Application of Biobased Solvents in Asymmetric Catalysis
Abstract
:1. Introduction
2. Properties of the Typical Biobased Solvents Employed in Asymmetric Catalysis
3. Biobased Solvents in Asymmetric Metal-Based Catalysis
4. Biosolvents in Asymmetric Organocatalysis
5. Biocatalytic Approaches Employing Biobased Solvents
5.1. Hydrolases in Presence of Biobased Solvents
5.2. Biobased Solvents in Reactions Catalyzed by Oxidoreductases
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, J.M.; Davies, S.G. Chemical asymmetric synthesis. Nature 1989, 342, 631–636. [Google Scholar] [CrossRef]
- Liu, Y.; Han, S.J.; Liu, W.B.; Stoltz, B.M. Catalytic enantioselective construction of quaternary stereocenters: Assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res. 2015, 48, 740–751. [Google Scholar] [CrossRef]
- Anil, V.; Karnik, M.H. Stereochemistry, a Three-Dimensional Insight, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 407–463. [Google Scholar]
- Curzons, A.D.; Constable, D.J.C.; Mortimer, D.N.; Cunningham, V.L. So you think your process is green, how do you know?—Using principles of sustainability to determine what is green–a corporate perspective. Green Chem. 2001, 3, 1–6. [Google Scholar] [CrossRef]
- Jiménez-González, C.; Curzons, A.D.; Constable, D.J.C.; Cunningham, V.L. Expanding GSK’s Solvent Selection Guide—Application of life cycle assessment to enhance solvent selections. Clean Technol. Environ. Policy 2005, 7, 42–50. [Google Scholar] [CrossRef]
- Constable, D.J.C.; Jimenez-Gonzalez, C.; Henderson, R.K. Perspective on solvent use in the pharmaceutical industry. Org. Process Res. Dev. 2007, 11, 133–137. [Google Scholar] [CrossRef]
- Gani, R.; Gomez, P.A.; Folic, M.; Jimenez-Gonzalez, C.; Constable, D.J.C. Solvents in organic synthesis: Replacement and multi-step reaction systems. Comput. Chem. Eng. 2008, 32, 2420–2444. [Google Scholar] [CrossRef]
- Jessop, P.G. Searching for green solvents. Green Chem. 2011, 13, 1391–1398. [Google Scholar] [CrossRef]
- Henderson, R.K.; Jimenez-Gonzalez, C.; Constable, D.J.C.; Alston, S.R.; Inglis, G.G.A.; Fisher, G.; Sherwood, J.; Binks, S.P.; Curzons, A.D. Expanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 2011, 13, 854–862. [Google Scholar] [CrossRef]
- Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; et al. Sanofi’s solvent selection guide: A step toward more sustainable processes. Org. Process Res. Dev. 2013, 17, 1517–1525. [Google Scholar] [CrossRef]
- Prat, D.; Hayler, J.; Wells, A. A survey of solvent selection guides. Green Chem. 2014, 16, 4546–4551. [Google Scholar] [CrossRef]
- Eastman, H.E.; Jamieson, C.; Watson, A.J.B. Development of Solvent Selection Guides. Aldrichim. Acta 2015, 48, 51–55. [Google Scholar]
- Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namiesnik, J.; Pena-Pereira, F. A solvent selection guide based on chemometrics and multicriteria decision analysis. Green Chem. 2015, 17, 4773–4785. [Google Scholar] [CrossRef]
- Diorazio, L.J.; Hose, D.R.J.; Adlington, N.K. Toward a More Holistic Framework for Solvent Selection. Org. Proc. Res. Dev. 2016, 20, 760–773. [Google Scholar] [CrossRef] [Green Version]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Gonzalez, C. Life cycle considerations of solvents. Curr. Opin. Green Sustain. Chem. 2019, 18, 66–71. [Google Scholar] [CrossRef]
- Sels, H.; De Smet, H.; Geuens, J. SUSSOL-Using Artificial Intelligence for Greener Solvent Selection and Substitution. Molecules 2020, 25, 3307. [Google Scholar] [CrossRef]
- Penido, R.G.; Nunes, R.C.; Dos Santos, E.N. Sustainable Solvents for Chemical Processes. Rev. Virtual Quim. 2022, 14, 537–551. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Itoh, T. Ionic Liquids as Tool to Improve Enzymatic Organic Synthesis. Chem. Rev. 2017, 117, 10567–10607. [Google Scholar] [CrossRef]
- de María, P.D. Ionic Liquids in Biotransformations and Organocatalysis: Solvents and Beyond; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Ramón, D.J.; Guillena, G. Deep Eutectic Solvents: Synthesis, Properties, and Applications; Wiley-VCH: Weinheim, Germany, 2020. [Google Scholar]
- Matsuda, T. Recent progress in biocatalysis using supercritical carbon dioxide. J. Biosci. Bioeng. 2013, 115, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Peach, J.; Eastoe, J. Supercritical carbon dioxide: A solvent like no other. Beilstein J. Org. Chem. 2014, 10, 1878–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miele, M.; Ielo, L.; Pillari, V.; Fernández, M.; Alcántara, A.R.; Pace, V. Biomass-derived Solvents. In Sustainable Organic Synthesis: Tools and Strategies; Protti, S., Palmieri, A., Eds.; Royal Society of Chemistry: Croydon, UK, 2022; pp. 239–279. [Google Scholar]
- Miele, M.; Ielo, L.; Pace, V.; Alcántara, A.R. Biocatalysis in green biosolvents. In Greener Synthesis of Organic Compounds, 1st ed.; Nag, A., Ed.; CRC Press: Boca Raton, FL, USA, 2022; pp. 241–279. [Google Scholar]
- Hoyos, P.; Pace, V.; Alcántara, A.R. Biocatalyzed on water synthesis of chiral building blocks for the preparation of anti-cancer drugs: A greener approach. Curr. Org. Chem. 2013, 17, 1132–1157. [Google Scholar] [CrossRef]
- Bijoy, R.; Agarwala, P.; Roy, L.; Thorat, B.N. Unconventional Ethereal Solvents in Organic Chemistry: A Perspective on Applications of 2-Methyltetrahydrofuran, Cyclopentyl Methyl Ether, and 4-Methyltetrahydropyran. Org. Process Res. Dev. 2022, 26, 480–492. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef]
- Pace, V.; Holzer, W.; Hoyos, P.; Hernáiz, M.J.; Alcántara, A.R. 2-Methyltetrahydrofuran. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Pace, V.; Hoyos, P.; Castoldi, L.; Domínguez de María, P.; Alcántara, A.R. 2-Methyltetrahydrofuran (2-MeTHF): A biomass-derived solvent with broad application in organic chemistry. ChemSusChem 2012, 5, 1369–1379. [Google Scholar] [CrossRef]
- Pace, V. 2-Methyltetrahydrofuran: A Versatile Eco-Friendly Alternative to THF in Organometallic Chemistry. Aust. J. Chem. 2012, 65, 301–302. [Google Scholar] [CrossRef]
- Wypych, A.; Wypych, G. Databook of Green Solvents, 2nd ed.; ChemTec Publishing: Toronto, ON, Canada, 2019. [Google Scholar]
- Bluhm, K.; Heger, S.; Redelstein, R.; Brendt, J.; Anders, N.; Mayer, P.; Schaeffer, A.; Hollert, H. Genotoxicity of three biofuel candidates compared to reference fuels. Env. Toxicol. Pharmacol. 2018, 64, 131–138. [Google Scholar] [CrossRef]
- Parris, P.; Duncan, J.N.; Fleetwood, A.; Beierschmitt, W.P. Calculation of a permitted daily exposure value for the solvent 2-methyltetrahydrofuran. Regul. Toxicol. Pharmacol. 2017, 87, 54–63. [Google Scholar] [CrossRef]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016, 18, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Rapinel, V.; Claux, O.; Abert-Vian, M.; McAlinden, C.; Bartier, M.; Patouillard, N.; Jacques, L.; Chemat, F. 2-Methyloxolane (2-MeOx) as Sustainable Lipophilic Solvent to Substitute Hexane for Green Extraction of Natural Products. Properties, Applications, and Perspectives. Molecules 2020, 25, 3417. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Yamagiwa, N.; Torisawa, Y. Cyclopentyl Methyl Ether as a New and Alternative Process Solvent. Org. Process Res. Dev. 2007, 11, 251–258. [Google Scholar] [CrossRef]
- de Gonzalo, G.; Alcántara, A.R.; Domínguez de María, P. Cyclopentyl Methyl Ether (CPME): A versatile eco-friendly solvent for applications in biotechnology and biorefineries. ChemSusChem 2019, 12, 2083–2097. [Google Scholar] [CrossRef]
- Azzena, U.; Carraro, M.; Pisano, L.; Monticelli, S.; Bartolotta, R.; Pace, V. Cyclopentyl Methyl Ether: An Elective Ecofriendly Ethereal Solvent in Classical and Modern Organic Chemistry. ChemSusChem 2019, 12, 40–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayato, H.; Kazuhisa, S.; Kiyoshi, W. Autoxidation Resistant Cyclopentyl Methyl Ether. Chem. Lett. 2008, 37, 774–775. [Google Scholar] [CrossRef]
- Bryantsev, V.S.; Faglioni, F. Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li–Air Batteries. J. Phys. Chem. A 2012, 116, 7128–7138. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Natalia, D.; van den Wittenboer, A.; Kohlmann, C.; Greiner, L.; Domínguez de María, P. Enzyme-catalyzed C–C bond formation using 2-methyltetrahydrofuran (2-MTHF) as (co)solvent: Efficient and bio-based alternative to DMSO and MTBE. Green Chem. 2010, 12, 2240–2245. [Google Scholar] [CrossRef]
- Kong, D.; Dolzhenko, A.V. Cyrene: A bio-based sustainable solvent for organic synthesis. Sustain. Chem. Pharm. 2022, 25, 100591. [Google Scholar] [CrossRef]
- Sherwood, J.; De Bruyn, M.; Constantinou, A.; Moity, L.; McElroy, C.R.; Farmer, T.J.; Duncan, T.; Raverty, W.; Hunt, A.J.; Clark, J.H. Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem. Commun. 2014, 50, 9650–9652. [Google Scholar] [CrossRef]
- Zhang, J.F.; White, G.B.; Ryan, M.D.; Hunt, A.J.; Katz, M.J. Dihydrolevoglucosenone (Cyrene) As a Green Alternative to N,N-Dimethylformamide (DMF) in MOF Synthesis. ACS Sustain. Chem. Eng. 2016, 4, 7186–7192. [Google Scholar] [CrossRef]
- Kudo, S.; Zhou, Z.W.; Norinaga, K.; Hayashi, J. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid. Green Chem. 2011, 13, 3306–3311. [Google Scholar] [CrossRef]
- Camp, J.E. Bio-available Solvent Cyrene: Synthesis, Derivatization, and Applications. ChemSusChem 2018, 11, 3048–3055. [Google Scholar] [CrossRef] [PubMed]
- Rathman, T.; Bailey, W.F. Optimization of Organolithium Reactions. Org. Process Res. Dev. 2009, 13, 144–151. [Google Scholar] [CrossRef]
- Luisi, R.; Capriati, V. Lithium Compounds in Organic Synthesis: From Fundamentals to Applications; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Bates, R.B.; Koproski, L.M.; Potter, D.E. Cycloreversions of anions from tetrahydrofurans. Convenient synthesis of lithium enolates of aldehydes. J. Org. Chem. 1972, 37, 560–562. [Google Scholar] [CrossRef]
- Aycock, D.F. Solvent Applications of 2-Methyltetrahydrofuran in Organometallic and Biphasic Reactions. Org. Process Res. Dev. 2007, 11, 156–159. [Google Scholar] [CrossRef]
- Sadhukhan, A.; Hobbs, M.C.; Meijer, A.J.H.M.; Coldham, I. Highly enantioselective metallation-substitution alpha to a chiral nitrile. Chem. Sci. 2017, 8, 1436–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, M.; Higashi, M.; Masu, H.; Yamaguchi, K.; Takeda, K. Asymmetric [2,3]-Wittig rearrangement induced by a chiral carbanion whose chirality was transferred from an epoxide. Org. Lett. 2005, 7, 5913–5915. [Google Scholar] [CrossRef]
- Barker, G.; Alshawish, M.R.; Skilbeck, M.C.; Coldham, I. Remarkable Configurational Stability of Magnesiated Nitriles. Angew. Chem. Int. Ed. 2013, 52, 7700–7703. [Google Scholar] [CrossRef]
- Gao, M.; Patwardhan, N.N.; Carlier, P.R. Stereochemical Inversion of a Cyano-Stabilized Grignard Reagent: Remarkable Effects of the Ethereal Solvent Structure and Concentration. J. Am. Chem. Soc. 2013, 135, 14390–14400. [Google Scholar] [CrossRef] [PubMed]
- Beng, T.K.; Woo, J.S.; Gawley, R.E. Synthetic Applications and Inversion Dynamics of Configurationally Stable 2-Lithio-2-arylpyrrolidines and-piperidines. J. Am. Chem. Soc. 2012, 134, 14764–14771. [Google Scholar] [CrossRef] [Green Version]
- Mahale, R.D.; Chaskar, S.P.; Patil, K.E.; Maikap, G.C.; Gurjar, M.K. Corey–Itsuno Reduction of Ketones: A Development of Safe and Inexpensive Process for Synthesis of Some API Intermediates. Org. Process Res. Dev. 2012, 16, 710–713. [Google Scholar] [CrossRef]
- Nakamura, K.; Yamanaka, R.; Matsuda, T.; Harada, T. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 2003, 14, 2659–2681. [Google Scholar] [CrossRef]
- Hirao, A.; Itsuno, S.; Nakahama, S.; Yamazaki, N. Asymmetric reduction of aromatic ketones with chiral alkoxy-amineborane complexes. J. Chem. Soc. Chem. Commun. 1981, 7, 315–317. [Google Scholar] [CrossRef]
- Noyori, R.; Ohkuma, T. Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. Angew. Chem. Int. Ed. 2001, 40, 40–73. [Google Scholar] [CrossRef]
- Corey, E.J.; Bakshi, R.K.; Shibata, S. Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J. Am. Chem. Soc. 1987, 109, 5551–5553. [Google Scholar] [CrossRef]
- De Angelis, S.; De Renzo, M.; Carlucci, C.; Degennaro, L.; Luisi, R. A convenient enantioselective CBS-reduction of arylketones in flow-microreactor systems. Org. Biomol. Chem. 2016, 14, 4304–4311. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.G.; Jensen, K.F. The role of flow in green chemistry and engineering. Green Chem. 2013, 15, 1456–1472. [Google Scholar] [CrossRef] [Green Version]
- Grellepois, F. Enantiopure Trifluoromethylated β3,3-Amino Acids: Synthesis by Asymmetric Reformatsky Reaction with Stable Analogues of Trifluoromethyl N-tert-Butanesulfinylketoimines and Incorporation into α/β-Peptides. J. Org. Chem. 2013, 78, 1127–1137. [Google Scholar] [CrossRef]
- Fryzuk, M. Asymmetric Synthesis Mediated by Transition Metal Complexes. In Topics in Inorganic and Organometallic Stereochemisty; Geoffroy, G.L., Ed.; Wiley-VCH: Weinheim, Germany, 1981; Volume 12. [Google Scholar]
- Dyson, P.J.; Jessop, P.G. Solvent effects in catalysis: Rational improvements of catalysts via manipulation of solvent interactions. Catal. Sci. Technol. 2016, 6, 3302–3316. [Google Scholar] [CrossRef]
- Zhu, B.; Lee, R.; Yin, Y.; Li, F.; Coote, M.L.; Jiang, Z. Enantioselective Vinylogous Amination of 5-Alkyl-4-nitroisoxazoles with a Dipeptide-Based Guanidinium Phase-Transfer Catalyst. Org. Lett. 2018, 20, 429–432. [Google Scholar] [CrossRef]
- Karaluka, V.; Lanignan, R.M.; Murray, P.M.; Badland, M.; Sheppard, T.D. B(OCH2CF3)3-mediated direct amidation of pharmaceutically relevant building blocks in cyclopentyl methyl ether. Org. Biomol. Chem. 2015, 13, 10888–10894. [Google Scholar] [CrossRef] [Green Version]
- Pace, V.; Rae, J.P.; Procter, D.J. Cu(I)-NHC catalyzed asymmetric silyl transfer to unsaturated lactams and amides. Org. Lett. 2014, 16, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Roggen, M.; Carreira, E.M. Enantioselective Allylic Thioetherification: The Effect of Phosphoric Acid Diester on Iridium-Catalyzed Enantioconvergent Transformations. Angew. Chem. Int. Ed. 2012, 51, 8652–8655. [Google Scholar] [CrossRef]
- Alexakis, A.; Krause, N.; Woodward, S. Copper-Catalyzed Asymmetric Synthesis; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Guo, S.; Zhu, J.; Buchwald, S.L. Enantioselective Synthesis of β-Amino Acid Derivatives Enabled by Ligand-Controlled Reversal of Hydrocupration Regiochemistry. Angew. Chem. Int. Ed. 2020, 59, 20841–20845. [Google Scholar] [CrossRef]
- Alexakis, A.; Benhaim, C. Enantioselective Copper-Catalyzed Conjugate Addition. Eur. J. Org. Chem. 2002, 2002, 3221–3236. [Google Scholar] [CrossRef]
- López, F.; Minnaard, A.J.; Feringa, B.L. Catalytic enantioselective conjugate addition with Grignard reagents. Acc. Chem. Res. 2007, 40, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Harutyunyan, S.R.; den Hartog, T.; Geurts, K.; Minnaard, A.J.; Feringa, B.L. Catalytic asymmetric conjugate addition and allylic alkylation with Grignard reagents. Chem. Rev. 2008, 108, 2824–2852. [Google Scholar] [CrossRef]
- Müller, D.; Alexakis, A. Rhodium and copper-catalyzed asymmetric conjugate addition of alkenyl nucleophiles. Chem. Commun. 2012, 48, 12037–12049. [Google Scholar] [CrossRef]
- Mravec, B.; Plevová, K.; Šebesta, R. Copper-catalyzed conjugate addition of in situ formed alkyl boranes to α,β-unsaturated ketones. Monatsh. Chem. 2019, 150, 295–302. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.-H.; Zhu, Y.-P.; Wang, Q.-A. Copper-catalyzed enantioselective arylboronation of activated alkenes leading to chiral 3,3′-disubstituted oxindoles. Org. Chem. Front. 2021, 8, 2532–2536. [Google Scholar] [CrossRef]
- Reyes, R.L.; Sato, M.; Iwai, T.; Sawamura, M. Asymmetric Synthesis of α-Aminoboronates via Rhodium-Catalyzed Enantioselective C(sp3)–H Borylation. J. Am. Chem. Soc. 2020, 142, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Eissen, M.; Hungerbühler, K.; Metzger, J.O.; Schmidt, E.; Schneidewind, U. Sustainable Development and Chemistry. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- He, B.; Zheng, L.-S.; Phansavath, P.; Ratovelomanana-Vidal, V. RhIII-Catalyzed Asymmetric Transfer Hydrogenation of α-Methoxy β-Ketoesters through DKR in Water: Toward a Greener Procedure. ChemSusChem 2019, 12, 3032–3036. [Google Scholar] [CrossRef] [PubMed]
- Braconi, E.; Cramer, N. A Chiral Naphthyridine Diimine Ligand Enables Nickel-Catalyzed Asymmetric Alkylidenecyclopropanations. Angew. Chem. Int. Ed. 2020, 59, 16425–16429. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Bai, L.-G.; Zhang, Y.; Wang, Z.-K.; Yao, F.; Peng, J.-H.; Yan, W.; Wang, Y.; Zheng, C.; Liu, W.-B. Ni-catalyzed enantioselective [2 +2 +2] cycloaddition of malononitriles with alkynes. Chem 2021, 7, 799–811. [Google Scholar] [CrossRef]
- Lassaletta, J.M. Spotting trends in organocatalysis for the next decade. Nature Commun. 2020, 11, 3787. [Google Scholar] [CrossRef]
- Sansinenea, E.; Ortiz, A. Asymmetric Organocatalytic Syntheses of Bioactive Compounds. Curr. Org. Synth. 2022, 19, 148–165. [Google Scholar] [CrossRef]
- MacMillan, D.W.C. Nobel Prize Lecture. Available online: https://www.nobelprize.org/prizes/chemistry/2021/macmillan/lecture/ (accessed on 5 September 2022).
- Dalko, P.I. Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications; Wiley-VCH: Weinhem, Germany, 2013. [Google Scholar]
- Inukai, T.; Kano, T.; Maruoka, K. Construction of Quaternary Carbon Center by Catalytic Asymmetric Alkylation of 3-Arylpiperidin-2-ones Under Phase-Transfer Conditions. Angew. Chem. Int. Ed. 2020, 59, 2211–2214. [Google Scholar] [CrossRef]
- Yadav, A.; Banerjee, J.; Arupula, S.K.; Mobin, S.M.; Samanta, S. Lewis-Base-Catalyzed Domino Reaction of Morita–Baylis–Hillman Carbonates of Isatins with Enolizable Cyclic Carbonyl Compounds: Stereoselective Access to Spirooxindole-Pyrans. Asian J. Org. Chem. 2018, 7, 1595–1599. [Google Scholar] [CrossRef]
- Arupula, S.K.; Guin, S.; Yadav, A.; Mobin, S.M.; Samanta, S. Stereoselective Synthesis of 3,3-Disubstituted Oxindoles and Spirooxindoles via Allylic Alkylation of Morita–Baylis–Hillman Carbonates of Isatins with Cyclic Sulfamidate Imines Catalyzed by DABCO. J. Org. Chem. 2018, 83, 2660–2675. [Google Scholar] [CrossRef]
- Ming, Y.-C.; Lv, X.-J.; Liu, M.; Liu, Y.-K. Synthesis of Chiral Polycyclic Tetrahydrocarbazoles by Enantioselective Aminocatalytic Double Activation of 2-Hydroxycinnamaldehydes with Dienals. Org. Lett. 2021, 23, 6515–6519. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wong, Y.F.; Sun, J. Catalytic Asymmetric 1,6-Conjugate Addition of para-Quinone Methides: Formation of All-Carbon Quaternary Stereocenters. Angew. Chem. Int. Ed. 2015, 54, 13711–13714. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.F.; Wang, Z.; Sun, J. Chiral phosphoric acid catalyzed asymmetric addition of naphthols to para-quinone methides. Org. Biomol. Chem. 2016, 14, 5751–5754. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Kuroda, H.; Ohtsuka, Y.; Kashihara, T.; Masuyama, A.; Watanabe, K. Evaluation of cyclopentyl methyl ether (CPME) as a solvent for radical reactions. Tetrahedron 2013, 69, 2251–2259. [Google Scholar] [CrossRef]
- Qiao, B.; Li, C.; Zhao, X.; Yin, Y.; Jiang, Z. Enantioselective reduction of azaarene-based ketones via visible light-driven photoredox asymmetric catalysis. Chem. Commun. 2019, 55, 7534–7537. [Google Scholar] [CrossRef] [PubMed]
- Canellas, S.; Ayats, C.; Henseler, A.H.; Pericas, M.A. A Highly Active Polymer-Supported Catalyst for Asymmetric Robinson Annulations in Continuous Flow. ACS Catal. 2017, 7, 1383–1391. [Google Scholar] [CrossRef]
- Martelli, L.S.R.; Vieira, L.C.C.; Paixao, M.W.; Zukerman-Schpector, J.; de Souza, J.O.; Aguiar, A.C.C.; Oliva, G.; Guido, R.V.C.; Correa, A.G. Organocatalytic asymmetric vinylogous 1,4-addition of alpha,alpha-dicyanoolefins to chalcones under a bio-based reaction media: Discovery of new Michael adducts with antiplasmodial activity. Tetrahedron 2019, 75, 3530–3542. [Google Scholar] [CrossRef]
- Storer, R.I.; Aciro, C.; Jones, L.H. Squaramides: Physical properties, synthesis and applications. Chem. Soc. Rev. 2011, 40, 2330–2346. [Google Scholar] [CrossRef]
- Modrocka, V.; Veverkova, E.; Meciarova, M.; Sebesta, R. Bifunctional Amine-Squaramides as Organocatalysts in Michael/Hemiketalization Reactions of beta,gamma-Unsaturated alpha-Ketoesters and alpha,beta-Unsaturated Ketones with 4-Hydroxycoumarins. J. Org. Chem. 2018, 83, 13111–13120. [Google Scholar] [CrossRef]
- Veverkova, E.; Molnosiova, P.; Sebesta, R. Asymmetric Sequential Michael Addition and Cyclization Reactions of 2-(2-Nitrovinyl)phenols Catalyzed by Bifunctional Amino-Squaramides. SynOpen 2021, 05, 278–284. [Google Scholar] [CrossRef]
- Hernáiz, M.; Alcántara, A.R.; García, J.I.; Sinisterra, J.V. Applied biotransformations in green solvents. Chem. Eur. J. 2010, 16, 9422–9437. [Google Scholar] [CrossRef] [PubMed]
- Alcántara, A.R.; Dominguez de Maria, P. Recent advances on the use of 2-methyltetrahydrofuran (2-MeTHF) in biotransformations. Curr. Green Chem. 2018, 5, 85–102. [Google Scholar] [CrossRef]
- Simeo, Y.; Sinisterra, J.V.; Alcantara, A.R. Regioselective enzymic acylation of pharmacologically interesting nucleosides in 2-methyltetrahydrofuran, a greener substitute for THF. Green Chem. 2009, 11, 855–862. [Google Scholar] [CrossRef]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact. 2020, 19, 169. [Google Scholar] [CrossRef] [PubMed]
- Priyanka, P.; Tan, Y.Q.; Kinsella, G.K.; Henehan, G.T.; Ryan, B.J. Solvent stable microbial lipases: Current understanding and biotechnological applications. Biotechnol. Lett. 2019, 41, 203–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filho, D.G.; Silva, A.G.; Guidini, C.Z. Lipases: Sources, immobilization methods, and industrial applications. Appl. Microb. Biotech. 2019, 103, 7399–7423. [Google Scholar] [CrossRef]
- Belafriekh, A.; Secundo, F.; Serra, S.; Djeghaba, Z. Enantioselective enzymatic resolution of racemic alcohols by lipases in green organic solvents. Tetrahedron Asymmetry 2017, 28, 473–478. [Google Scholar] [CrossRef]
- Straathof, A.J.J.; Jongejan, J.A. The enantiomeric ratio: Origin, determination and prediction. Enzym. Microb. Technol. 1997, 21, 559–571. [Google Scholar] [CrossRef]
- Peris, E.; Porcar, R.; Isabel Burguete, M.; Garcia-Verdugo, E.; Luis, S.V. Supported Ionic Liquid-Like Phases (SILLPs) as Immobilised Catalysts for the Multistep and Multicatalytic Continuous Flow Synthesis of Chiral Cyanohydrins. ChemCatChem 2019, 11, 1955–1962. [Google Scholar] [CrossRef]
- De Marchi, E.; Arnodo, D.; Maffeis, E.; Scarpi, D.; Prandi, C.; Occhiato, E.G. Enantiodivergent Synthesis of Halofuginone by Candida antarctica Lipase B (CAL-B)-Catalyzed Kinetic Resolution in Cyclopentyl Methyl Ether (CPME). SynOpen 2021, 5, 145–151. [Google Scholar] [CrossRef]
- Pedragosa-Moreau, S.; Le Flohic, A.; Thienpondt, V.; Lefoulon, F.; Petit, A.M.; Rios-Lombardia, N.; Moris, F.; Gonzalez-Sabin, J. Exploiting the Biocatalytic Toolbox for the Asymmetric Synthesis of the Heart-Rate Reducing Agent Ivabradine. Adv. Synth. Catal. 2017, 359, 485–493. [Google Scholar] [CrossRef]
- Marriott, R.; Jessop, P.; Barnes, M. CO2-based Solvents. In Carbon Dioxide Utilisation: Closing the Carbon Cycle; Elsevier: Amsterdam, The Netherlands, 2015; pp. 73–96. [Google Scholar]
- Hoang, H.N.; Granero-Fernandez, E.; Yamada, S.; Mori, S.; Kagechika, H.; Medina-Gonzalez, Y.; Matsuda, T. Modulating biocatalytic activity toward sterically bulky substrates in CO2-expanded biobased liquids by tuning the physicochemical properties. ACS Sustain. Chem. Eng. 2017, 5, 11051–11059. [Google Scholar] [CrossRef] [Green Version]
- Hoang, H.N.; Nagashima, Y.; Mori, S.; Kagechika, H.; Matsuda, T. CO2-expanded bio-based liquids as novel solvents for enantioselective biocatalysis. Tetrahedron 2017, 73, 2984–2989. [Google Scholar] [CrossRef]
- Otsu, M.; Suzuki, Y.; Koesoema, A.A.; Hoang, H.N.; Tamura, M.; Matsuda, T. CO2-expanded liquids as solvents to enhance activity of Pseudozyma antarctica lipase B towards ortho-substituted 1-phenylethanols. Tetrahedron Lett. 2020, 61, 152424. [Google Scholar] [CrossRef]
- Suzuki, Y.; Taniguchi, K.; Hoang, H.N.; Tamura, M.; Matsuda, T. Rate enhancement of lipase-catalyzed reaction using CO2-expanded liquids as solvents for chiral tetralol synthesis. Tetrahedron Lett. 2022, 99, 153837. [Google Scholar] [CrossRef]
- Chevalier, Y.; Bolzinger, M.A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Heyse, A.; Plikat, C.; Ansorge-Schumacher, M.; Drews, A. Continuous two-phase biocatalysis using water-in-oil Pickering emulsions in a membrane reactor: Evaluation of different nanoparticles. Catal. Today 2019, 331, 60–67. [Google Scholar] [CrossRef]
- Heyse, A.; Plikat, C.; Grün, M.; Delaval, S.; Ansorge-Schumacher, M.; Drews, A. Impact of enzyme properties on drop size distribution and filtration of water-in-oil Pickering emulsions for application in continuous biocatalysis. Process Biochem. 2018, 72, 86–95. [Google Scholar] [CrossRef]
- Heyse, A.; Kraume, M.; Drews, A. The impact of lipases on the rheological behavior of colloidal silica nanoparticle stabilized Pickering emulsions for biocatalytical applications. Colloids Surf. B Biointerfaces 2020, 185, 110580. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.Y.; Brieva, R.; Rebolledo, F. Chemoenzymatic synthesis of optically active phenolic 3,4-dihydropyridin-2-ones: A way to access enantioenriched 1,4-dihydropyridine and benzodiazepine derivatives. Org. Biomol. Chem. 2017, 15, 5171–5181. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, D.X.; Zheng, Q.Y.; Pan, J.; Huang, Z.T.; Wang, M.X. Highly efficient and concise synthesis of both antipodes of SB204900, clausenamide, neoclausenamide, homoclausenamide and zeta-clausenamide. Implication of biosynthetic pathways of clausena alkaloids. Org. Biomol. Chem. 2009, 7, 2628–2634. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yu, X.M.; Huang, L. Novel concise synthesis of (-)-clausenamide. Chin. J. Chem. 2013, 31, 344–348. [Google Scholar] [CrossRef]
- Feng, Y.B.; LoGrasso, P.V.; Defert, O.; Li, R.S. Rho kinase (ROCK) inhibitors and their therapeutic potential. J. Med. Chem. 2016, 59, 2269–2300. [Google Scholar] [CrossRef]
- Lopez-Tapia, F.; Walker, K.A.M.; Brotherton-Pleiss, C.; Caroon, J.; Nitzan, D.; Lowrie, L.; Gleason, S.; Zhao, S.H.; Berger, J.; Cockayne, D.; et al. Novel series of dihydropyridinone P2X7 receptor antagonists. J. Med. Chem. 2015, 58, 8413–8426. [Google Scholar] [CrossRef]
- Homan, K.T.; Larimore, K.M.; Elkins, J.M.; Szklarz, M.; Knapp, S.; Tesmer, J.J.G. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors. ACS Chem. Biol. 2015, 10, 310–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranda, C.; de Gonzalo, G. Biocatalyzed redox processes employing green reaction media. Molecules 2020, 25, 3016. [Google Scholar] [CrossRef]
- Betori, R.C.; Miller, E.R.; Scheidt, K.A. A biocatalytic route to highly enantioenriched β-hydroxydioxinones. Adv. Synth. Catal. 2017, 359, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Garzón-Posse, F.; Becerra-Figueroa, L.; Hernández-Arias, J.; Gamba-Sánchez, D. Whole cells as biocatalysts in organic transformations. Molecules 2018, 23, 1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.J.; Ma, X.Q.; Yang, M.; Wei, D.Z.; Su, E.Z. Synthesis of (S)-3-chloro-1-phenylpropanol by permeabilized recombinant Escherichia coli harboring Saccharomyces cerevisiae YOL151W reductase in 2-methyltetrahydrofuran cosolvent system. Cat. Commun. 2017, 97, 56–59. [Google Scholar] [CrossRef]
- González-Granda, S.; Escot, L.; Lavandera, I.; Gotor-Fernández, V. Unmasking the Hidden Carbonyl Group Using Gold(I) Catalysts and Alcohol Dehydrogenases: Design of a Thermodynamically-Driven Cascade toward Optically Active Halohydrins. ACS Catal. 2022, 12, 2552–2560. [Google Scholar] [CrossRef]
- Oeggl, R.; Maßmann, T.; Jupke, A.; Rother, D. Four Atom Efficient Enzyme Cascades for All 4-Methoxyphenyl-1,2-propanediol Isomers Including Product Crystallization Targeting High Product Concentrations and Excellent E-Factors. ACS Sustain. Chem. Eng. 2018, 6, 11819–11826. [Google Scholar] [CrossRef] [Green Version]
- Jäger, V.D.; Piqueray, M.; Seide, S.; Pohl, M.; Wiechert, W.; Jaeger, K.E.; Krauss, U. An Enzymatic 2-Step Cofactor and Co-Product Recycling Cascade towards a Chiral 1,2-Diol. Part II: Catalytically Active Inclusion Bodies. Adv. Synth. Catal. 2019, 361, 2616–2626. [Google Scholar] [CrossRef] [Green Version]
- Kulig, J.; Sehl, T.; Mackfeld, U.; Wiechert, W.; Pohl, M.; Rother, D. An Enzymatic 2-Step Cofactor and Co-Product Recycling Cascade towards a Chiral 1,2-Diol. Part I: Cascade Design. Adv. Synth. Catal. 2019, 361, 2607–2615. [Google Scholar] [CrossRef]
- Spöring, J.D.; Graf Von Westarp, W.; Kipp, C.R.; Jupke, A.; Rother, D. Enzymatic Cascade in a Simultaneous, One-Pot Approach with in Situ Product Separation for the Asymmetric Production of (4 S,5 S)-Octanediol. Org. Process Res. Dev. 2021, 26, 2038–2045. [Google Scholar] [CrossRef]
- Guajardo, N.; de María, P.D. Assessing biocatalysis using dihydrolevoglucosenone (Cyrene™) as versatile bio-based (co)solvent. Mol. Catal. 2020, 485, 110813. [Google Scholar] [CrossRef]
- de Gonzalo, G. Biocatalyzed reductions of α-ketoesters employing CyreneTM as cosolvent. Biocatal. Biotransformation 2022, 40, 252–257. [Google Scholar] [CrossRef]
Solvent | Boiling Point (°C) | Freezing Point (°C) | Viscosity (cP) | Water Solubility 20 °C (mg/Kg) | Rat Oral LD50 (mg/Kg) | Rabbit Dermal LD50 (mg/kg) |
---|---|---|---|---|---|---|
2-MeTHF | 80 | −137 | 0.473 | 140,000 | 2000 | 2000 |
CPME | 106 | −140 | 0.555 | 1100 | 2000 | 4500 |
CyreneTM | 226 | miscible |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miele, M.; Pillari, V.; Pace, V.; Alcántara, A.R.; de Gonzalo, G. Application of Biobased Solvents in Asymmetric Catalysis. Molecules 2022, 27, 6701. https://doi.org/10.3390/molecules27196701
Miele M, Pillari V, Pace V, Alcántara AR, de Gonzalo G. Application of Biobased Solvents in Asymmetric Catalysis. Molecules. 2022; 27(19):6701. https://doi.org/10.3390/molecules27196701
Chicago/Turabian StyleMiele, Margherita, Veronica Pillari, Vittorio Pace, Andrés R. Alcántara, and Gonzalo de Gonzalo. 2022. "Application of Biobased Solvents in Asymmetric Catalysis" Molecules 27, no. 19: 6701. https://doi.org/10.3390/molecules27196701
APA StyleMiele, M., Pillari, V., Pace, V., Alcántara, A. R., & de Gonzalo, G. (2022). Application of Biobased Solvents in Asymmetric Catalysis. Molecules, 27(19), 6701. https://doi.org/10.3390/molecules27196701