Production of Marinated Chinese Lotus Root Slices Using High-Pressure Processing as an Alternative to Traditional Thermal-and-Soaking Procedure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of HPP and TS Processing on the Quality of Marinated Lotus Root Slices
2.1.1. Volatile Compounds
2.1.2. Color, Texture, and TVC
2.2. Effects of HPP and TS Processing on Quality Properties during Different Storage Conditions
2.2.1. Texture Changes
2.2.2. Color Changes
2.2.3. TVC Changes
2.3. Shelf Life Prediction Models of HPP Marinated Lotus Root Slices
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of Marinated Lotus Root Slices
3.3. Quality Evaluation
3.3.1. Analysis of Volatile Compounds
- Extraction of volatile compounds
- Gas chromatography–mass spectrometry (GC-MS) analysis
- Identification and quantification analysis
3.3.2. Determination of pH and Hardness
3.3.3. Measurements of Color
3.3.4. Determination of TVC
3.4. Storage Conditions
3.5. Statistics Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, R.; Fan, A.; Hu, X.; Liao, X.; Chen, F. Effects of high pressure processing on the quality of pickled radish during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2016, 38, 206–212. [Google Scholar] [CrossRef]
- Zhang, F.; Zheng, J.; Zhong, J.; Chen, G.; Kan, J. Kinetics of texture change of bamboo shoots during pickling process. J. Food Process Eng. 2017, 40, e12369. [Google Scholar] [CrossRef]
- Casado, F.J.; Lopez, A.; Rejano, L.; Sanchez, A.H.; Montano, A. Nutritional composition of commercial pickled garlic. Eur. Food Res. Technol. 2004, 219, 355–359. [Google Scholar] [CrossRef]
- Kumakura, K.; Kato, R.; Kobayashi, T.; Sekiguchi, A.; Kimura, N.; Takahashi, H.; Takahashi, A.; Matsuoka, H. Nutritional content and health benefits of sun-dried and salt-aged radish (takuan-zuke). Food Chem. 2017, 231, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Ghnimi, S.; Guizani, N. Vegetable Fermentation and Pickling. In Handbook of Vegetables and Vegetable Processing; Wiley: New York, NY, USA, 2011; pp. 351–367. [Google Scholar]
- Milani, E.A.; Ramsey, J.G.; Silva, F.V.M. High pressure processing and thermosonication of beer: Comparing the energy requirements and Saccharomyces cerevisiae ascospores inactivation with thermal processing and modeling. J. Food Eng. 2016, 181, 35–41. [Google Scholar] [CrossRef]
- Munoz, I.; Baptista de Sousa, D.A.; Dolors Guardia, M.; Rodriguez, C.J.; Nunes, M.L.; Oliveira, H.; Cunha, S.C.; Casal, S.; Marques, A.; Cabado, A.G. Comparison of different technologies (conventional thermal processing, radiofrequency heating and high-pressure processing) in combination with thermal solar energy for high quality and sustainable fish soup pasteurization. Food Bioproc. Technol. 2022, 15, 795–805. [Google Scholar] [CrossRef]
- Wu, S.; Tong, Y.; Zhang, C.; Zhao, W.; Lyu, X.; Shao, Y.; Yang, R. High pressure processing pretreatment of Chinese mitten crab (Eriocheir sinensis) for quality attributes assessment. Innov. Food Sci. Emerg. Technol. 2021, 73, 102793. [Google Scholar] [CrossRef]
- Irna, C.; Jaswir, I.; Othman, R.; Jimat, D.N. Antioxidant and antimicrobial activities of astaxanthin from Penaeus monodon in comparison between chemical extraction and high pressure processing (HPP). Int. Food Res. J. 2017, 24, S508–S513. [Google Scholar]
- Li, R.; Hou, Z.; Zou, H.; Wang, Y.; Liao, X. Inactivation kinetics, structural, and morphological modification of mango soluble acid invertase by high pressure processing combined with mild temperatures. Food Res. Int. 2018, 105, 845–852. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.H.; He, R.; Xu, R.; Zhang, L.; Gao, X. Improving soy sauce aroma using high hydrostatic pressure and the preliminary mechanism. Foods 2022, 11, 2190. [Google Scholar] [CrossRef]
- Rodrigues, I.; Trindade, M.A.; Caramit, F.R.; Candogan, K.; Pokhrel, P.R.; Barbosa-Canovas, G.V. Effect of high pressure processing on physicochemical and microbiological properties of marinated beef with reduced sodium content. Innov. Food Sci. Emerg. Technol. 2016, 38, 328–333. [Google Scholar] [CrossRef]
- Scheinberg, J.A.; Svoboda, A.L.; Cutter, C.N. High-pressure processing and boiling water treatments for reducing Listeria monocytogenes, Escherichia coli O157:H7, Salmonella spp., and Staphylococcus aureus during beef jerky processing. Food Control 2014, 39, 105–110. [Google Scholar] [CrossRef]
- O’Neill, C.M.; Cruz-Romero, M.C.; Duffy, G.; Kerry, J.P. Improving marinade absorption and shelf life of vacuum packed marinated pork chops through the application of high pressure processing as a hurdle. Food Packag. Shelf Life 2019, 21, 100350. [Google Scholar] [CrossRef]
- Sehrawat, R.; Kaur, B.P.; Nema, P.K.; Tewari, S.; Kumar, L. Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Sci. Biotechnol. 2021, 30, 19–35. [Google Scholar] [CrossRef]
- Chai, H.-E.; Sheen, S. Effect of high pressure processing, allyl isothiocyanate, and acetic acid stresses on Salmonella survivals, storage, and appearance color in raw ground chicken meat. Food Control 2021, 123, 107784. [Google Scholar] [CrossRef]
- Aguilar Uscanga, B.R.; Solis Pacheco, J.R.; Ragazzo-Sanchez, J.A.; Cavazos Garduno, A.; Muro Valdez, J.C.; Rodriguez Arreola, A.; Serrano Nino, J.C. Assessment of the accelerated shelf life of human milk dehydrated by aspersion and treated by UV, high pressures, and pasteurization. J. Food Qual. 2021, 2021, 6688266. [Google Scholar] [CrossRef]
- Chiang, P.Y.; Luo, Y.Y. Effects of pressurized cooking on the relationship between the chemical compositions and texture changes of lotus root (Nelumbo nucifera Gaertn.). Food Chem. 2007, 105, 480–484. [Google Scholar] [CrossRef]
- Hee, P.B.; Ryae, J.E.; Cho, H.S. Changes in the quality characteristics of lotus root pickle with beet extract during storage. J. Korean Soc. Food Sci. Nutr. 2009, 38, 1124–1129. [Google Scholar]
- Li, J.; Shi, J.; Wang, T.; Huang, X.; Zou, X.; Li, Z.; Zhang, D.; Zhang, W.; Xu, Y. Effects of pulsed electric field pretreatment on mass transfer kinetics of pickled lotus root (Nelumbo nucifera Gaertn.). LWT-Food Sci. Technol. 2021, 151, 112205. [Google Scholar] [CrossRef]
- Sanders, R.A.; Zyzak, D.V.; Morsch, T.R.; Zimmerman, S.P.; Searles, P.M.; Strothers, M.A.; Eberhart, B.L.; Woo, A.K. Identification of 8-nonenal as an important contributor to “plastic” off-odor in polyethylene packaging. J. Agric. Food Chem. 2005, 53, 1713–1716. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Lamikanra, O.; Luo, Q.; Liu, Z.; Yang, J. Effect of cooking on physicochemical properties and volatile compounds in lotus root (Nelumbo nucifera Gaertn). Food Chem. 2017, 216, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Idowu, S.; Adekoya, A.E.; Igiehon, O.O.; Idowu, A.T. Clove (Syzygium aromaticum) spices: A review on their bioactivities, current use, and potential application in dairy products. J. Food Meas. Charact. 2021, 15, 3419–3435. [Google Scholar] [CrossRef]
- Zhu, H.B.; Fan, Y.C.; Qian, Y.L.; Tang, H.F.; Ruan, Z.; Liu, D.H.; Wang, H. Determination of spices in food samples by ionic liquid aqueous solution extraction and ion chromatography. Chin. Chem. Lett. 2014, 25, 465–468. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Y.; Xiang, Z. Chemical Composition of Essential Oil from the Leaves of Two Species of BaiJiangCao, Patrinia Scabiosaefolia Fisch and Patrinia Villosa (Thunb.). In Proceedings of the 5th International Conference on Energy and Environmental Protection (ICEEP), Shenzhen, China, 17–18 September 2016; pp. 482–487. [Google Scholar]
- Jerkovic, I.; Mastelic, J.; Milos, M. The effect of air-drying on glycosidically bound volatiles from seasonally collected origano (Origanum vulgare ssp hirtum) from Croatia. Nahr. Food 2001, 45, 47–49. [Google Scholar] [CrossRef]
- Basak, S.; Ramaswamy, H.S. Effect of high pressure processing on the texture of selected fruits and vegetables. J. Texture Stud. 1998, 29, 587–601. [Google Scholar] [CrossRef]
- Gosavi, N.S.; Salvi, D.; Karwe, M.V. High pressure-assisted infusion of calcium into baby carrots Part I: Influence of process variables on calcium infusion and hardness of the baby carrots. Food Bioproc. Technol. 2019, 12, 255–266. [Google Scholar] [CrossRef]
- Grossi, A.; Bolumar, T.; Soltoft-Jensen, J.; Orlien, V. High pressure treatment of brine enhanced pork semitendinosus: Effect on microbial stability, drip loss, lipid and protein oxidation, and sensory properties. Innov. Food Sci. Emerg. Technol. 2014, 22, 11–21. [Google Scholar] [CrossRef]
- Araya, X.I.T.; Smale, N.; Zabaras, D.; Winley, E.; Forde, C.; Stewart, C.M.; Mawson, A.J. Sensory perception and quality attributes of high pressure processed carrots in comparison to raw, sous-vide and cooked carrots. Innov. Food Sci. Emerg. Technol. 2009, 10, 420–433. [Google Scholar] [CrossRef]
- Guerrero-Beltran, J.A.; Barbosa-Canovas, G.; Swanson, B.G. High hydrostatic pressure processing of fruit and vegetable products. Food Rev. Int. 2005, 21, 411–425. [Google Scholar] [CrossRef]
- Byrne, B.; Lyng, J.G.; Dunne, G.; Bolton, D.J. Radio frequency heating of comminuted meats—considerations in relation to microbial challenge studies. Food Control 2010, 21, 125–131. [Google Scholar] [CrossRef]
- Olivier, S.A.; Smith, R.; Bull, M.K.; Chapman, B.; Knoerzer, K. Apparatus for the simultaneous processing of mesophilic spores by heat-only and by high pressure and heat in a high pressure vessel to investigate synergistic spore inactivation. Innov. Food Sci. Emerg. Technol. 2015, 27, 35–40. [Google Scholar] [CrossRef]
- Sun, L.C.; Sridhar, K.; Tsai, P.J.; Chou, C.S. Effect of traditional thermal and high-pressure processing (HPP) methods on the color stability and antioxidant capacities of Djulis (Chenopodium formosanum Koidz.). LWT-Food Sci. Technol. 2019, 109, 342–349. [Google Scholar] [CrossRef]
- Paravisini, L.; Peterson, D.G. Mechanisms non-enzymatic browning in orange juice during storage. Food Chem. 2019, 289, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Gwanpua, S.G.; Van Buggenhout, S.; Verlinden, B.E.; Christiaens, S.; Shpigelman, A.; Vicent, V.; Kermani, Z.J.; Nicolai, B.M.; Hendrickx, M.; Geeraerd, A. Pectin modifications and the role of pectin-degrading enzymes during postharvest softening of Jonagold apples. Food Chem. 2014, 158, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Murayama, H.; Katsumata, T.; Horiuchi, O.; Fukushima, T. Relationship between fruit softening and cell wall polysaccharides in pears after different storage periods. Postharvest Biol. Technol. 2002, 26, 15–21. [Google Scholar] [CrossRef]
- Jomngam, P.; Chen, K.Y.; Chumpookam, J.; Shiesh, C.C. Effect of ripening and storage temperatures on quality of atemoya (Annona cherimola Mill. x A. squamosa L.) fruit. Acta Hortic. 2017, 1166, 161–166. [Google Scholar] [CrossRef]
- Leadley, C.; Tucker, G.; Fryer, P. A comparative study of high pressure sterilisation and conventional thermal sterilisation: Quality effects in green beans. Innov. Food Sci. Emerg. Technol. 2008, 9, 70–79. [Google Scholar] [CrossRef]
- Zhang, F.; Dong, P.; Feng, L.; Chen, F.; Wu, J.; Liao, X.; Hu, X. Textural changes of yellow peach in pouches processed by high hydrostatic pressure and thermal processing during storage. Food Bioproc. Technol. 2012, 5, 3170–3180. [Google Scholar] [CrossRef]
- Oey, I.; Lille, M.; Van Loey, A.; Hendrickx, M. Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: A review. Trends Food Sci. Technol. 2008, 19, 320–328. [Google Scholar] [CrossRef]
- Min, T.; Niu, L.F.; Feng, X.Y.; Yi, Y.; Wang, L.M.; Zhao, Y.; Wang, H.X. The effects of different temperatures on the storage characteristics of lotus (Nelumbo nucifera G.) root. Food Chem. 2021, 348, 129109. [Google Scholar] [CrossRef]
- Marszalek, K.; Wozniak, L.; Skapska, S.; Mitek, M. High pressure processing and thermal pasteurization of strawberry puree: Quality parameters and shelf life evaluation during cold storage. J. Food Sci. Technol. 2017, 54, 832–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oey, I.; Van der Plancken, I.; Van Loey, A.; Hendrickx, M. Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci. Technol. 2008, 19, 300–308. [Google Scholar] [CrossRef]
- Yi, J.; Kebede, B.T.; Doan Ngoc Hai, D.; Buve, C.; Grauwet, T.; Van Loey, A.; Hu, X.; Hendrickx, M. Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT-Food Sci. Technol. 2017, 75, 85–92. [Google Scholar] [CrossRef]
- Xu, X.; Deng, J.; Luo, D.; Bao, Y.; Liao, X.; Gao, H.; Wu, J. Comparative study of high hydrostatic pressure and high temperature short time processing on quality of clear and cloudy Se-enriched kiwifruit juices. Innov. Food Sci. Emerg. Technol. 2018, 49, 1–12. [Google Scholar] [CrossRef]
- Terefe, N.S.; Buckow, R.; Versteeg, C. Quality-related enzymes in fruit and vegetable products: Effects of novel food processing technologies, Part 1: High-pressure processing. Crit. Rev. Food Sci. Nutr. 2014, 54, 24–63. [Google Scholar] [CrossRef]
- Polydera, A.C.; Stoforos, N.G.; Taoukis, P.S. Quality degradation kinetics of pasteurised and high pressure processed fresh Navel orange juice: Nutritional parameters and shelf life. Innov. Food Sci. Emerg. Technol. 2005, 6, 1–9. [Google Scholar] [CrossRef]
- Hulle, N.R.S.; Rao, P.S. Effect of high pressure and thermal processing on quality changes of aloe vera-litchi mixed beverage (ALMB) during storage. J. Food Sci. Technol. 2016, 53, 359–369. [Google Scholar] [CrossRef] [Green Version]
- García-Parra, J.; González-Cebrino, F.; Delgado, J.; Lozano, M.; Hernández, T.; Ramírez, R. Effect of thermal and high-pressure processing on the nutritional value and quality attributes of a nectarine purée with industrial origin during the refrigerated storage. J. Food Sci. 2011, 76, C618–C625. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Zhao, L.; Wang, Y.; Liao, X. Potential of high-pressure processing and high-temperature/short-time thermal processing on microbial, physicochemical and sensory assurance of clear cucumber juice. Innov. Food Sci. Emerg. Technol. 2016, 34, 51–58. [Google Scholar] [CrossRef]
- Roobab, U.; Aadil, R.M.; Madni, G.M.; Bekhit, A.E.D. The impact of nonthermal technologies on the microbiological quality of juices: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 437–457. [Google Scholar] [CrossRef]
- Delgado-Adamez, J.; Franco, M.N.; Sanchez, J.; De Miguel, C.; Ramirez, M.R.; Martin-Vertedor, D. Comparative effect of high pressure processing and traditional thermal treatment on the physicochemical, microbiology, and sensory analysis of olive jam. Grasas Aceites 2013, 64, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Hurtado, A.; Dolors Guardia, M.; Picouet, P.; Jofre, A.; Maria Ros, J.; Banon, S. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability. J. Sci. Food Agric. 2017, 97, 770–776. [Google Scholar] [CrossRef] [PubMed]
- van Boekel, M.A.J.S. Kinetic modeling of food quality: A critical review. Compr. Rev. Food Sci. Food Saf. 2008, 7, 144–158. [Google Scholar] [CrossRef]
- Song, Y.; Hu, Q.; Wu, Y.; Pei, F.; Kimatu, B.M.; Su, A.; Yang, W. Storage time assessment and shelf-life prediction models for postharvest Agaricus bisporus. LWT-Food Sci. Technol. 2019, 101, 360–365. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Lu, W.; Shen, H.; Luo, Y. Quality predictive models of grass carp (Ctenopharyngodon idellus) at different temperatures during storage. Food Control 2011, 22, 1197–1202. [Google Scholar] [CrossRef]
- Ramos, F.C.P.; Ribeiro, S.C.A.; Peixoto Joele, M.R.S.; Sousa, C.L.; Lourenco, L.F.H. Kinetic modeling to study the quality of tambaqui (Colossoma macropomum) sous vide during storage at different temperatures. J. Food Sci. Technol. 2017, 54, 2452–2463. [Google Scholar] [CrossRef]
- Shen, Q.; Cheng, H.; Pu, Y.F.; Ren, S.J.; Hu, L.L.; Chen, J.C.; Ye, X.Q.; Liu, D.H. Characterization of volatile compounds in pickled and dried mustard (Brassica juncea, Coss.) using optimal HS-SPME-GC-MS. Cyta J. Food 2018, 16, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Pan, S.; Fan, G.; Dong, L.; Ren, J.; Zhu, Y. Evaluation of volatile profile of Sichuan dongcai, a traditional salted vegetable, by SPME-GC-MS and E-nose. LWT-Food Sci. Technol. 2015, 64, 528–535. [Google Scholar] [CrossRef]
- Yang, Z.; Duan, X.; Yang, J.; Wang, H.; Liu, F.; Xu, X.; Pan, S. Effects of high hydrostatic pressure and thermal treatment on texture properties of pickled kohlrabi. LWT-Food Sci. Technol. 2022, 157, 113078. [Google Scholar] [CrossRef]
- Dong, P.; Kong, M.; Yao, J.; Zhang, Y.; Liao, X.; Hu, X.; Zhang, Y. The effect of high hydrostatic pressure on the microbiological quality and physicochemical properties of lotus root during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2013, 19, 79–84. [Google Scholar] [CrossRef]
- Yi, T.; Fang, W.; Xie, X.; Yuan, B.; Lu, M.; Xu, C. High pressure processing (HPP) improved safety and quality of emerging aronia berry juice: A pilot scale shelf life study. J. Food Sci. Technol. 2022, 59, 755–767. [Google Scholar] [CrossRef] [PubMed]
No. | Compounds | Aroma Descriptors 1 | LRI | Concentration (μg/kg) 2 | ||
---|---|---|---|---|---|---|
Blank | HPP | TS | ||||
aldehydes | ||||||
A1 | 1-Nonanal | Waxy, rose | 1393 | 12.38 ± 2.17 b | 247.32 ± 97.69 b | 695.10 ± 295.09 a |
A2 | Benzaldehyde | Sharp, sweet | 1510 | n.d. | 776.66 ± 173.01 b | 1209.04 ± 312.11 a |
A3 | Phenylacetaldehyde | Green, sweet | 1629 | n.d. | 497.25 ± 330.72 ab | 906.15 ± 5.27 a |
A4 | 2-Phenyl-2-butenal | Sweet, narcissus | 1919 | n.d. | 47.75 ± 5.37 a | n.d. |
A5 | Cinnamaldehyde | Sweet, spicy | 2030 | n.d. | 14.07 ± 4.38 a | n.d. |
A6 | Cocal | Bitter, cocoa | 2069 | n.d. | 25.78 ± 6.45 a | n.d. |
Subtotal | 12.38 ± 2.17 c | 1608.83 ± 617.62 b | 2810.29 ± 612.47 a | |||
heterocyclic compounds | ||||||
B1 | Furfural | Sweet, woody | 1457 | 15.18 ± 9.63 c | 787.57 ± 118.23 b | 1051.82 ± 98.78 a |
B2 | 5-Methyl furfural | Spice, caramel | 1565 | n.d. | 158.65 ± 39.21 b | 375.96 ± 38.36 a |
B3 | Acetylpyrazine | Popcorn, nutty | 1614 | n.d. | 175.88 ± 62.5 b | 390.92 ± 36.98 a |
B4 | Furfuryl alcohol | Alcoholic, chemical | 1658 | n.d. | 321.83 ± 23.09 a | n.d. |
B5 | 2-Acetyl pyrrole | Musty, nut | 1958 | n.d. | 332.81 ± 45.26 b | 579.91 ± 44.95 a |
B6 | Ethyl maltol | Sweet, caramel | 1998 | n.d. | 3885.19 ± 860.53 a | 4640.65 ± 963.37 a |
B7 | 5-(2-Hydroxyethyl)-4-methylthiazole | Fatty, cooked beef | 2292 | n.d. | 95.44 ± 18.88 a | 94.01 ± 17.08 a |
Subtotal | 15.18 ± 9.63 c | 5757.37 ± 1167.70 b | 7133.27 ± 1199.52 a | |||
alcohols | ||||||
C1 | Benzyl alcohol | Floral, rose | 1865 | n.d. | 2141.2 ± 265.17 b | 2785.97 ± 244.55 a |
C2 | Phenethyl alcohol | Floral, rose | 1898 | n.d. | 740.32 ± 96.60 a | 843.44 ± 75.53 a |
Subtotal | n.d. | 2881.52 ± 361.77 b | 3629.41 ± 320.08 a | |||
ethers | ||||||
D1 | Di-n-decyl ether | 1199 | 0.40 ± 0.11 a | n.d. | n.d. | |
D2 | 4-Allylanisole | Sweet, sassafras | 1662 | n.d. | 235.65 ± 20.07 a | 252.35 ± 23.80 a |
D3 | cis-Anethol | Sweet, anise | 1818 | n.d. | 1573.04 ± 240.16 a | 1725.51 ± 183.42 a |
D4 | Methyl eugenol | Sweet, fresh | 2010 | n.d. | 488.64 ± 115.99 a | 508.58 ± 41.26 a |
D5 | Methyl isoeugenol | Spicy, clove | 2179 | n.d. | 72.13 ± 12.56 a | 61.29 ± 25.40 a |
D6 | Elemicin | Spice, flower | 2224 | n.d. | 202.00 ± 53.42 a | 223.15 ± 16.60 a |
D7 | Myristicin | Spicy, warm | 2252 | n.d. | 307.76 ± 85.43 b | 571.90 ± 38.19 a |
Subtotal | 0.40 ± 0.11 c | 2879.22 ± 527.63 b | 3342.78 ± 328.67 a | |||
esters | ||||||
E1 | Methoxyacetic acid, 2-tridecyl ester | 1309 | 2.58 ± 0.69 a | n.d. | n.d. | |
E2 | Ethyl caprylate | Fruity, wine | 1432 | n.d. | 122.46 ± 21.05 b | 291.75 ± 110.42 a |
E3 | Diethyl succinate | Mild, fruity | 1678 | n.d. | 233.68 ± 24.37 b | 334.37 ± 22.89 a |
E4 | Ethyl myristate | Sweet, waxy | 2055 | n.d. | n.d. | 206.98 ± 34.35 a |
E5 | Isopropyl myristate | Oily, fatty | 2074 | 8.11 ± 1.16 a | n.d. | n.d. |
E6 | Ethyl palmitate | Mild, waxy | 2263 | n.d. | 53.96 ± 10.99 b | 202.63 ± 53.48 a |
E7 | 2-Ethylhexyl salicylate | Mild, orchid | 2314 | 7.74 ± 2.05 a | n.d. | n.d. |
E8 | Dibutyl phthalate | Faint | 2698 | 6.72 ± 2.96 a | n.d. | n.d. |
Subtotal | 25.15 ± 6.86 c | 410.10 ± 56.41 b | 1035.73 ± 221.14 a | |||
phenols | ||||||
F1 | Butylated hydroxytoluene | Phenolic, camphor | 1912 | n.d. | 63.31 ± 9.43 a | n.d. |
F2 | Phenol | Phenolic, plastic | 1994 | 1.56 ± 0.34 c | 44.56 ± 4.15 b | 271.53 ± 32.80 a |
F3 | 4-Ethyl-2-methoxyphenol | Spicy, smoky | 2019 | n.d. | 156.47 ± 35.34 a | n.d. |
F4 | Eugenol | Sweet, spicy | 2156 | n.d. | 9546.86 ± 2096.10 a | 9660.94 ± 831.41 a |
F5 | 4-Hydroxy-3-methoxystyrene | Sweet, spicy | 2185 | n.d. | 48.61 ± 7.23 a | n.d. |
F6 | Isoeugenol | Sweet, spicy | 2245 | n.d. | 166.14 ± 39.81 a | 76.34 ± 20.03 b |
F7 | 2,4-Di-tert-butylphenol | Phenolic | 2333 | 19.39 ± 2.73 c | 494.25 ± 56.39 b | 946.03 ± 229.91 a |
Subtotal | 20.95 ± 3.07 b | 10,520.20 ± 2248.45 a | 10,954.84 ± 1114.15 a | |||
alkyls | ||||||
G1 | Hexane | 1017 | 16.17 ± 2.29 a | n.d. | n.d. | |
G2 | Undecane | 1081 | 16.98 ± 2.36 a | n.d. | n.d. | |
G3 | Dodecane | 1166 | 6.84 ± 2.07 a | n.d. | n.d. | |
G4 | Hexadecane | 1641 | 6.22 ± 0.81 a | n.d. | n.d. | |
G5 | Eicosane | Waxy | 1636 | 7.00 ± 4.37 a | n.d. | n.d. |
Subtotal | 53.21 ± 11.90 a | n.d. | n.d. | |||
others | ||||||
H1 | 1-Methylethyl-benzene | 1138 | 15.96 ± 6.02 a | n.d. | n.d. | |
H2 | DL-Limonene | Citrus, herbal | 1173 | 3.36 ± 0.12 a | 4.91 ± 0.22 a | 4.94 ± 6.11 a |
H3 | 6-Methyl-5-hepten-2-one | Citrus, green | 1329 | 3.40 ± 1.29 a | n.d. | n.d. |
H4 | 1,2,3-Trimethyl-4-[(E)-prop-1-enyl]naphthalene | 2288 | 0.76 ± 0.02 a | n.d. | n.d. | |
Subtotal | 23.48 ± 7.45 a | 4.91 ± 0.22 b | 4.94 ± 6.11 b | |||
Total | 150.75 ± 41.19 b | 24,062.15 ± 4979.80 a | 28,911.26 ± 3802.14 a |
Blank | HPP | TS | ||
---|---|---|---|---|
TVC (log10 CFU/g) | 3.98 ± 0.04 a | 1.68 ± 0.02 b | 1.60 ± 0.16 b | |
Hardness (g) | 14,208.14 ± 1985.80 a | 14,820.45 ± 814.85 a | 11,955.97 ± 1040.45 b | |
pH | 6.47 ± 0.02 a | 4.82 ± 0.03 b | 4.73 ± 0.04 c | |
Color | L* | 76.35 ± 1.42 a | 51.74 ± 1.52 b | 48.36 ± 0.68 c |
a* | −0.88 ± 0.05 c | 7.58 ± 0.57 b | 8.48 ± 0.43 a | |
b* | 2.65 ± 0.32 c | 21.56 ± 1.20 b | 23.95 ± 0.74 a | |
ΔE | - | 32.20 ± 0.45 b | 36.41 ± 0.39 a |
Storage Temperature (°C) | Storage Time (Days) | HPP | TS |
---|---|---|---|
45 | 0 | 32.20 ± 0.45 j | 36.41 ± 0.39 gh |
2 | 35.34 ± 0.92 hi | 38.08 ± 0.44 cde | |
4 | 35.37 ± 0.31 hi | 37.84 ± 0.11 def | |
6 | 35.18 ± 0.75 i | 36.76 ± 1.45 fg | |
9 | 35.33 ± 0.18 hi | 37.12 ± 0.50 efg | |
12 | 37.07 ± 1.14 efg | 39.76 ± 1.68 b | |
15 | 38.63 ± 0.20 bcd | 41.38 ± 0.90 a | |
18 | 39.11 ± 0.29 bc | 42.07 ± 0.29 a | |
25 | 0 | 32.20 ± 0.45 k | 36.41 ± 0.39 fgh |
4 | 33.37 ± 1.90 jk | 36.13 ± 0.72 fghi | |
9 | 34.40 ± 0.89 ij | 37.52 ± 0.71 efgh | |
15 | 35.65 ± 0.73 hi | 38.01 ± 0.32 def | |
25 | 35.88 ± 0.25 ghi | 38.69 ± 1.68 de | |
35 | 35.76 ± 0.93 ghi | 41.85 ± 0.50 ab | |
45 | 37.69 ± 1.34 efg | 40.88 ± 1.61 bc | |
55 | 39.60 ± 0.46 cd | 42.92 ± 1.57 a | |
4 | 0 | 32.20 ± 0.45 k | 36.41 ± 0.39 efg |
6 | 33.08 ± 1.07 jk | 35.28 ± 0.45 ghi | |
15 | 33.87 ± 0.84 ijk | 37.66 ± 0.41 def | |
25 | 34.44 ± 0.79 hij | 38.02 ± 0.15 cde | |
35 | 34.49 ± 2.21 ghij | 39.88 ± 0.62 bc | |
45 | 35.01 ± 1.59 ghi | 39.82 ± 0.19 bc | |
55 | 36.08 ± 2.44 fgh | 40.29 ± 1.56 b | |
70 | 38.60 ± 1.84 bcd | 42.71 ± 1.36 a | |
80 | 40.19 ± 0.25 b | 42.81 ± 0.38 a |
k0 | Ea (kJ/mol) | Relative Error 1 | |||||
---|---|---|---|---|---|---|---|
Stored at 4 °C | Stored at 25 °C | Stored at 45 °C | Average | ||||
Hardness | Zero-order | 4.50 × 106 | 25.00 | 38.90% | 3.98% | 6.25% | 16.37% |
First-order | 5.57 × 102 | 25.33 | 31.03% | 15.26% | 1.56% | 15.95% | |
TVC | Zero-order | 6.49 × 103 | 27.92 | 15.21% | 20.13% | 16.06% | 17.14% |
First-order | 1.79 × 103 | 27.47 | 16.02% | 8.07% | 20.27% | 14.79% | |
ΔE | Zero-order | 1.31 × 103 | 22.44 | 56.30% | 18.11% | 29.44% | 34.62% |
First-order | 32.54 | 22.15 | 56.83% | 21.20% | 29.12% | 35.71% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Xu, F.; Xu, Y.; Wu, J.; Lao, F. Production of Marinated Chinese Lotus Root Slices Using High-Pressure Processing as an Alternative to Traditional Thermal-and-Soaking Procedure. Molecules 2022, 27, 6506. https://doi.org/10.3390/molecules27196506
Yuan L, Xu F, Xu Y, Wu J, Lao F. Production of Marinated Chinese Lotus Root Slices Using High-Pressure Processing as an Alternative to Traditional Thermal-and-Soaking Procedure. Molecules. 2022; 27(19):6506. https://doi.org/10.3390/molecules27196506
Chicago/Turabian StyleYuan, Lin, Feifei Xu, Yingying Xu, Jihong Wu, and Fei Lao. 2022. "Production of Marinated Chinese Lotus Root Slices Using High-Pressure Processing as an Alternative to Traditional Thermal-and-Soaking Procedure" Molecules 27, no. 19: 6506. https://doi.org/10.3390/molecules27196506
APA StyleYuan, L., Xu, F., Xu, Y., Wu, J., & Lao, F. (2022). Production of Marinated Chinese Lotus Root Slices Using High-Pressure Processing as an Alternative to Traditional Thermal-and-Soaking Procedure. Molecules, 27(19), 6506. https://doi.org/10.3390/molecules27196506