google Scholar] [CrossRef]
- Facchini, L.; Losito, I.; Cataldi, T.R.; Palmisano, F. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: A study by hydrophilic interaction liquid chromatography–electrospray ionization fourier transform mass spectrometry. J. Mass Spectrom. 2018, 53, 1–20. [Google Scholar] [CrossRef]
- Hanuš, L.O.; Levitsky, D.O.; Shkrob, I.; Dembitsky, V.M. Plasmalogens, fatty acids and alkyl glyceryl ethers of marine and freshwater clams and mussels. Food Chem. 2009, 116, 491–498. [Google Scholar] [CrossRef]
- Burri, L.; Hoem, N.; Monakhova, Y.B.; Diehl, B.W. Fingerprinting krill oil by 31P, 1H and 13C NMR spectroscopies. JAOCS 2016, 93, 1037–1049. [Google Scholar] [CrossRef]
- Goodenowe, D.B.; Cook, L.L.; Liu, J.; Lu, Y.; Jayasinghe, D.A.; Ahiahonu, P.W.; Heath, D.; Yamazaki, Y.; Flax, J.; Krenisky, K.F.; et al. Peripheral ethanolamine plasmalogen deficiency: A logical causative factor in Alzheimer’s disease and dementia. J. Lipid Res. 2007, 48, 2485–2498. [Google Scholar] [CrossRef]
- The LipidWeb. Available online: https://lipidmaps.org (accessed on 15 November 2021).
- Kraffe, E.; Soudant, P.; Marty, Y. Fatty acids of serine, ethanolamine, and choline plasmalogens in some marine bivalves. Lipids 2004, 39, 59–66. [Google Scholar] [CrossRef]
- Amminger, G.P.; Schäfer, M.R.; Klier, C.M.; Slavik, J.-M.; Holzer, I.; Holub, M.; Goldstone, S.; Whitford, T.J.; McGorry, P.D.; Berk, M. Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Mol. Psychiatry 2012, 17, 1150–1152. [Google Scholar] [CrossRef]
- Takamasa, K. Lipid contents and fatty acid composition of total lipid of sea cucumber Stichopus japonicus and Konowata (salted sea cucumber entrails). Food Sci. Technol. Res. 2003, 9, 45–48. [Google Scholar]
- Ouraji, H.; Fereidouni, A.E.; Shayegan, M.; Asil, S.M. Comparison of fatty acid composition between farmed and wild Indian white shrimps, Fnneropenaeus indicus. Food Nutr. Sci. 2011, 2, 824–829. [Google Scholar]
- Saglik, S.; Imre, S. Fatty acid composition and cholesterol content of mussel and shrimp consumed in Turkey. J. Black Sea/Medit. 1997, 3, 179–189. [Google Scholar]
- Yu, H.-B.; Gao, Q.-F.; Dong, S.-L.; Wen, B. Changes in fatty acid profiles of sea cucumber Apostichopus japonicus (Selenka) induced by terrestrial plants in diets. Aquaculture 2015, 442, 119–124. [Google Scholar] [CrossRef]
- Monroig, Ó.; Tocher, D.R.; Navarro, J.C. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms. Mar. Drugs 2013, 11, 3998–4018. [Google Scholar] [CrossRef]
- Russell, N.J.; Nichols, D.S. Polyunsaturated fatty acids in marine bacteria—A dogma rewritten. Microbiology 1999, 145, 767–779. [Google Scholar] [CrossRef]
- Lin, H.; Jiang, J.; Xue, C.H.; Zhang, B.; Xu, J.-C. Seasonal changes in phospholipids of mussel (Mytilus edulis Linne). J. Sci. Food Agric. 2003, 83, 133–135. [Google Scholar] [CrossRef]
- Fleming, P.J.; Hajra, A.K. 1-Alky l-sn-glycero-3-phosphate: Acyl-CoA acyltransferase in rat brain microsomes. J. Biol. Chem. 1977, 252, 1663–1672. [Google Scholar] [CrossRef]
- Yamashita, A.; Hayashi, Y.; Matsumoto, N.; Nemoto-Sasaki, Y.; Oka, S.; Tanikawa, T.; Sugiura, T. Glycerophosphate/acylglycerophosphate acyltransferases. Biology 2014, 3, 801–830. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Hatzakis, E.; Koidis, A.; Boskou, D.; Dais, P. Determination of phospholipids in olive oil by 31P NMR spectroscopy. J. Agric. Food Chem. 2008, 56, 6232–6240. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Shin, J.-A.; Qin, Y.; Kwon, J.-I.; Lee, K.-T. A study on the relationship of fat content in human milk on carotenoids content and fatty acid compositions in Korea. Nutrients 2019, 11, 2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PL Concentration (mg/100 g of Sample) 1) | ||||||
---|---|---|---|---|---|---|
Infant Formula | Dried Big Head Shrimp | |||||
PLs | HPLC-ELSD | 31P-NMR | RSD 2) | PLs | HPLC-ELSD | 31P-NMR |
PtdCho | 147.7 ± 6.0 3) | 136.3 ± 1.1 | 5.7 | PtdCho | Not measurable | 1677.9 ± 273.6 |
SM | 76.4 ± 7.8 | 68.8 ± 5.0 | 7.4 | SM | Not measurable | 147.2 ± 15.2 |
PtdEtn | 104.2 ± 4.3 | 80.8 ± 13.8 | 17.9 | PtdEtn | Not measurable | 169.3 ± 20.7 |
PLs (mg/100 g of Sample) 1) | Mussel | Sea Cucumber | Big Head Shrimp | Opossum Shrimp |
---|---|---|---|---|
Mytilus galloprovincialis | Apostichopus japonicus | Solenocera melantho | Neomysis awatschensis | |
PtdCho | 1661.6 ± 63.6 | 64.3 ± 25.5 | 1677.9 ± 273.6 | 1603.0 ± 186.8 |
PlsCho | 379.0 ± 16.8 | 206.9 ± 88.5 | 262.3 ± 43.0 | 245.6 ± 29.4 |
LPC | 190.3 ± 12.1 | 37.1 ± 14.4 | 67.6 ± 7.9 | 683.7 ± 42.1 |
SM | 198.8 ± 9.5 | 26.8 ± 13.2 | 147.2 ± 15.2 | 102.2 ± 11.8 |
PtdEtn | 345.1 ± 3.0 | 17.6 ± 9.4 | 169.3 ± 20.7 | 121.2 ± 17.8 |
PlsEtn | 675.4 ± 7.7 | 51.5 ± 27.9 | 629.5 ± 53.4 | 217.9 ± 27.9 |
Total lipid content (wt %) | 10.1 ± 0.4 | 1.2 ± 0.4 | 8.5 ± 0.2 | 6.7 ± 0.4 |
PLs (w/w %) 2) | Mussel | Sea Cucumber | Big Head Shrimp | Opossum Shrimp |
Mytilus galloprovincialis | Apostichopus japonicus | Solenocera melantho | Neomysis awatschensis | |
PtdCho | 32.6 ± 0.2 | 11.5 ± 0.5 | 50.7 ± 2.6 | 41.0 ± 0.8 |
PlsCho | 7.4 ± 0.1 | 36.4 ± 0.2 | 8.1 ± 2.2 | 6.3 ± 0.1 |
LPC | 3.7 ± 0.1 | 6.7 ± 0.3 | 2.1 ± 0.1 | 17.6 ± 0.6 |
SM | 3.9 ± 0.1 | 4.6 ± 0.4 | 4.5 ± 0.1 | 2.6 ± 0.0 |
PtdEtn | 6.8 ± 0.2 | 2.9 ± 0.4 | 5.2 ± 0.1 | 3.1 ± 0.1 |
PlsEtn | 13.3 ± 0.6 | 8.5 ± 1.2 | 19.1 ± 0.5 | 5.6 ± 1.3 |
Others 3) (e.g., neutral lipid, unknowns) | 32.3 | 29.4 | 10.3 | 23.8 |
PlsCho | ||||
---|---|---|---|---|
Fatty Acids | Big Head Shrimp | Opossum Shrimp | Mussel | Sea Cucumber |
Solenocera melantho | Neomysis awatschensis | Mytilus galloprovincialis | Apostichopus japonicus | |
Myristic acid (C14:0) | 0.11 ± 0.01 (1.2%) | 0.09 ± 0.00 (0.9%) | 0.45 ± 0.05 (3.4%) | 0.12 ± 0.00 (2.5%) |
Palmitic acid (C16:0) | 0.12 ± 0.00 (1.3%) | 0.55 ± 0.05 (5.9%) | 0.55 ± 0.01 (4.1%) | 0.05 ± 0.00 (1.0%) |
Palmitoleic acid (C16:1, n-7) | 0.12 ± 0.00 (1.3%) | 1.00 ± 0.00 (10.8%) | ND | ND |
Stearic acid (C18:0) | 0.10 ± 0.01 (1.1%) | 0.30 ± 0.04 (3.2%) | 0.52 ± 0.05 (3.9%) | 0.06 ± 0.00 (1.1%) |
Oleic acid (C18:1, n-9) | 0.87 ± 0.09 (9.4%) | 0.79 ± 0.07 (8.6%) | 0.27 ± 0.01 (2.1%) | 0.08 ± 0.01 (1.6%) |
Vaccenic acid (C18:1, n-7) | 0.31 ± 0.01 (3.4%) | 0.41 ± 0.04 (4.5%) | 0.17 ± 0.01 (1.3%) | 0.17 ± 0.00 (3.5%) |
Linoleic acid (C18:2, n-6) | ND | 0.10 ± 0.00 (1.0%) | 0.14 ± 0.00 (1.1%) | ND |
Arachidic acid (C20:0) | ND | ND | ND | ND |
cis-11-Eicosenoic acid (C20:1, n-9) | ND | 0.09 ± 0.00 (0.9%) | 0.13 ± 0.01 (1.0%) | 0.02 ± 0.00 (0.5%) |
α-Linolenic acid (C18:3, n-3) | ND | 0.07 ± 0.00 (0.7%) | ND | ND |
Eicosadienoic acid (C20:2, n-6) | 0.24 ± 0.01 (2.6%) | 0.07 ± 0.00 (0.8%) | ND | 0.02 ± 0.00 (4.1%) |
Behenic acid (C22:0) | ND | 0.04 ± 0.00 (0.5%) | ND | ND |
cis-8, 11, 14-Eicosatrienoic acid (C20:3, n-6) | ND | 0.04 ± 0.00 (0.4%) | ND | ND |
Erucic acid (C22:1, n-9) | 0.22 ± 0.00 (2.4%) | 0.04 ± 0.01 (0.5%) | ND | ND |
Arachidonic acid (AA, C20:4, n-6) | 0.26 ± 0.01 (2.8%) | 0.16 ± 0.00 (1.8%) | 0.18 ± 0.00 (1.3%) | 0.40 ± 0.00 (8.3%) |
Docosadienoic acid (C22:2, n-6) | 0.61 ± 0.05 (6.6%) | 0.89 ± 0.02 (9.6%) | 1.00 ± 0.00 (7.5%) | 0.52 ± 0.00 (10.7%) |
Lignoceric acid (C24:0) | ND | 0.05 ± 0.01 (0.6%) | ND | ND |
Eicosapentaenoic acid (EPA, C20:5, n-3) | 1.00 ± 0.00 (10.9%) | 0.55 ± 0.04 (6.0%) | 0.87 ± 0.06 (6.6%) | 1.00 ± 0.00 (20.5%) |
Nervonic acid (C24:1, n-9) | ND | 0.08 ± 0.01 (0.8%) | ND | 0.05 ± 0.00 (1.1%) |
Docosapentaenoic acid (DPA, C22:5, n-3) | 0.77 ± 0.03 (8.4%) | ND | 0.13 ± 0.00 (1.0%) | ND |
Docosahexaenoic acid (DHA, C22:6, n-3) | 0.40 ± 0.02 (4.4%) | 0.32 ± 0.01 (3.5%) | 0.54 ± 0.03 (4.0%) | ND |
Unknowns | 5.03 ± 0.33 (54.7%) | 3.98 ± 0.12 (43.0%) | 11.42 ± 0.48 (87.0%) | 2.57 ± 0.10 (52.7%) |
PtdCho | ||||
---|---|---|---|---|
Fatty Acid | Big Head Shrimp | Opossum Shrimp | Mussel | Sea Cucumber |
Solenocera melantho | Neomysis awatschensis | Mytilus galloprovincialis | Apostichopus japonicus | |
Myristic acid (C14:0) | ND | 0.12 ± 0.00 (3.5%) | 0.10 ± 0.00 (2.9%) | ND |
Palmitic acid (C16:0) | 1.00 ± 0.00 (21.0%) | 1.00 ± 0.00 (28.3%) | 1.00 ± 0.00 (30.7%) | 0.25 ± 0.01 (7.7%) |
Palmitoleic acid (C16:1, n-7) | 0.61 ± 0.01 (12.7%) | 0.17 ± 0.00 (4.7%) | 0.16 ± 0.00 (4.8%) | ND |
cis-10-Hetadeccenoic acid (C17:1) | 0.10 ± 0.00 (2.0%) | ND | ND | ND |
Stearic acid (C18:0) | 0.22 ± 0.01 (4.6%) | 0.15 ± 0.00 (4.2%) | 0.16 ± 0.00 (4.8%) | 0.35 ± 0.02 (10.7%) |
Oleic acid (C18:1, n-9) | 0.77 ± 0.02 (16.2%) | 0.35 ± 0.00 (9.8%) | 0.06 ± 0.00 (1.8%) | 0.17 ± 0.01 (5.3%) |
Vaccenic acid (C18:1, n-7) | 0.32 ± 0.01 (6.7%) | 0.05 ± 0.00 (2.6%) | 0.13 ± 0.00 (4.1%) | 0.13 ± 0.00 (4.0%) |
Linoleic acid (C18:2, n-6) | 0.10 ± 0.00 (2.1%) | 0.08 ± 0.00 (2.1%) | 0.04 ± 0.00 (1.1%) | ND |
Arachidic acid (C20:0) | ND | 0.02 ± 0.00 (0.5%) | ND | ND |
γ-Linolenic acid (C18:3, n-6) | 0.03 ± 0.00 (0.7%) | 0.05 ± 0.00 (1.4%) | 0.06 ± 0.00 (1.8%) | 0.26 ± 0.00 (7.9%) |
cis-11-Eicosenoic acid (C20:1, n-9) | 0.04 ± 0.00 (0.8%) | 0.03 ± 0.00 (1.0%) | 0.04 ± 0.00 (1.1%) | ND |
α-Linolenic acid (C18:3, n-3) | 0.03 ± 0.00 (0.6%) | 0.08 ± 0.00 (2.1%) | 0.03 ± 0.00 (0.9%) | ND |
Eicosadienoic acid (C20:2, n-6) | 0.03 ± 0.00 (0.7%) | ND | ND | ND |
Erucic acid (C22:1, n-9) | ND | 0.02 ± 0.00 (0.6%) | 0.02 ± 0.00 (0.7%) | 0.16 ± 0.00 (4.9%) |
Arachidonic acid (AA, C20:4, n-6) | 0.14 ± 0.00 (2.9%) | 0.05 ± 0.00 (1.5%) | 0.05 ± 0.00 (1.5%) | 0.29 ± 0.01 (8.8%) |
Docosadienoic acid (C22:2, n-6) | ND | 0.02 ± 0.00 (0.5%) | ND | ND |
Eicosapentaenoic acid (EPA, C20:5, n-3) | 0.51 ± 0.01 (10.6%) | 0.54 ± 0.00 (15.3%) | 0.58 ± 0.01 (17.7%) | 1.00 ± 0.01 (30.6%) |
Docosapentaenoic acid (DPA, C22:5, n-3) | 0.05 ± 0.00 (1.1%) | ND | ND | ND |
Docosahexaenoic acid (DHA, C22:6, n-3) | 0.39 ± 0.01 (8.3%) | 0.38 ± 0.01 (10.8%) | 0.28 ± 0.00 (8.5%) | ND |
Unknowns | 0.53 ± 0.00 (11.2%) | 0.39 ± 0.01 (11.0%) | 0.58 ± 0.01 (19.0%) | 0.66 ± 0.01 (20.1%) |
Total Fatty Acid Composition | ||||
---|---|---|---|---|
Fatty Acid | Big Head Shrimp | Opossum Shrimp | Mussel | Sea Cucumber |
Solenocera melantho | Neomysis awatschensis | Mytilus galloprovincialis | Apostichopus japonicus | |
Butyric acid (C4:0) | ND | trace (0.0%) | trace (0.0%) | trace (0.0%) |
Capric acid (C10:0) | trace (0.0%) | trace (0.0%) | ND | ND |
Lauric acid (C12:0) | 0.02 ± 0.00 (0.3%) | 0.01 ± 0.00 (0.2%) | trace (0.0%) | trace (0.0%) |
Myristic acid (C14:0) | 0.19 ± 0.00 (2.7%) | 0.30 ± 0.00 (6.7%) | 0.25 ± 0.00 (4.6%) | 0.05 ± 0.00 (1.4%) |
Myristoleic acid (C14:1) | 0.02 ± 0.00 (0.2%) | trace (0.0%) | trace (0.0%) | trace (0.0%) |
Palmitic acid (C16:0) | 1.00 ± 0.00 (14.3%) | 1.00 ± 0.00 (21.9%) | 1.00 ± 0.00 (18.6%) | 0.09 ± 0.00 (2.3%) |
Palmitoleic acid (C16:1, n-7) | 0.88 ± 0.01 (12.5%) | 0.30 ± 0.00 (6.6%) | 0.55 ± 0.01 (10.2%) | 0.14 ± 0.00 (3.7%) |
Stearic acid (C18:0) | 0.33 ± 0.00 (4.8%) | 0.21 ± 0.00 (4.5%) | 0.22 ± 0.00 (4.1%) | 0.12 ± 0.00 (3.1%) |
Oleic acid (C18:1, n-9) | 0.80 ± 0.00 (11.4%) | 0.27 ± 0.01 (5.9%) | 0.15 ± 0.00 (2.9%) | 0.05 ± 0.00 (1.2%) |
Vaccenic acid (C18:1, n-7) | 0.42 ± 0.00 (5.9%) | 0.11 ± 0.00 (2.3%) | 0.08 ± 0.12 (3.1%) | 0.09 ± 0.00 (2.5%) |
Linoleic acid (C18:2, n-6) | 0.05 ± 0.00 (0.7%) | 0.10 ± 0.00 (2.2%) | 0.15 ± 0.00 (2.8%) | 0.01 ± 0.00 (0.4%) |
Arachidic acid (C20:0) | 0.03 ± 0.00 (0.4%) | 0.01 ± 0.00 (0.3%) | 0.01 ± 0.00 (0.2%) | 0.04 ± 0.00 (1.1%) |
γ-Linolenic acid (C18:3, n-6) | trace (0.0%) | 0.01 ± 0.00 (0.2%) | trace (0.0%) | trace (0.0%) |
cis-11-Eicosenoic acid (C20:1, n-9) | 0.07 ± 0.00 (1.0%) | 0.03 ± 0.00 (0.6%) | 0.13 ± 0.00 (2.5%) | 0.02 ± 0.00 (0.5%) |
α-Linolenic acid (C18:3, n-3) | 0.09 ± 0.00 (1.3%) | 0.09 ± 0.00 (1.9%) | 0.14 ± 0.00 (2.6%) | 0.03 ± 0.00 (0.7%) |
Eicosadienoic acid (C20:2, n-6) | 0.04 ± 0.00 (0.5%) | 0.07 ± 0.09 (0.2%) | 0.01 ± 0.00 (0.3%) | 0.02 ± 0.00 (0.6%) |
cis-8, 11, 14-Eicosatrienoic acid (C20:3, n-6) | 0.01 ± 0.00 (0.1%) | trace (0.0%) | trace (0.0%) | trace (0.0%) |
Erucic acid (C22:1, n-9) | 0.01 ± 0.00 (0.1%) | ND | 0.01 ± 0.00 (0.1%) | 0.03 ± 0.00 (0.7%) |
cis-11, 14, 17-Eicosatrienoic acid (C20:3, n-3) | ND | ND | 0.01 ± 0.00 (0.1%) | 0.08 ± 0.00 (2.0%) |
Arachidonic acid (C20:4, n-6) | 0.23 ± 0.00 (2.9%) | 0.07 ± 0.00 (1.6%) | 0.09 ± 0.00 (1.6%) | 0.38 ± 0.00 (9.8%) |
Docosadienoic acid (C22:2, n-6) | trace (0.0%) | ND | ND | 0.47 ± 0.00 (12.1%) |
Eicosapentaenoic acid (EPA, C20:5, n-3) | 0.73 ± 0.00 (10.4%) | 0.60 ± 0.00 (13.2%) | 0.71 ± 0.01 (13.2%) | 1.00 ± 0.00 (26.0%) |
Nervonic acid (C24:1, n-9) | 0.02 ± 0.00 (0.3%) | 0.02 ± 0.00 (0.4%) | ND | 0.04 ± 0.00 (0.9%) |
Docosapentaenoic acid (DPA, C22:5, n-3) | 0.07 ± 0.00 (1.1%) | 0.02 ± 0.00 (0.5%) | 0.05 ± 0.00 (1.0%) | 0.01 ± 0.00 (0.2%) |
Docosahexaenoic acid (DHA, C22:6, n-3) | 0.78 ± 0.00 (11.1%) | 0.64 ± 0.00 (14.0%) | 0.43 ± 0.01 (8.0%) | 0.02 ± 0.00 (0.4%) |
Unknowns | 1.24 ± 0.00 (17.7%) | 0.80 ± 0.00 (17.6%) | 1.28 ± 0.01 (23.8%) | 1.16 ± 0.00 (30.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, E.-S.; Kim, J.-H.; So, H.-J.; Park, E.-A.; Park, Y.-L.; Lee, J.-H.; Shin, J.-A.; Lee, K.-T. Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen. Molecules 2022, 27, 6250. https://doi.org/10.3390/molecules27196250
Hong E-S, Kim J-H, So H-J, Park E-A, Park Y-L, Lee J-H, Shin J-A, Lee K-T. Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen. Molecules. 2022; 27(19):6250. https://doi.org/10.3390/molecules27196250
Chicago/Turabian StyleHong, Eun-Sik, Ji-Hyun Kim, Hee-Jin So, Eun-Ah Park, Ye-Lim Park, Jeung-Hee Lee, Jung-Ah Shin, and Ki-Teak Lee. 2022. "Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen" Molecules 27, no. 19: 6250. https://doi.org/10.3390/molecules27196250
APA StyleHong, E. -S., Kim, J. -H., So, H. -J., Park, E. -A., Park, Y. -L., Lee, J. -H., Shin, J. -A., & Lee, K. -T. (2022). Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen. Molecules, 27(19), 6250. https://doi.org/10.3390/molecules27196250