Metabolic Profiling by GC-MS, In Vitro Biological Potential, and In Silico Molecular Docking Studies of Verbena officinalis
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Profile of V. officinalis
2.1.1. Preliminary Phytochemical Assessments
2.1.2. Polyphenolic Contents Estimation
- Total phenolic content (TPC)
- Total flavonoid content (TFC)
2.1.3. Detection of Bioactive Compounds by GC-MS
2.2. In Vitro Biological Investigation of V. officinalis
2.2.1. Antioxidant Assays
- Radical scavenging potential
- Reducing power antioxidant assay
2.2.2. In vitro Enzyme Inhibition Assay
- Urease inhibition assay
- α-Glucosidase inhibition assay
2.2.3. Hemolytic Activity
2.3. In Silico Molecular Docking Studies
3. Discussion
4. Materials and Methods
4.1. Plant Collection and Identification, and Chemicals
4.2. Extraction and Fractionation
4.3. Phytochemical Assessment of V. officinalis
4.3.1. Preliminary Phytochemical Assessment
4.3.2. Estimation of Polyphenolic Contents
- Determination of TPC
- Determination of TFC
4.3.3. GC-MS Analysis
4.4. Antioxidant Assays
4.4.1. Radical Scavenging Potential
- 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay
- 2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay
4.4.2. Reducing Power Antioxidant Assay
- CUPRAC assay
- FRAP assay
4.5. In Vitro Enzyme Inhibition Assay
4.5.1. Urease Enzyme Inhibition Assay
4.5.2. α-Glucosidase Enzyme Inhibition Assay
4.6. Hemolytic Activity
4.7. Molecular Docking
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khursheed, A.; Ahmad, S.; Khan, K.-u.-R.; Tousif, M.I.; Aati, H.Y.; Ovatlarnporn, C.; Rao, H.; Khurshid, U.; Ghalloo, B.A.; Tabassum, S. Efficacy of phytochemicals derived from roots of Rondeletia odorata as antioxidant, antiulcer, diuretic, skin brightening and hemolytic agents-a comprehensive biochemical and in silico study. Molecules 2022, 27, 4204. [Google Scholar] [CrossRef] [PubMed]
- Shams ul Hassan, S.; Abbas, S.Q.; Hassan, M.; Jin, H.-Z. Computational exploration of anti-cancer potential of guaiane dimers from Xylopia vielana by targeting B-RAF kinase using chemo-informatics, molecular docking, and MD simulation studies. Anti-Cancer Agents Med. Chem. 2022, 22, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majolo, F.; Delwing, L.K.d.O.B.; Marmitt, D.J.; Bustamante-Filho, I.C.; Goettert, M.I. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem. Lett. 2019, 31, 196–207. [Google Scholar] [CrossRef]
- Ghalloo, B.A.; Khan, K.-u.-R.; Ahmad, S.; Aati, H.Y.; Al-Qahtani, J.H.; Ali, B.; Mukhtar, I.; Hussain, M.; Shahzad, M.N.; Ahmed, I. Phytochemical profiling, in vitro biological activities, and in silico molecular docking studies of Dracaena reflexa. Molecules 2022, 27, 913. [Google Scholar] [CrossRef] [PubMed]
- Chikezie, P.; Ibegbulem, C.; Mbagwu, F. Medicinal potentials and toxicity concerns of bioactive principles. Med. Aromat. Plant Sci. Biotechnol. 2015, 4, 1–15. [Google Scholar]
- Hassan, S.S.u.; Muhammad, I.; Abbas, S.Q.; Hassan, M.; Majid, M.; Jin, H.-Z.; Bungau, S. Stress driven discovery of natural products from actinobacteria with anti-oxidant and cytotoxic activities including docking and admet properties. Int. J. Mol. Sci. 2021, 22, 11432. [Google Scholar] [CrossRef] [PubMed]
- Zahid, H.; Rizwani, G.H.; Kamil, A.; Shareef, H.; Tasleem, S.; Khan, A. Anti-urease activity of Mimusops elengi Linn (Sapotaceae). Eur. J. Med. Plants. 2015, 6, 223–230. [Google Scholar] [CrossRef]
- Zulfiqar, I.; Asif, H.; Sultana, S.; Akram, M.; Qayoom, I. In-vitro antiurease activity of aqueous-ethanol extract of some medicinal plants. Pak. J. Life. Soc. Sci. 2017, 69, 5. [Google Scholar]
- Wu, D.-W.; Yu, X.-D.; Xie, J.-H.; Su, Z.-Q.; Su, J.-Y.; Tan, L.-R.; Huang, X.-Q.; Chen, J.-N.; Su, Z.-R. Inactivation of jack bean urease by scutellarin: Elucidation of inhibitory efficacy, kinetics and mechanism. Fitoterapia 2013, 91, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Algood, H.M.S.; Cover, T.L. Helicobacter pylori persistence: An overview of interactions between H. pylori and host immune defenses. Clin. Microbiol. Rev. 2006, 19, 597–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroney, M.J.; Ciurli, S. Nonredox nickel enzymes. Chem. Rev. 2014, 114, 4206–4228. [Google Scholar] [CrossRef] [PubMed]
- Mahernia, S.; Bagherzadeh, K.; Mojab, F.; Amanlou, M. Urease inhibitory activities of some commonly consumed herbal medicines. Iran. J. Pharm. Res. 2015, 14, 943. [Google Scholar]
- Abu-Izneid, T.; Rauf, A.; Saleem, M.; Mansour, N.; Abdelhady, M.I.; Ibrahim, M.M.; Patel, S. Urease inhibitory potential of extracts and active phytochemicals of Hypochaeris radicata (Asteraceae). Nat. Prod. Res. 2020, 34, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Ibrar, A.; Khan, I.; Abbas, N. Structurally diversified heterocycles and related privileged scaffolds as potential urease inhibitors: A brief overview. Arch. Pharm. 2013, 346, 423–446. [Google Scholar] [CrossRef]
- Lawag, I.L.; Aguinaldo, A.M.; Naheed, S.; Mosihuzzaman, M. α-Glucosidase inhibitory activity of selected Philippine plants. J. Ethnopharmacol. 2012, 144, 217–219. [Google Scholar] [CrossRef]
- Ahmed, N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 2005, 67, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Kawabata, J. α-Glucosidase inhibition of 6-hydroxyflavones. Part 3: Synthesis and evaluation of 2, 3, 4-trihydroxybenzoyl-containing flavonoid analogs and 6-aminoflavones as α-glucosidase inhibitors. Bioorg. Med. Chem. 2005, 13, 1661–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balfour, J.A.; McTavish, D. Acarbose. Drugs 1993, 46, 1025–1054. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, A.; Frode, T.S. Isolated compounds from natural products with potential antidiabetic activity-a systematic review. Curr. Diabetes Rev. 2018, 14, 36–106. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.W.; Khan, A.-u.; Ahmed, T. Anticonvulsant, anxiolytic, and sedative activities of Verbena officinalis. Front. Pharmacol. 2016, 7, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarrera, P.M.; Forti, G.; Marignoli, S. Ethnobotanical and ethnomedicinal uses of plants in the district of Acquapendente (Latium, Central Italy). J. Ethnopharmacol. 2005, 96, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Speroni, E.; Cervellati, R.; Costa, S.; Guerra, M.; Utan, A.; Govoni, P.; Berger, A.; Müller, A.; Stuppner, H. Effects of differential extraction of Verbena officinalis on rat models of inflammation, cicatrization and gastric damage. Planta Med. 2007, 73, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Vitalini, S.; Tomè, F.; Fico, G. Traditional uses of medicinal plants in Valvestino (Italy). J. Ethnopharmacol. 2009, 121, 106–116. [Google Scholar] [CrossRef]
- Lai, S.-W.; Yu, M.-S.; Yuen, W.-H.; Chang, R.C.-C. Novel neuroprotective effects of the aqueous extracts from Verbena officinalis Linn. Neuropharmacology 2006, 50, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Bilia, A.; Giomi, M.; Innocenti, M.; Gallori, S.; Vincieri, F. HPLC-DAD-ESI-MS analysis of the constituents of aqueous preparations of verbena and lemon verbena and evaluation of the antioxidant activity. J. Pharm. Biomed. Anal. 2008, 46, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M. Anti-inflammatory and analgesic activity of the topical preparation of Verbena officinalis L. J. Ethnopharmacol. 2006, 107, 380–382. [Google Scholar] [CrossRef]
- Calvo, M.; Vilalta, N.; San Julian, A.; Fernandez, M. Anti-inflammatory activity of leaf extract of Verbena officinalis L. Phytomedicine 1998, 5, 465–467. [Google Scholar] [CrossRef]
- Casanova, E.; GarcAa-Mina, J.; Calvo, M. Antioxidant and antifungal activity of Verbena officinalis L. leaves. Plant Foods Hum. Nutr. 2008, 63, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Hernández, N.E.; Tereschuk, M.; Abdala, L. Antimicrobial activity of flavonoids in medicinal plants from Tafı del Valle (Tucuman, Argentina). J. Ethnopharmacol. 2000, 73, 317–322. [Google Scholar] [CrossRef]
- Mengiste, B.; Lulie, S.; Getachew, B.; Gebrelibanos, M.; Mekuria, A.; Masresha, B. In vitro antibacterial activity of extracts from aerial parts of Verbena officinalis. Adv. Biol. Res. 2015, 9, 53–57. [Google Scholar]
- Martino, L.D.; D’Arena, G.; Minervini, M.M.; Deaglio, S.; Sinisi, N.P.; Cascavilla, N.; Feo, V.D. Active caspase-3 detection to evaluate apoptosis induced by Verbena officinalis essential oil and citral in chronic lymphocytic leukaemia cells. Adv. Biol. Res. 2011, 21, 869–873. [Google Scholar] [CrossRef]
- De Martino, L.; D’Arena, G.; Minervini, M.; Deaglio, S.; Fusco, B.; Cascavilla, N.; Feo, V.d. Verbena officinalis essential oil and its component citral as apoptotic-inducing agent in chronic lymphocytic leukemia. Int. J. Immunopath. Pharmacol. 2009, 22, 1097–1104. [Google Scholar] [CrossRef]
- Bekara, A.; Amazouz, A.; Douma, T.B. Evaluating the antidepressant Effect of Verbena officinalis L. (Vervain) aqueous extract in adult rats. Basic Clin. Neurosci. 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Melero, G.; Costa-Bauza, A.; Prieto, R.; March, J. Urolithiasis and phytotherapy. Int. Urol. Nephrol. 1994, 26, 507–511. [Google Scholar] [CrossRef]
- Encalada, M.A.; Rehecho, S.; Ansorena, D.; Astiasaran, I.; Cavero, R.Y.; Calvo, M.I. Antiproliferative effect of phenylethanoid glycosides from Verbena officinalis L. on colon cancer cell lines. LWT-Food Sci. Technol. 2015, 63, 1016–1022. [Google Scholar] [CrossRef]
- Kou, W.-Z.; Yang, J.; Yang, Q.-H.; Wang, Y.; Wang, Z.-F.; Xu, S.-L.; Liu, J. Study on in-vivo anti-tumor activity of Verbena officinalis extract. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 512–517. [Google Scholar] [CrossRef] [Green Version]
- Calvo, M.; San Julian, A.; Fernandez, M. Identification of the major compounds in extracts of Verbena officinalis L. (Verbenaceae) by HPLC with post-column derivatization. Chromatographia 1997, 46, 241–244. [Google Scholar] [CrossRef]
- Deepak, M.; Handa, S.S. Antiinflammatory activity and chemical composition of extracts of Verbena officinalis. Phytother. Res. 2000, 14, 463–465. [Google Scholar] [CrossRef]
- Kaur, J.; Kumar, D.; Madaan, R.; Kumar, S. Estimation of isolated triterpenoid-ursolic acid in Verbena officinalis L. aerial parts using TLC densitometry. J. Pharm. Technol. Res. Manag. 2014, 29, 121–135. [Google Scholar] [CrossRef]
- Khan, K.M.; Naz, F.; Taha, M.; Khan, A.; Perveen, S.; Choudhary, M.; Voelter, W. Synthesis and in vitro urease inhibitory activity of N, N′-disubstituted thioureas. Eur. J. Med. Chem. 2014, 74, 314–323. [Google Scholar] [CrossRef] [PubMed]
- De Silva, G.O.; Abeysundara, A.T.; Aponso, M.M.W. Extraction methods, qualitative and quantitative techniques for screening of phytochemicals from plants. Am. J. Essent. Oil. Nat. Prod. 2017, 5, 29–32. [Google Scholar]
- Ezeonu, C.S.; Ejikeme, C.M. Qualitative and quantitative determination of phytochemical contents of indigenous Nigerian softwoods. New J. Sci. 2016, 2016, 5601327. [Google Scholar] [CrossRef] [Green Version]
- Atanassova, M.; Georgieva, S.; Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Chem. Technol. Metall. 2011, 46, 81–88. [Google Scholar]
- Urzúa, A.; Rezende, M.C.; Mascayano, C.; Vásquez, L. A structure-activity study of antibacterial diterpenoids. Molecules 2008, 13, 882–891. [Google Scholar] [CrossRef] [Green Version]
- Mengiste, B.; Yesufn, J.M.; Getachew, B. In-vitro antibacterial activity and phytochemical analysis of leaf extract of Verbena officinalis. Int. J. Pharmacogn. 2014, 1, 744–779. [Google Scholar]
- Tomas-Barberan, F.A.; Andres-Lacueva, C. Polyphenols and health: Current state and progress. J. Agric. Food Chem. 2012, 60, 8773–8775. [Google Scholar] [CrossRef]
- Duan, K.; Yuan, Z.; Guo, W.; Meng, Y.; Cui, Y.; Kong, D.; Zhang, L.; Wang, N. LC–MS/MS determination and pharmacokinetic study of five flavone components after solvent extraction/acid hydrolysis in rat plasma after oral administration of Verbena officinalis L. extract. J. Ethnopharmacol. 2011, 135, 201–208. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods 2020, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Rehecho, S.; Hidalgo, O.; de Cirano, M.G.-I.; Navarro, I.; Astiasarán, I.; Ansorena, D.; Cavero, R.Y.; Calvo, M.I. Chemical composition, mineral content and antioxidant activity of Verbena officinalis L. LWT-Food Sci. Technol. 2011, 44, 875–882. [Google Scholar] [CrossRef]
- Aati, H.Y.; Anwar, M.; Al-Qahtani, J.; Al-Taweel, A.; Khan, K.-u.-R.; Aati, S.; Usman, F.; Ghalloo, B.A.; Asif, H.M.; Shirazi, J.H.; et al. Phytochemical profiling, in vitro biological activities, and in-silico studies of Ficus vasta Forssk.: An unexplored plant. Antibiotics 2022, 11, 1155. [Google Scholar] [CrossRef] [PubMed]
- Tasneem, R.; Khan, H.M.S.; Rasool, F.; Khan, K.-u.-R.; Umair, M.; Esatbeyoglu, T.; Korma, S.A. Development of Phytocosmeceutical microemulgel containing flaxseed extract and its in vitro and in vivo characterization. Pharmaceutics 2022, 14, 1656. [Google Scholar] [CrossRef] [PubMed]
- Mateș, L.; Popa, D.-S.; Rusu, M.E.; Fizeșan, I.; Leucuța, D. Walnut intake interventions targeting biomarkers of metabolic syndrome and inflammation in middle-aged and older adults: A systematic review and meta-analysis of randomized controlled trials. Antioxidants. 2022, 11, 1412. [Google Scholar] [CrossRef] [PubMed]
- Dziurka, M.; Kubica, P.; Kwiecień, I.; Biesaga-Kościelniak, J.; Ekiert, H.; Abdelmohsen, S.A.; Al-Harbi, F.F.; El-Ansary, D.O.; Elansary, H.O.; Szopa, A. In vitro cultures of some medicinal plant species (cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a rich potential source of antioxidants-evaluation by cuprac and quencher-cuprac assays. Plants 2021, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.-K.; Kim, S.-Y.; Kim, B.-R.; Cho, J.-P.; Park, Y.-J.; Ji, W.-G.; Cha, D.-S.; Jeon, H. Anti-inflammatory and radical scavenging properties of Verbena officinalis. Orient. Pharm. Exp. Med. 2010, 10, 310–318. [Google Scholar]
- Sethi, S.; Joshi, A.; Arora, B.; Bhowmik, A.; Sharma, R.; Kumar, P. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur. Food Res. Technol. 2020, 246, 591–598. [Google Scholar] [CrossRef]
- Basit, A.; Ahmad, S.; Naeem, A.; Usman, M.; Ahmed, I.; Shahzad, M.N. Chemical profiling of Justicia vahlii Roth. (Acanthaceae) using UPLC-QTOF-MS and GC-MS analysis and evaluation of acute oral toxicity, antineuropathic and antioxidant activities. J. Ethnopharmacol. 2022, 287, 114942. [Google Scholar] [CrossRef]
- Lin, Y.; Kwon, Y.; Labbe, R.; Shetty, K. Inhibition of Helicobacter pylori and associated urease by oregano and cranberry phytochemical synergies. Appl. Environ. Microbiol. 2005, 71, 8558–8564. [Google Scholar] [CrossRef]
- Korona-Glowniak, I.; Glowniak-Lipa, A.; Ludwiczuk, A.; Baj, T.; Malm, A. The in vitro activity of essential oils against Helicobacter pylori growth and urease activity. Molecules 2020, 25, 586. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.T.; Švajdlenka, E.; Rengasamy, K.R.; Melichárková, R.; Pandian, S.K. The metabolic profile of essential oils and assessment of anti-urease activity by ESI-mass spectrometry of Salvia officinalis L. S. Afr. J. Bot. 2019, 120, 175–178. [Google Scholar] [CrossRef]
- Amin, M.; Anwar, F.; Naz, F.; Mehmood, T.; Saari, N. Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules 2013, 18, 2135–2149. [Google Scholar] [CrossRef]
- Shahzad, M.N.; Ahmad, S.; Tousif, M.I.; Ahmad, I.; Rao, H.; Ahmad, B.; Basit, A. Profiling of phytochemicals from aerial parts of Terminalia neotaliala using LC-ESI-MS2 and determination of antioxidant and enzyme inhibition activities. PLoS ONE 2022, 17, e0266094. [Google Scholar] [CrossRef] [PubMed]
- Bruce, S.; Nwafor, O.; Omoirri, M.; Adione, N.; Onyeka, I.; Ezeoru, V. GC-MS, FTIR and antiulcer screening of aqueous seed extract and oil of Nigella sativa in Wistar rats. J. Drug Deliv. Ther. 2021, 11, 48–60. [Google Scholar] [CrossRef]
- Tanaka, T.; Kawase, M.; Tani, S. Urease inhibitory activity of simple α, β-unsaturated ketones. Life Sci. 2003, 73, 2985–2990. [Google Scholar] [CrossRef]
- Xiao, Z.-P.; Ma, T.-W.; Fu, W.-C.; Peng, X.-C.; Zhang, A.-H.; Zhu, H.-L. The synthesis, structure and activity evaluation of pyrogallol and catechol derivatives as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem. 2010, 45, 5064–5070. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.-P.; Shi, D.-H.; Li, H.-Q.; Zhang, L.-N.; Xu, C.; Zhu, H.-L. Polyphenols based on isoflavones as inhibitors of Helicobacter pylori urease. Bioorg. Med. Chem. 2007, 15, 3703–3710. [Google Scholar] [CrossRef] [PubMed]
- Wotherspoon, A.; Ortiz-Hidalgo, C.; Falzon, M.; Isaacson, P. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 1991, 338, 1175–1176. [Google Scholar] [CrossRef]
- Kwiecien, S.; Brzozowski, T.; Konturek, S. Effects of reactive oxygen species action on gastric mucosa in various models of mucosal injury. J. Physiol. Pharmacol. 2002, 53, 39–50. [Google Scholar] [PubMed]
- Umesha, S.; Marahel, S.; Aberomand, M. Antioxidant and antidiabetic activities of medicinal plants: A short review. Int. J. Res. Phytochem. Pharmacol. 2013, 3, 40–53. [Google Scholar]
- Kızıltaş, H.; Bingol, Z.; Gören, A.C.; Kose, L.P.; Durmaz, L.; Topal, F.; Alwasel, S.H.; Gulcin, İ. LC-HRMS profiling and antidiabetic, anticholinergic, and antioxidant activities of aerial parts of Kınkor (Ferulago stellata). Molecules 2021, 26, 2469. [Google Scholar] [CrossRef] [PubMed]
- Zengin, M.; Genc, H.; Taslimi, P.; Kestane, A.; Guclu, E.; Ogutlu, A.; Karabay, O.; Gulcin, I. Novel thymol bearing oxypropanolamine derivatives as potent some metabolic enzyme inhibitors-their antidiabetic, anticholinergic and antibacterial potentials. Bioorg. Chem. 2018, 81, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, A.; Rashid, U.; Ahmad, S.; Zahoor, M.; AlAjmi, M.F.; Ullah, R.; Noman, O.M.; Ullah, F.; Ayaz, M.; Khan, I. Treating hyperglycemia from Eryngium caeruleum M. Bieb: In-vitro α-glucosidase, antioxidant, in-vivo antidiabetic and molecular docking-based approaches. Front. Chem. 2020, 8, 558641. [Google Scholar] [CrossRef] [PubMed]
- Lekshmi, P.; Arimboor, R.; Indulekha, P.; Nirmala Menon, A. Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes. Int. J. Food Sci. Nutr. 2012, 63, 832–834. [Google Scholar] [CrossRef] [PubMed]
- Sowemimo-Coker, S.O. Red blood cell hemolysis during processing. Transfus. Med. Rev. 2002, 16, 46–60. [Google Scholar] [CrossRef]
- Fennell, C.; Lindsey, K.; McGaw, L.; Sparg, S.; Stafford, G.; Elgorashi, E.; Grace, O.; Van Staden, J. Assessing African medicinal plants for efficacy and safety: Pharmacological screening and toxicology. J. Ethnopharmacol. 2004, 94, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Zohra, M.; Fawzia, A. Hemolytic activity of different herbal extracts used in Algeria. Int. J. Pharm. Sci. Res. 2014, 5, 495–500. [Google Scholar]
- Dilshad, R.; Ahmad, S.; Aati, H.Y.; Al-qahtani, J.H.; Sherif, A.E.; Hussain, M.; Ghalloo, B.A.; Tahir, H.; Basit, A.; Ahmed, M. Phytochemical profiling, in vitro biological activities, and in-silico molecular docking studies of Typha domingensis. Arab. J. Chem. 2022, 15, 104133. [Google Scholar] [CrossRef]
- Vedeanu, N.; Voica, C.; Magdas, D.A.; Kiss, B.; Stefan, M.-G.; Simedrea, R.; Georgiu, C.; Berce, C.; Vostinaru, O.; Boros, R. Subacute co-exposure to low doses of ruthenium (III) changes the distribution, excretion and biological effects of silver ions in rats. Environ. Chem. 2019, 17, 163–172. [Google Scholar] [CrossRef]
- Hemthanon, T.; Ungcharoenwiwat, P. Antibacterial activity, stability, and hemolytic activity of heartwood extract from Caesalpinia sappan for application on nonwoven fabric. Electron. J. Biotech. 2022, 55, 9–17. [Google Scholar] [CrossRef]
- Basit, A.; Ahmad, S.; Sherif, A.E.; Aati, H.Y.; Ovatlarnporn, C.; Khan, M.A.; Rao, H.; Ahmad, I.; Shahzad, M.N.; Ghalloo, B.A. New mechanistic insights on Justicia vahlii Roth: UPLC-Q-TOF-MS and GC–MS based metabolomics, in-vivo, in-silico toxicological, antioxidant based anti-inflammatory and enzyme inhibition evaluation. Arab. J. Chem. 2022, 15, 104135. [Google Scholar] [CrossRef]
- Ahmed, M.; Khan, K.-u.-R.; Ahmad, S.; Aati, H.Y.; Ovatlarnporn, C.; Rehman, M.S.-u.; Javed, T.; Khursheed, A.; Ghalloo, B.A.; Dilshad, R. Comprehensive phytochemical profiling, biological activities, and molecular docking studies of Pleurospermum candollei: An insight into potential for natural products development. Molecules 2022, 27, 4113. [Google Scholar] [CrossRef]
- Dilshad, R.; Khan, K.-u.-R.; Saeed, L.; Sherif, A.E.; Ahmad, S.; Ovatlarnporn, C.; Nasim, J.; Hussain, M.; Ghalloo, B.A.; Basit, A.; et al. Chemical composition and biological evaluation of Typha domingensis Pers. to ameliorate health pathologies: In vitro and in silico approaches. BioMed Res. Int. 2022, 2022, 8010395. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, S.; Ahmad, S.; Rehman Khan, K.u.; Tabassum, F.; Khursheed, A.; Zaman, Q.u.; Bukhari, N.A.; Alfagham, A.; Hatamleh, A.A.; Chen, Y. Phytochemical profiling, antioxidant, anti-inflammatory, thrombolytic, hemolytic activity in vitro and in silico potential of Portulacaria afra. Molecules 2022, 27, 2377. [Google Scholar] [CrossRef] [PubMed]
- Majid, M.; Farhan, A.; Asad, M.I.; Khan, M.R.; Hassan, S.S.u.; Haq, I.-u.; Bungau, S. An extensive pharmacological evaluation of new anti-cancer triterpenoid (nummularic acid) from ipomoea batatas through in vitro, in silico, and in vivo studies. Molecules 2022, 27, 2474. [Google Scholar] [CrossRef]
- Hassan, S.S.u.; Abbas, S.Q.; Ali, F.; Ishaq, M.; Bano, I.; Hassan, M.; Jin, H.-Z.; Bungau, S.G. A Comprehensive in silico exploration of pharmacological properties, bioactivities, molecular docking, and anticancer potential of vieloplain F from Xylopia vielana targeting B-Raf Kinase. Molecules 2022, 27, 917. [Google Scholar] [CrossRef] [PubMed]
No. | Class of Metabolites | Test Name | CRVO | NHVO | EAVO | NBVO |
---|---|---|---|---|---|---|
1 | Carbohydrate | Molish’s test | + | − | + | + |
2 | Amino acid | Ninhydrin test | − | − | − | − |
3 | Protein | Biuret test | − | − | − | − |
4 | Saponin | Frothing test | + | + | + | + |
5 | Tannin | Ferric-chloride test | + | − | + | + |
6 | Phenol | Lead acetate test | + | + | + | + |
7 | Flavonoids | Amyl alcohol test | + | + | + | + |
8 | Starch | Iodine test | + | + | + | + |
9 | Alkaloid | Dragendroff’s test | + | + | + | + |
10 | Glycosides | Erdmann’s test | + | − | − | − |
Borntrager’s test | − | − | − | − | ||
Keller-killani test | + | − | + | + | ||
11 | Resins | Acetic-anhydride test | + | + | + | + |
Sample Fraction | Urease IC50 (µg·mL−1) | α-Glucosidase IC50 (µg·mL−1) |
---|---|---|
CRVO | 465 ± 20.20 A | NA |
NHVO | 324 ± 16.40 B | 420 ± 20 B |
EAVO | 10 ± 1.60 D | 685 ± 31 A |
NBVO | 30 ± 2.40 C | NA |
Standard | 9.8 ± 1.20 * D | 10 ± 1.30 ** C |
Sample Fraction | Hemolytic Activity (%) |
---|---|
CRVO | 6.5 ± 0.94 E |
NHVO | 7.2 ± 0.85 D |
EAVO | 10.1 ± 1.30 C |
NBVO | 14.5 ± 1.20 B |
Triton X-100 | 93.5 ± 0.48 A |
No. | Name of Compounds | Urease (Binding Affinity Kcal.·mol−1) | Interacting Amino Acid Residues | α-Glucosidase (Binding Affinity Kcal.·mol−1) | Interacting Amino Acid Residues |
---|---|---|---|---|---|
1 | Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester | −6.8 | Lys212, Leu215, His216, Lys219, Ala226, Lys227, Ser228, Asp229, Tyr232, Val233 | −6.8 | Asp124, Tyr126, Ile127, Trp128, Leu170, Asn171, Trp172, Glu173, Ile204, Lys205, Lys206, Ala208, Gly209, Phe210, His237 |
2 | ar-Turmerone | −5.8 | Lys212, Leu215, His2016, Lys227, Ser228, Asp229, Asp230, Tyr232, Val233 | −6.5 | Trp6, Lys7, Lys242, Ile251, Thr253, Val269, Ala270, Glu271, Gly274, Asn275, Phe276, Asn277, Asn316, Gly317, Trp318 |
3 | Curlone | −5.6 | Lys212, Leu215, His216, Lys227, Ser228, Asp229, Asp230, Tyr232, Val233 | −5.9 | Ile524, Val526, Leu533, Asp534, Glu537, Thr538, Leu539, Cys542, Arg550, Tyr552 |
4 | 3-pyrazolidinone, 4,4-dimethyl-1-phenyl | −5.7 | Lys212, His216, Lys227, Ser228, Asp229, Asp230, Asn231, Tyr232, Val233 | −5.8 | Glu141, Ile143, Ser145, Pro223, Phe225, Trp288, Lys90, Tyr388, Ile391, Gln392 |
5 | (Standard) | −4.1 * | Leu215, His216, Lys219, Ala226, Lys227, Ser228, Asp229, Tyr232 | −7.9 ** | Trp6, Lys7, Lys242, Ala247, Tyr249, Asp250, Ile251, Val269, Ala270, Glu271, Phe276, Asn277, Asn316, Gly317, Trp318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisar, R.; Ahmad, S.; Khan, K.-u.-R.; Sherif, A.E.; Alasmari, F.; Almuqati, A.F.; Ovatlarnporn, C.; Khan, M.A.; Umair, M.; Rao, H.; et al. Metabolic Profiling by GC-MS, In Vitro Biological Potential, and In Silico Molecular Docking Studies of Verbena officinalis. Molecules 2022, 27, 6685. https://doi.org/10.3390/molecules27196685
Nisar R, Ahmad S, Khan K-u-R, Sherif AE, Alasmari F, Almuqati AF, Ovatlarnporn C, Khan MA, Umair M, Rao H, et al. Metabolic Profiling by GC-MS, In Vitro Biological Potential, and In Silico Molecular Docking Studies of Verbena officinalis. Molecules. 2022; 27(19):6685. https://doi.org/10.3390/molecules27196685
Chicago/Turabian StyleNisar, Rabia, Saeed Ahmad, Kashif-ur-Rehman Khan, Asmaa E. Sherif, Fawaz Alasmari, Afaf F. Almuqati, Chitchamai Ovatlarnporn, Mohsin Abbas Khan, Muhammad Umair, Huma Rao, and et al. 2022. "Metabolic Profiling by GC-MS, In Vitro Biological Potential, and In Silico Molecular Docking Studies of Verbena officinalis" Molecules 27, no. 19: 6685. https://doi.org/10.3390/molecules27196685
APA StyleNisar, R., Ahmad, S., Khan, K. -u. -R., Sherif, A. E., Alasmari, F., Almuqati, A. F., Ovatlarnporn, C., Khan, M. A., Umair, M., Rao, H., Ghalloo, B. A., Khurshid, U., Dilshad, R., Nassar, K. S., & Korma, S. A. (2022). Metabolic Profiling by GC-MS, In Vitro Biological Potential, and In Silico Molecular Docking Studies of Verbena officinalis. Molecules, 27(19), 6685. https://doi.org/10.3390/molecules27196685