Thin-Layer Chromatography (TLC) in the Screening of Botanicals–Its Versatile Potential and Selected Applications
Abstract
:1. Introduction
2. Thin-Layer Chromatography in Chemotaxonomy of Plants
3. Thin-Layer Chromatography Coupled with Bioassays
3.1. Thin-Layer Chromatography in Screening of Botanicals for Their Free Radical Scavenging Activity
3.2. Thin-Layer Chromatography in Screening of Botanicals for Their Antimicrobial Properties
3.3. Thin-Layer Chromatography in Screening of Botanicals for Their Enzyme-Inhibiting Potential
4. Thin-Layer Chromatography in Screening of Medicinal and Culinary Herbs and in Quality Control of Alimentary and Cosmetic Products of Botanical Origin
4.1. Thin-Layer Chromatography in Screening of Medicinal and Culinary Herbs
4.2. Quality Control of Alimentary and Cosmetic Products of Botanical Origin
5. Planar Chromatography in Screening of Psychoactive Plants
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kenyon, A.S.; Flinn, P.E.; Layloff, T.P. Rapid screening of pharmaceuticals by thin-layer chromatography: Analysis of essential drugs by visual methods. J. AOAC Int. 1995, 78, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Kaale, E.; Risha, P.; Layloff, T. TLC for pharmaceutical analysis in resource limited countries. J. Chromatogr. A 2011, 1218, 2732–2736. [Google Scholar] [CrossRef] [PubMed]
- Shewiyo, D.H. Development and Validation of HPTLC Methods to Assay Pharmaceutical Formulations. Ph.D. Thesis, Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Free University of Brussels, Brussels, Belgium, 2012. [Google Scholar]
- Kaale, E.; Risha, P.; Layloff, T.; Sherma, J. Screening of substandard and fake drugs in underdeveloped countries by TLC. In Thin-Layer Chromatography in Drug Analysis; Komsta, Ł., Waksmundzka-Hajnos, M., Sherma, J., Eds.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2014; Chapter 14; pp. 247–266. [Google Scholar]
- O’Sullivan, C.; Sherma, J. A model procedure for the transfer of TLC pharmaceutical product screening methods designed for use in developing countries to quantitative HPTLC-densitometry methods. Acta Chromatogr. 2012, 24, 241–252. [Google Scholar] [CrossRef]
- Kaltsikes, P.J.; Dedio, W. A thin-layer chromatographic study of the phenolics of the genus Aegilops. I. Numerical chemotaxonomy of the diploid species. Can. J. Bot. 1970, 48, 1775–1780. [Google Scholar] [CrossRef]
- Kaltsikes, P.J.; Dedio, W. A thin-layer chromatographic study of the phenolics of the genus Aegilops. II. Numerical chemotaxonomy of the polyploid species. Can. J. Bot. 1970, 48, 1781–1786. [Google Scholar] [CrossRef]
- Rogers, C.B.; Abbot, A.T.D.; van Wyk, A.E. A convenient thin layer chromatographic technique for chemotaxonomic application in Maytenus (Celastraceae). S. Afr. J. Bot. 1999, 66, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Mandal, P.; Choudhury, D.; Ghosal, M.; Das, A.P. TLC based chemotaxonomic approach of some laurels present in sub-Himalayan Terai and Duars region of West Bengal, India. Int. J. Pharm. Sci. Rev. Res. 2016, 41, 193–196. [Google Scholar]
- Cieśla, Ł.; Waksmundzka-Hajnos, M. Application of thin-layer chromatography for the quality control and screening the free radical scavenging activity of selected pharmacuetical preparations containing Salvia officinalis L. extract. Acta Pol. Pharm.—Drug Res. 2010, 67, 481–485. [Google Scholar]
- Kagan, I.A.; Flythe, M.D. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds. J. Vis. Exp. 2014, 85, e51411. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, Y.; Wang, R.; Wang, Z.; Yang, B.; Kuang, H. An evolving technology that integrates classical methods with continuous technological developments: Thin-layer chromatography bioautography. Molecules 2021, 26, 4647. [Google Scholar] [CrossRef]
- Schönborn, A.; Grimmmer, A. Coupling sample preparation with effect-directed analysis of estrogenic activity—Proposal for a new rapid screening concept for water samples. J. Planar Chromatogr.—Mod. TLC 2013, 26, 402–408. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Morton, D.W. Hyphenated TLC as a tool in the effect-directed discovery of bioactive natural products. Appl. Sci. 2020, 10, 1123. [Google Scholar] [CrossRef]
- Sherma, J. Thin-layer chromatography in food and agricultural analysis. Review. J. Chromatogr. A 2000, 880, 129–147. [Google Scholar] [CrossRef]
- De Mey, E.; De Maere, H.; Dewulf, L.; Paelinck, H.; Sajewicz, M.; Fraeye, I.; Kowalska, T. Application of accelerated solvent extraction (ASE) and thin layer chromatography (TLC) to determination of piperine in commercial samples of pepper (Piper nigrum L.). J. Liq. Chromatogr. Relat. Technol. 2014, 37, 2980–2988. [Google Scholar] [CrossRef]
- Łata, E.; Fulczyk, A.; Kowalska, T.; Sajewicz, M. Thin-layer chromatographic method of screening the anthocyanes containing alimentary products and precautions taken at the method development step. J. Chromatogr. A 2017, 1530, 211–218. [Google Scholar] [CrossRef]
- Kowalczuk, A.P.; Raman, V.; Galal, A.M.; Khan, I.A.; Siebert, D.J.; Zjawiony, J.K. Vegetative anatomy and micromorphology of Salvia divinorum (Lamiaceae) from Mexico, combined with chromatographic analysis of salvinorin A. J. Nat. Med. 2014, 68, 63–73. [Google Scholar] [CrossRef]
- Waksmundzka-Hajnos, M.; Sherma, J.; Kowalska, T. Overview of the field of TLC in phytochemistry and the structure of the book. In Thin-Layer Chromatography in Phytochemistry; CRC Press: Boca Raton, FL, USA, 2008; Chapter 1; pp. 3–14. [Google Scholar]
- Singh, R. Chemotaxonomy: A tool for plant classification. J. Med. Plants Stud. 2016, 4, 90–93. [Google Scholar]
- Schibli, A.; Reich, E. Modern TLC: A key technique for identification and quality control of botanicals and dietary supplements. J. Planar Chromatogr.—Mod. TLC 2005, 18, 34–38. [Google Scholar] [CrossRef]
- Staszek, D.; Orłowska, M.; Waksmundzka-Hajnos, M.; Sajewicz, M.; Kowalska, T. Marker fingerprints originating from TLC and HPLC for selected plants from the Lamiaceae family. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 2463–2475. [Google Scholar] [CrossRef]
- Jerzmanowska, Z. Plant Material: The Isolation Methods; PWN: Warszawa, Poland, 1967. (In Polish) [Google Scholar]
- Świątek, L. The iridoid phenolic acids and glycosides in certain Polish medicinal herbs from the Plantago genus. Herba Polon. 1977, 23, 201–210. [Google Scholar]
- Ibrahim, R.K.; Towers, G.H. The identification by chromatography of plant phenolic acids. Arch. Biochem. Biophys. 1960, 87, 125–127. [Google Scholar] [CrossRef]
- Świątek, L.; Dombrowicz, E. Phenolic acids in the bitter raw materials. Part I. Analysis of the Artemisia absinthium herb and the Gentian root. Farm. Pol. 1984, 40, 729–732. [Google Scholar]
- Schmidtlein, H.; Hermann, K. Quantitative analysis for phenolic acids by thin layer chromatography. J. Chromatogr. A 1975, 115, 123–128. [Google Scholar] [CrossRef]
- Ganzera, M.; Pöcher, A.; Stuppner, H. Differentiation of Cirsium japonicum and C. setosum by TLC and HPLC-MS. Phytochem. Anal. 2005, 16, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Sherma, J. Thin-layer chromatography in the determination of synthetic and natural colorants in foods. In Advances in Chromatography; Grinberg, N., Carr, P.W., Eds.; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2021; Chapter 4; Volume 56, pp. 109–136. [Google Scholar]
- Choma, I. Thin-layer chromatography hyphenated with bioassays. J. AOAC Int. 2013, 96, 1165–1166. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Glavind, J.; Holmer, G. Thin-layer chromatographic determination of antioxidants by the stable free radical α,α’-diphenyl-β-picrylhydrazyl. J. Am. Oil Chem. Soc. 1967, 44, 539–542. [Google Scholar] [CrossRef]
- Li, P.; Anu, H.; Jari, S.; Yrjönen, T.; Vuorela, H. TLC Method for Evaluation of Free Radical Scavenging Activity of Rapeseed Meal by Video Scanning Technology. 2005. Available online: http://www.regional.org.au (accessed on 29 September 2022).
- Cieśla, Ł.; Kryszeń, J.; Stochmal, A.; Oleszek, W.; Waksmundzka-Hajnos, M. Approach to develop a standardized TLC-DPPH⋅ test for assessing free radical scavenging properties of selected phenolic compounds. J. Pharm. Biomed. Anal. 2012, 70, 126–135. [Google Scholar] [CrossRef]
- Cieśla, Ł.; Staszek, D.; Hajnos, M.; Kowalska, T.; Waksmundzka-Hajnos, M. Development of chromatographic and free-radical scavenging activity fingerprints by thin-layer chromatography for selected Salvia species. Phytochem. Anal. 2011, 22, 59–65. [Google Scholar] [CrossRef]
- Reich, E.; Schibli, A.; DeBatt, A. Validation of high-performance thin-layer chromatographic methods for the identification of botanicals in a cGMP environment. J. AOAC Int. 2008, 91, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Cieśla, Ł.; Staszek, D.; Kowalska, T.; Waksmundzka-Hajnos, M. The use of TLC-DPPH⋅ test with image processing to study direct antioxidant activity of phenolic acid fractions of selected Lamiaceae species. J. AOAC Int. 2013, 96, 1228–1232. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Morton, D.W. High-performance thin-layer chromatography-direct bioautography as a method of choice for alpha-amylase and antioxidant activity evaluation in marine algae. J. Chromatogr. A 2017, 1530, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Sherma, J. Review of the determination of the antioxidant activity of foods, food ingredients, and dietary supplements by thin layer chromatography-direct bioautography, spectrometry, and the dot-blot procedure. J. AOAC Int. 2018, 101, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Marston, A. Thin layer chromatography with biological detection in phytochemistry. J. Chromatogr. A 2011, 1218, 2676–2683. [Google Scholar] [CrossRef]
- Dewanjee, S.; Gangopadhayay, M.; Bhattacharya, N.; Khanra, R.; Dua, T.K. Bioautography and its scope in the field of natural product chemistry. J. Pharm. Anal. 2015, 5, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Choma, I.M.; Jesionek, W. TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography 2015, 2, 225–238. [Google Scholar] [CrossRef]
- Orłowska, M.; Kowalska, T.; Sajewicz, M.; Jesionek, W.; Choma, I.M.; Majer-Dziedzic, B.; Szymczak, G.; Waksmundzka-Hajnos, M. A comparison of antibacterial activity of selected thyme (Thymus) species by means of the dot blot test with direct bioautographic detection. J. AOAC Int. 2015, 98, 871–875. [Google Scholar] [CrossRef]
- Jesionek, W.; Móricz, Á.M.; Ott, P.G.; Kocsis, B.; Horváth, B.; Choma, I.M. TLC-direct bioautography and LC/MS as complementary methods in identification of antibacterial agents in plant tinctures from the Asteraceae family. J. AOAC Int. 2015, 98, 857–861. [Google Scholar] [CrossRef]
- Valle, D.M., Jr.; Puzon, J.J.M.; Cabrera, E.C.; Rivera, W.L. Thin layer chromatography-bioautography and gas chromatography-mass spectrometry of antimicrobial leaf extracts from Philippine Piper betle L. against multidrug-resistant bacteria. Evid. Based Complement. Altern. Med. 2016, 2016, 4976791. [Google Scholar] [CrossRef] [Green Version]
- Abiri, R.; Abdul-Hamid, H.; Sytar, O.; Abiri, R.; de Almeida, E.B.; Sharma, S.; Bulgakov, V.; Arroo, R.; Malik, S. A brief overview of potential treatments for viral diseases using natural plant compounds: The case of SARS-CoV. Molecules 2021, 26, 3868. [Google Scholar] [CrossRef]
- Ahmed, F.; Ghalib, R.M.; Sasikala, P.; Mueen Ahmed, K.K. Cholinesterase inhibitors from botanicals. Pharmacogn. Rev. 2013, 7, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, I.K.; van de Meent, M.; Ingkaninan, K.; Verpoorte, R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A 2001, 915, 217–223. [Google Scholar] [CrossRef]
- Marston, A.; Kissling, J.; Hostettmann, K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Anal. 2002, 13, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, X.; Duan, D.; Song, Z.; Yang, M.; Li, S. Modified TLC bioautographic method for screening acetylcholinesterase inhibitors from plant extracts. J. Sep. Sci. 2009, 32, 3257–3259. [Google Scholar] [CrossRef]
- Di Giovanni, S.; Borloz, A.; Urbain, A.; Marston, A.; Hostettmann, K.; Carrupt, P.-A.; Reist, M. In vitro screening assays to identify natural or synthetic acetylcholinesterase inhibitors: Thin layer chromatography versus microplate methods. Eur. J. Pharm. Sci. 2008, 32, 109–119. [Google Scholar] [CrossRef]
- Czernicka, L.; Ludwiczuk, A.; Rój, E.; Marzec, Z.; Jarzab, A.; Kukula-Koch, W. Acetylcholinesterase inhibitors among Zingiber officinale terpenes—Extraction conditions and thin layer chromatography-based bioautography studies. Molecules 2020, 25, 1643. [Google Scholar] [CrossRef] [Green Version]
- Sobstyl, E.; Szopa, A.; Ekiert, H.; Gnat, S.; Typek, R.; Choma, I.M. Effect directed analysis and TLC screening of Schisandra chinensis fruits. J. Chromatogr. A 2020, 1618, 460942. [Google Scholar] [CrossRef]
- Hassan, A.M.S. TLC bioautographic method for detecting lipase inhibitors. Phytochem. Anal. 2012, 23, 405–407. [Google Scholar] [CrossRef]
- Bayineni, V.K.; Suresh, S.; Singh, G.; Kadeppagari, R.-K. Development of a bioautographic method for the detection of lipase inhibitors. Biochem. Biophys. Res. Commun. 2014, 453, 784–786. [Google Scholar] [CrossRef]
- Hua, X.; Hong, H.-J.; Zhang, D.Y.; Liu, Q.; Leong, F.; Yang, Q.; Hu, Y.-J.; Chen, X.-J. Rapid screening of lipase inhibitors from Ophiopogonis radix using high-performance thin layer chromatography by two step gradient elution combined with bioautographic method. Molecules 2022, 27, 1155. [Google Scholar] [CrossRef]
- Legerská, B.; Chmelová, D.; Ondrejovič, M.; Miertuš, S. The TLC-bioautography as a tool for rapid enzyme inhibitors detection—A review. Crit. Rev. Anal. Chem. 2022, 52, 275–293. [Google Scholar]
- Waksmundzka-Hajnos, M.; Móricz, Á.M.; Hawrył, A.; Sajewicz, M.; Kowalska, T. Applications of thin-layer chromatography in the quality control of botanicals. In Instrumental Thin Layer Chromatography, 2nd ed.; Poole, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 22; in press. [Google Scholar]
- Kim, H.J.; Jee, E.H.; Ahn, K.S.; Choi, H.S.; Jang, Y.P. Identification of marker compounds in herbal drugs on TLC with DART-MS. Arch. Pharm. Res. 2010, 33, 1355–1359. [Google Scholar] [CrossRef]
- Morlock, G.; Schwack, W. Determination of isopropyl-thioxanthone (ITX) in milk, yoghurt and fat by HPTLC-FLD, HPTLC-ESI/MS and HPTLC-DART/MS. Anal. Bioanal. Chem. 2006, 385, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, L.; Xu, R.; Li, F.; Gu, L.; Liu, H.; Wang, Z. Characterization of natural herbal medicines by thin-layer chromatography combined with laser ablation-assisted direct analysis in real-time mass spectrometry. J. Chromatogr. A 2021, 1654, 462461. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, F.; Shibayama, N.; Leona, M.; Lombardi, J.R. TLC-SERS study of Syrian rue (Peganum harmala). J. Raman Spectrosc. 2013, 44, 102–107. [Google Scholar] [CrossRef]
- Durón, R.-R.; Almaguer, L.C.; Garza-Juárez, A.; Salazar Cavazos, M.L.; Waksman de Torres, N. Development and validation of thin-layer chromatography methods for the quality control of herbal products. Acta Chromatogr. 2009, 21, 203–215. [Google Scholar] [CrossRef]
- Szeremeta, D.; Knaś, M.; Długosz, E.; Kowalska, T.; Sajewicz, M. Thin-layer chromatographic fingerprinting of the nonvolatile fraction extracted from the medicinal herb Cistus incanus L. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 304–310. [Google Scholar] [CrossRef]
- Łata, E.; Fulczyk, A.; Kowalska, T.; Sajewicz, M. Vulnerability of anthocyanins to the components of a thin-layer chromatographic system and comprehensive screening of anthocyanes in alimentary products. J. Chromatogr. A 2018, 1572, 137–144. [Google Scholar] [CrossRef]
- Łata, E.; Fulczyk, A.; Ott, P.G.; Kowalska, T.; Sajewicz, M.; Móricz, Á.M. Thin-layer chromatographic quantification of magnolol and honokiol in dietary supplements and selected biological properties of these preparations. J. Chromatogr. A 2020, 1625, 461230. [Google Scholar] [CrossRef]
- Skorek, M.; Kozik, V.; Kowalska, T.; Sajewicz, M. Thin-layer chromatographic quantification of trans-resveratrol in cosmetic raw materials of botanic origin. J. Planar Chromatogr.—Mod. TLC 2015, 28, 167–172. [Google Scholar] [CrossRef]
- Skorek, M.; Pytlakowska, K.; Sajewicz, M.; Kowalska, T. Thin-layer chromatographic investigation of plant pigments in selected juices and infusions of cosmetological importance and their antioxidant potential. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 311–317. [Google Scholar] [CrossRef]
- Murray, J.D. Shamanism and rock art. In Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed.; Springer: New York, NY, USA, 2003; Chapter 12.5; pp. 657–659. [Google Scholar]
- Dobkin de Rios, M.; Grob, C.S. Ritual uses of psychoactive drugs. In Encyclopaedia of Psychopharmacology; Stolerman, I.P., Price, L.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1474–1479. [Google Scholar]
- Dobkin de Rios, M. Psychedelic Journey of Marlene Dobkin de Rios: 45 Years with Shamans, Ayahuasqueros, and Ethnobotanists; Park Street Press: Rochester, VT, USA, 2009. [Google Scholar]
- Metzner, R. (Ed.) Sacred Mushroom of Visions: Teonanácatl: A Sourcebook on the Psilocybin Mushroom, 2nd ed.; Park Street Press: Rochester, VT, USA, 2005. [Google Scholar]
- Prisinzano, T.E. Psychopharmacology of the hallucinogenic sage Salvia divinorum. Life Sci. 2005, 78, 5. [Google Scholar] [CrossRef] [PubMed]
- Merlin, M.D. Archeological evidence for the tradition of psychoactive plant use in the Old World. Econ. Bot. 2003, 57, 295–323. [Google Scholar] [CrossRef]
- Lukić, V.; Micić, R.; Arsić, B.; Nedović, B.; Radosavljević, Ž. Overview of the major classes of new psychoactive substances, psychoactive effects, analytical determination and conformational analysis of selected illegal drugs. Open Chem. 2021, 19, 60–106. [Google Scholar]
- Hylin, J.W.; Watson, D.P. Ergoline alkaloids in tropical wood roses. Science 1965, 148, 499–500. [Google Scholar] [CrossRef]
- Chao, J.-M.; Der Marderosian, A.H. Ergoline alkaloidal constituents of Hawaiian baby wood rose, Argyreia nervosa (Burm. F.) Bojer. J. Pharm. Sci. 1973, 62, 588–591. [Google Scholar] [CrossRef]
- Mathys, K.; Brenneisen, R. HPLC and TLC profiles of phenylalkylamines of khat (Catha edulis Forsk.) confiscated in Switzerland. Pharm. Acta Helv. 1993, 68, 121–128. [Google Scholar] [CrossRef]
- Sherma, J.; Rabel, F. Thin layer chromatography in the analysis of cannabis and its components and synthetic cannabinoids. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 613–628. [Google Scholar] [CrossRef]
- HPTLC Association Website. Available online: https:www.hptlc-association.org (accessed on 2 July 2022).
- Singh, A.; Alvi, N.I. High-performance thin-layer chromatographic quantification of yohimbine in the stem bark of Pausinystalia yohimbe. J. Planar Chromatogr.—Modern TLC 2011, 24, 253–256. [Google Scholar] [CrossRef]
- Lebot, V.; Do, T.K.T.; Legendre, J. Detection of flavokavins (A, B, C) in cultivars of kava (Piper methysticum) using high performance thin layer chromatography (HPTLC). Food Chem. 2014, 151, 554–560. [Google Scholar] [CrossRef]
- Lebot, V.; Michalet, S.; Legendre, J. Kavalactones and flavokavins profiles contribute to quality assessment of kava (Piper methysticum G. Forst.), the traditional beverage of the Pacific. Beverages 2019, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Wolowich, W.R.; Perkins, A.M.; Cienki, J.J. Analysis of the psychoactive terpenoid salvinorin A content in five Salvia divinorum herbal products. Pharmacotherapy 2006, 26, 1268–1272. [Google Scholar] [CrossRef] [Green Version]
- Beug, M.W.; Bigwood, J. Quantitative analysis of psilocybin and psilocin and Psilocybe baecystis (Singer and Smith) by high-performance liquid chromatography and by thin-layer chromatography. J. Chromatogr. A 1981, 207, 379–385. [Google Scholar] [CrossRef]
- Gartz, J.; Wiedemann, G. Discovery of a new caerulescent Psilocybe mushroom in Germany: Psilocybe germanica sp.nov. Drug Test. Anal. 2015, 7, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Y.; Liu, C.; Song, Z.; Li, Q.; Zha, Q.; Lu, C.; Wang, C.; Ning, Z.; Zhang, Y.; et al. The chemotaxonomic classification of Rhodiola plants and its correlation with morphological characteristics and genetic taxonomy. Chem. Cent. J. 2013, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Hayano-Kanashiro, C.; Gámez-Meza, N.; Medina-Juárez, L.Á. Wild pepper Capsicum unnuum L. var. glabriusculum: Taxonomy, plant morphology, distribution, genetic diversity, genome sequencing, and phytochemical compounds. Crop Sci. 2016, 56, 1–11. [Google Scholar] [CrossRef]
- Van Bemmelen van der Plaat, A.; Van Treuren, R.; Van Hintum, T.J.L. Reliable genomic strategies for species classification of plant genetic resources. BMC Bioinform. 2021, 22, 173. [Google Scholar] [CrossRef]
Applicability Areas to Screening Botanicals | Selection of Topical Reads |
---|---|
Chemotaxonomy of plants | [6,7,8,9,19,20,21,22,23,24,25,26,27,28,87,88,89] |
Screening of botanicals for free radical scavenging activity | [10,11,12,14,31,32,33,34,35,36,37,38,39] |
Screening of botanicals for antimicrobial properties | [11,12,14,40,41,42,43,44,45,46] |
Screening of botanicals for enzyme inhibiting potential | [12,14], [47,48,49,50,51,52,53,54,55,56,57] |
Quality control of medicinal and culinary herbs | [16,58,59,60,61,62,63] |
Quality control of alimentary and cosmetic products of botanical origin | [15,17,64,65,66,67,68] |
Screening of psychoactive plants | [18,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, T.; Sajewicz, M. Thin-Layer Chromatography (TLC) in the Screening of Botanicals–Its Versatile Potential and Selected Applications. Molecules 2022, 27, 6607. https://doi.org/10.3390/molecules27196607
Kowalska T, Sajewicz M. Thin-Layer Chromatography (TLC) in the Screening of Botanicals–Its Versatile Potential and Selected Applications. Molecules. 2022; 27(19):6607. https://doi.org/10.3390/molecules27196607
Chicago/Turabian StyleKowalska, Teresa, and Mieczysław Sajewicz. 2022. "Thin-Layer Chromatography (TLC) in the Screening of Botanicals–Its Versatile Potential and Selected Applications" Molecules 27, no. 19: 6607. https://doi.org/10.3390/molecules27196607