Author Contributions
Conceptualization, H.K. and R.K.M.; methodology, H.K. and R.K.M.; software, H.K. and R.K.M.; validation, N.A., M.G.M., A.D., H.C., M.M.M., A.R., and T.B.E.; formal analysis, N.A., M.G.M., A.D., H.C., M.M.M., A.R., and T.B.E.; investigation, H.K. and R.K.M.; resources, H.K. and R.K.M.; data curation, H.K. and R.K.M.; writing—original draft preparation, H.K. and R.K.M.; writing—review and editing, N.A., M.G.M., A.D., H.C., M.M.M., A.R., T.B.E., Y.K.M., R.A., T.K.M., M.S., R.K.M., and A.A.-H.; visualization, N.A., M.G.M., A.D., H.C., M.M.M., A.R., T.B.E., Y.K.M., R.A., T.K.M., M.S., R.K.M., and A.A.-H.; supervision, R.K.M., T.B.E., and A.A.-H.; project administration, R.K.M. and T.B.E.; funding acquisition, R.K.M., T.B.E., and A.A.-H. All authors have read and agreed to the published version of the manuscript.
Figure 1.
Structure of the thiazolidine-2,4-dione scaffold.
Figure 1.
Structure of the thiazolidine-2,4-dione scaffold.
Figure 2.
Antidiabetic molecules developed with the thiazolidin-2,4-dione moiety.
Figure 2.
Antidiabetic molecules developed with the thiazolidin-2,4-dione moiety.
Figure 3.
Principal functional domains of PPARs.
Figure 3.
Principal functional domains of PPARs.
Figure 4.
Gene transcription mechanisms of PPAR.
Figure 4.
Gene transcription mechanisms of PPAR.
Figure 5.
Gene trans-repression mechanisms of PPAR.
Figure 5.
Gene trans-repression mechanisms of PPAR.
Figure 6.
Various target organs/sites of TZD-PPARγ.
Figure 6.
Various target organs/sites of TZD-PPARγ.
Figure 7.
Peptidoglycan peptide stem formation by the Mur ligases enzymes.
Figure 7.
Peptidoglycan peptide stem formation by the Mur ligases enzymes.
Figure 8.
ROS generation and antioxidant scavenging mechanism of TZDs.
Figure 8.
ROS generation and antioxidant scavenging mechanism of TZDs.
Figure 9.
Molecular structures of the compounds (am1–am12).
Figure 9.
Molecular structures of the compounds (am1–am12).
Figure 10.
Molecular structures of the compounds (am16-am24).
Figure 10.
Molecular structures of the compounds (am16-am24).
Figure 11.
Molecular structures of the compounds (am25–am36).
Figure 11.
Molecular structures of the compounds (am25–am36).
Figure 12.
Molecular structures of the compounds (am37–am48).
Figure 12.
Molecular structures of the compounds (am37–am48).
Figure 13.
Molecular structures of the compounds (am49–am62).
Figure 13.
Molecular structures of the compounds (am49–am62).
Figure 14.
Molecular structures of the compounds (ad1–ad15).
Figure 14.
Molecular structures of the compounds (ad1–ad15).
Figure 15.
Molecular structures of the compounds (ad16–ad30).
Figure 15.
Molecular structures of the compounds (ad16–ad30).
Figure 16.
Molecular structures of the compounds (ad31–ad45).
Figure 16.
Molecular structures of the compounds (ad31–ad45).
Figure 17.
Molecular structures of the compounds (ad46–ad56).
Figure 17.
Molecular structures of the compounds (ad46–ad56).
Figure 18.
Molecular structures of the compounds (ao1–ao9).
Figure 18.
Molecular structures of the compounds (ao1–ao9).
Figure 19.
Molecular structures of the compounds (ao10-ao22).
Figure 19.
Molecular structures of the compounds (ao10-ao22).
Table 1.
Biological functions of PPARs.
Table 1.
Biological functions of PPARs.
Isoform | Agonists | Location | Biological Functions |
---|
PPAR-γ | TZDs, unsaturated fatty acids (oleate, linoleate), arachidonic and eicosapentaenoic acids, and prostanoid. | Mainly in the brown and white adipose tissue and, to a lesser extent, in the placenta, colon mucosa, and immune cells (Peyer’s patches in the digestive tract, monocytes, and macrophages). | - Sensitization of insulin. - Adipocyte differentiation and adipogenesis. - Cellular growth and inflammation. |
PPAR-α | fibrates (clofibrate, fenofibrate, and bezafibrate), unsaturated fatty acids, 8-(S) hydroxyl eicosatetraenoic acid, B4 leukotriene, prostaglandin E, or farnesol. | Kidney cortex, skeletal muscles, enterocytes, cardiomyocytes, and hepatocytes. | - Oxidation of fatty acids, mostly in the heart, liver, and muscles. - Reduces inflammation in both the liver and vascular wall. - Regulation of energy homeostasis. |
PPAR-β/δ | Fatty acids | In almost all the tissues, especially in the brain, skin and, adipose tissue. | - Regulates fat oxidation. - Regulates the genes involved in adipogenesis. - Lipoprotein metabolism. - Glucose homeostasis. - Cholesterol metabolism. - Inflammation. - Atherosclerosis. |
Table 2.
Antimicrobial results of the compounds (am1–am3).
Table 2.
Antimicrobial results of the compounds (am1–am3).
Compounds | Microbial Strains (MIC = µg/mL) |
---|
Bacterial Species | Fungal Species |
---|
E. coli | P. aeruginosa | S. aureus | S. pyrogenes | C. albicans | A. niger | A. clavatus |
---|
am1 | 50 | 250 | 500 | 500 | 250 | 500 | 500 |
am2 | 500 | 500 | 50 | 200 | 500 | 250 | 250 |
am3 | 100 | 200 | 250 | 500 | 100 | 1000 | 1000 |
Ampicillin | 100 | 100 | 250 | 100 | - | - | - |
Griseofulvin | - | - | - | - | 500 | 100 | 100 |
Table 3.
Antimicrobial results of the compounds (am4–am5).
Table 3.
Antimicrobial results of the compounds (am4–am5).
Compounds | Microbial Strains (MIC = µg/mL) |
---|
Bacterial Species |
---|
S. aureus | S. epidermidis | B. subtilis |
---|
am4 | >64 | >64 | 8 |
am5 | >64 | >64 | 8 |
Table 4.
Antimicrobial results (inhibitory zone = mm diameter) of the compounds (am6–am7).
Table 4.
Antimicrobial results (inhibitory zone = mm diameter) of the compounds (am6–am7).
Compounds | Microbial Strains (Inhibitory Zone = mm Diameter) |
---|
Bacterial Species | Fungal Species |
---|
S. aureus | E. coli | P. aeruginosa | K. pneumoniae | A. fumigatus | A. flavus | P. marneffei | C. albicans |
---|
am6 | 15 | 19 | 20 | 16 | 18 | 15 | 17 | 19 |
am7 | 17 | 18 | 21 | 15 | 19 | 16 | 17 | 18 |
Ciprofloxacin | 19 | 20 | 25 | 18 | - | - | - | - |
Ciclopiroxolamine | - | - | - | - | 22 | 18 | 20 | 20 |
Table 5.
Antimicrobial activity (MIC = µg/mL) of the compounds (am8–am9).
Table 5.
Antimicrobial activity (MIC = µg/mL) of the compounds (am8–am9).
Compounds | Microbial Strains (MIC = µg/mL) |
---|
Bacterial Species |
---|
S. aureus | P. aeruginosa | B. subtilis |
---|
am8 | 31.25 | 31.25 | 31.25 |
am9 | 31.25 | 31.25 | 31.25 |
Streptomycin | 3.90 | 3.90 | 3.90 |
Table 6.
Antimicrobial activity of the compounds (am10–am11).
Table 6.
Antimicrobial activity of the compounds (am10–am11).
Comp. | Bacterial Species | Fungal Species |
---|
Inhibitory Zone = mm Diameter | Mycelial Growth Inhibition (%) |
---|
S. aureus | P. aeruginosa | A. niger | A. flavus |
---|
am10 | 21.6 | 22.3 | 35.5 | 43.3 |
am11 | 18.6 | 19.3 | 53.3 | 55.8 |
Ciprofloxacin | 26.6 | 24.0 | - | - |
Fluconazole | - | - | 81.1 | 77.7 |
Table 7.
Antimicrobial activity (MIC = µg/mL) of the compounds (am12–am13).
Table 7.
Antimicrobial activity (MIC = µg/mL) of the compounds (am12–am13).
Comp. | Microbial Strains (MIC = µg/mL) |
---|
Bacterial Species | Fungal Species |
---|
S. aureus | E. coli | P. aeruginosa | E. faecalis | A. niger | A. flavus | C. neoformans | C. albicans |
---|
am12 | 8 | 128 | 32 | 4 | 4 | 4 | 2 | 1 |
am13 | 8 | 64 | 64 | 8 | 4 | 4 | 8 | 4 |
Ampicillin | 1 | 2 | 2 | 2 | NT | NT | NT | NT |
Ketoconazole | NT | NT | NT | NT | 1 | 2 | 1 | 2 |
Table 8.
Antimicrobial activity (Inhibitory Zone = mm diameter) of the compounds (am14–am15).
Table 8.
Antimicrobial activity (Inhibitory Zone = mm diameter) of the compounds (am14–am15).
Comp. | Microbial Strains (Inhibitory Zone = mm Diameter) |
---|
Bacterial Species |
---|
S. aureus | P. aeruginosa | B. subtilis | E. coli |
---|
am14 | 22 | 18 | 24 | 19 |
am15 | 20 | 21 | 24 | 20 |
Ciprofloxacin | 32 | 31 | 33 | 30 |
Table 9.
Results of antimicrobial screening of the synthesized compounds (am16–am17).
Table 9.
Results of antimicrobial screening of the synthesized compounds (am16–am17).
Comp. | Microbial Strains (MIC = µM/mL) |
---|
Bacterial Species | Fungal Species |
---|
E. coli | P. aeruginosa | S. aureus | S. pyrogenes | C. albicans | A. niger | A. clavatus |
---|
am16 | 250 | 125 | 125 | 100 | 500 | 500 | >1000 |
am17 | 500 | 62.5 | 250 | 500 | 200 | 500 | 500 |
Ampicillin | 250 | 100 | 100 | 100 | - | - | - |
Griseofulvin | - | - | - | - | 500 | 100 | 100 |
Table 10.
Antimicrobial results (inhibitory zone = mm diameter) of the compounds (am18–am19).
Table 10.
Antimicrobial results (inhibitory zone = mm diameter) of the compounds (am18–am19).
Comp. | Microbial Strains (Inhibitory Zone = mm Diameter) |
---|
Bacterial Species |
---|
E. coli | B. subtilis |
---|
am18 | 16 | 13 |
am19 | 13 | 11 |
Ciprofloxacin | 25 | 25 |
Table 11.
Antimicrobial screening results (inhibitory zone = mm diameter) of the compounds (am20–am23).
Table 11.
Antimicrobial screening results (inhibitory zone = mm diameter) of the compounds (am20–am23).
Comp. | Microbial Strains (Inhibitory Zone = mm Diameter) |
---|
Bacterial Species |
---|
S. aureus | P. aeruginosa | B. subtilis | E. coli |
---|
am20 | 24 | 24 | 26 | 25 |
am21 | 26 | 24 | 25 | 24 |
am22 | 24 | 22 | 26 | 23 |
am23 | 25 | 24 | 24 | 24 |
Ciprofloxacin | 32 | 31 | 33 | 30 |
Table 12.
Results of antimicrobial screening of the synthesized compounds (am24–am27).
Table 12.
Results of antimicrobial screening of the synthesized compounds (am24–am27).
Comp. | Microbial Strains (MIC = µM/mL) |
---|
Bacterial Species | Fungal Species |
---|
E. coli | P. aeruginosa | S. aureus | S. pyrogens | C. albicans | A. niger | A. clavatus |
---|
am24 | 500 ± 4.01 * | 50 ± 3.60 | 100 ± 1.00 ** | 50 ± 2.13 * | >1000 | 50 ± 2.20 * | 500 ± 3.60 ** |
am25 | 50 ± 2.10 | 100 ± 3.05 *** | 50 ± 3.21 | 50 ± 3.01 | 500 ± 1.30 ** | 25 ± 0.23 *** | 50 ± 2.31 |
am26 | 50 ± 2.63 * | 50 ± 3.21 ** | 100 ± 3.00 * | 12.5 ± 2.56 ** | 500 ± 2.44 | 50 ± 4.33 | 100 ± 2.36 *** |
am27 | 12.5 ± 2.05 ** | 100 ± 4.01 * | 50 ± 1.33 *** | 12.5 ± 3.44 * | 500 ± 4.10 * | 125 ± 3.12 ** | 50 ± 1.22 * |
Ampicillin | 250 ± 2.05 | 100 ± 0.98 | 100 ± 1.52 | 100 ± 2.06 | - | - | - |
Griseofulvin | - | - | - | - | 500 ± 0.80 | 100 ± 1.98 | 100 ± 2.01 |
Table 13.
Antimicrobial activity of the compounds (am28–am31).
Table 13.
Antimicrobial activity of the compounds (am28–am31).
Comp. | Bacterial Species | Fungal Species |
---|
Inhibitory Zone = mm Diameter | Mycelial growth Inhibition (%) |
---|
S. aureus | B. subtilis | A. niger | A. flavus |
---|
am28 | 22.3 | 21.6 | 50 | 33.3 |
am29 | 20.6 | 18.3 | 55.5 | 61.1 |
am30 | 21.6 | 20.6 | 38.8 | 55.5 |
am31 | 19.3 | 20.6 | 55.5 | 55.5 |
Ciprofloxin | 26.0 | 24.0 | - | - |
Fluconazole | - | - | 81.1 | 77.7 |
Table 14.
Antimicrobial activity of the compounds (am32–am33).
Table 14.
Antimicrobial activity of the compounds (am32–am33).
Comp. | Bacterial Species | Fungal Species |
---|
Inhibitory Zone = mm Diameter | Mycelial Growth Inhibition (%) |
---|
S. aureus | B. subtilis | A. niger | A. flavus |
---|
am32 | 23.3 | 21.3 | 61.1 | 63.3 |
am33 | 20.6 | 21.6 | 82.5 | 78.8 |
Ciprofloxin | 26.0 | 24.0 | - | - |
Fluconazole | - | - | 81.1 | 77.7 |
Table 15.
Results of antimicrobial screening of the synthesized compounds (am34–am36).
Table 15.
Results of antimicrobial screening of the synthesized compounds (am34–am36).
Comp. | Microbial Strains (MIC = µM/mL) |
---|
Bacterial Species | Fungal Species |
---|
E. coli | P. aeruginosa | S. aureus | S. epidermidis | A. niger | A. fumigatus |
---|
am34 | 1.6 | 0.56 | 1.9 | 1.4 | 8.8 | 2.3 |
am35 | 1.6 | 2.8 | 3.8 | 2.2 | 7.9 | 1.7 |
am36 | 3.2 | 1.4 | 2.7 | 3.39 | 8.2 | 3.4 |
Ciprofloxacin | 0.2 | 0.25 | 0.39 | 0.2 | - | - |
Ketoconazole | - | - | - | - | 6.1 | 0.23 |
Table 16.
Results of antimicrobial activity of the synthesized compounds (am37–am38).
Table 16.
Results of antimicrobial activity of the synthesized compounds (am37–am38).
Comp. | Microbial Strains (Inhibitory Zone = mm Diameter) |
---|
Bacterial Species | Fungal Species |
---|
E. coli | P. aeruginosa | S. aureus | B. subtilis | A. niger | C. albicans |
---|
am37 | 28 | 24 | 28 | 26 | 25 | 27 |
am38 | 26 | 24 | 28 | 28 | 24 | 26 |
Ciprofloxacin | 28 | 25 | 26 | 26 | - | - |
Fluconazole | - | - | - | - | 25 | 26 |
Table 17.
Results of antimicrobial screening of the synthesized compounds (am39–am42).
Table 17.
Results of antimicrobial screening of the synthesized compounds (am39–am42).
Comp. | Bacterial Species | Fungal Species |
---|
MIC = µg/mL | Mycelial Growth Inhibition (%) |
---|
S. aureus | B. subtilis | E. coli | P. auroginosa | A. niger | A. flavus |
---|
am39 | 16 | 16 | 16 | 16 | 60.0 | 60.4 |
am40 | 16 | 32 | 16 | 16 | 60.0 | 60.0 |
am41 | 16 | 16 | 64 | 32 | 61.2 | 61.2 |
am42 | 32 | 64 | 16 | 32 | 61.6 | 60.2 |
Ciprofloxacin | 5 | 5 | 5 | 5 | - | - |
Fluconazole | - | - | - | - | 75.3 | 74.6 |
Table 18.
Antimicrobial activity (MIC = µg/mL) of the compounds (am43–am44).
Table 18.
Antimicrobial activity (MIC = µg/mL) of the compounds (am43–am44).
Comp. | Microbial Strains (MIC = µg/mL) |
---|
Bacterial Species | Fungal Species |
---|
S. aureus | E. coli | P. aeruginosa | E. faecalis | A. niger | A. flavus | C. neoformans | C. albicans |
---|
am43 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 |
am44 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 2 |
Ampicillin | 2 | NT | NT | 2 | NT | NT | NT | NT |
Ciprofloxacin | NT | 2 | 2 | NT | NT | NT | NT | NT |
Ketoconazole | NT | NT | NT | NT | 1 | 2 | 1 | 2 |
Table 19.
Antimicrobial activity (MIC = µg/mL) of the compound (am45).
Table 19.
Antimicrobial activity (MIC = µg/mL) of the compound (am45).
Comp. | Microbial Strains (MIC = µg/mL) |
---|
Bacterial Species | Fungal Species |
---|
S. aureus | E. coli | P. aeruginosa | E. faecalis | A. niger | A. flavus | C. neoformans | C. albicans |
---|
am45 | 4 | 8 | 8 | 4 | 4 | 8 | 8 | 8 |
Ampicillin | 2 | NT | NT | 2 | NT | NT | NT | NT |
Ciprofloxacin | NT | 2 | 2 | NT | NT | NT | NT | NT |
Ketoconazole | NT | NT | NT | NT | 1 | 2 | 1 | 2 |
Table 20.
Antibacterial activity (MIC = µg/mL) of the compounds (am46–am47).
Table 20.
Antibacterial activity (MIC = µg/mL) of the compounds (am46–am47).
Comp. | Microbial Strains (MIC = µg/mL) |
---|
Gram Positive Bacterial Species | Gram Negative Bacterial Species |
---|
S. aureus | M. luteus | B. subtilis | B. pumilus | E. coli | P. aeruginosa | K. pneumonia | P. vulgaris |
---|
am46 | 16 | 16 | 16 | 16 | 32 | 16 | 16 | 32 |
am47 | 32 | 32 | 16 | 16 | 16 | 16 | 16 | 32 |
Chloramphenicol | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
Table 21.
Antifungal activity (MIC = µg/mL) of the compounds (am46–am47).
Table 21.
Antifungal activity (MIC = µg/mL) of the compounds (am46–am47).
Comp. | Fungal Species |
---|
C. albicans | A. niger | A. oryzae | P. chrysogenum |
---|
am46 | 16 | 16 | 16 | 16 |
am47 | 32 | 32 | 32 | 16 |
Ketoconazole | 16 | 16 | 16 | 16 |
Table 22.
Inhibitory activity (MIC, µg/mL) of the compounds am48 and am49 against the bacteria and clinical isolates of multidrug-resistant Gram-positive strains.
Table 22.
Inhibitory activity (MIC, µg/mL) of the compounds am48 and am49 against the bacteria and clinical isolates of multidrug-resistant Gram-positive strains.
Comp. | Microbial Strains (MIC = µg/mL) |
---|
Bacterial Species | Clinical Isolates of Gram Positive Bacterial Species |
---|
S. aureus 4220 | S. aureus 503 | E. coli 1356 | E. coli 1682 | MRSA 3167 | MRSA 3506 | QRSA 3505 | QRSA 3519 |
---|
am48 | 1 | 2 | >64 | >64 | 1 | 0.5 | 2 | 2 |
am49 | 1 | 2 | >64 | >64 | 1 | 1 | 2 | 2 |
Norfloxacin | 2 | 2 | 16 | 16 | 8 | 4 | >64 | >64 |
Ofloxacin | 1 | 2 | >64 | >64 | >64 | >64 | 1 | 1 |
Table 23.
Antimicrobial activity (MIC = µg/mL) of the compounds (am50–am51).
Table 23.
Antimicrobial activity (MIC = µg/mL) of the compounds (am50–am51).
Comp. | Microbial Strains (MIC = µg/mL) |
---|
Bacterial Species | Fungal Species |
---|
S. aureus | E. coli | P. aeruginosa | E. faecalis | A. niger | A. flavus | C. neoformans | C. albicans |
---|
am50 | 16 | 32 | 16 | 16 | 32 | 32 | 16 | 16 |
am51 | 16 | 64 | 32 | 16 | 16 | 32 | 64 | 16 |
Ciprofloxacin | 2 | 2 | 2 | 2 | NT | NT | NT | NT |
Ketoconazole | NT | NT | NT | NT | 1 | 2 | 1 | 2 |
Table 24.
Results of antimicrobial screening of the synthesized compounds (am52–am53).
Table 24.
Results of antimicrobial screening of the synthesized compounds (am52–am53).
Comp. | Bacterial Species |
---|
MIC = µg/mL (MBC = µg/mL) |
---|
B. subtilis | S. aureus | M. luteus | M. smegmatis | E. faecalis |
---|
am52 | 2 (4) | 8 (16) | 2 (4) | 2 (4) | 16 (32) |
am53 | 2 (4) | 8 (16) | 2 (4) | 2 (4) | 16 (32) |
Cefalexin | <2 (2) | 8 (16) | <2 (2) | >128 (>128) | >128 (>128) |
Table 25.
Antimicrobial screening results of the compounds (am54–am55).
Table 25.
Antimicrobial screening results of the compounds (am54–am55).
Comp. | Microbial Strains |
---|
Inhibitory Zone = mm Diameter |
---|
B. subtilis | S. aureus | E. coli | P. vulgaris |
---|
am54 | 25 ± 0.23 | 20 ± 2.53 | 14 ± 1.23 | 12 ± 1.59 |
am55 | 14 ± 1.25 | 15 ± 0.94 | 15 ± 0.81 | 28 ± 1.23 |
Amoxycillin | 28 ± 1.23 | 25 ± 1.34 | 17 ± 0.99 | 31 ± 0.41 |
Table 26.
Antimicrobial activity of the compounds (am56–am57).
Table 26.
Antimicrobial activity of the compounds (am56–am57).
Comp. 10/5/1 (mg/mL) | Inhibitory Zone = mm Diameter |
---|
Microbial Species |
---|
L. monocytogenes | S. aureus | S. typhi | E. coli | C. albicans |
---|
am56 | 28/28/28 | 28/28/28 | 18/18/18 | 18/18/18 | 22/22/22 |
am57 | 22/22/20 | 24/28/28 | 20/18/16 | 18/18/16 | 18/18/16 |
Gentamicin | 18 | 19 | 18 | 22 | - |
Fluconazole | - | - | - | - | 28 |
Table 27.
Antimicrobial activity (MIC = µg/mL) of the compounds (am58–am59).
Table 27.
Antimicrobial activity (MIC = µg/mL) of the compounds (am58–am59).
Comp. | Microbial Strains (MIC = µg/mL) |
---|
Bacterial Species | Fungal +- |
---|
S. aureus | E. faecalis | E. coli | K. pneumoniae | A. niger | A. flavus | C. albicans |
---|
am58 | 1 | 1 | 62.5 | 62.5 | 4 | 2 | 4 |
am59 | 4 | 31.25 | 62.5 | 62.5 | 16 | 16 | 31.25 |
Norfloxacin | 1 | 3.1 | 10 | 0.1 | - | - | - |
Ciprofloxacin | 2 | 2 | 2 | 1 | - | - | - |
Griseofulvin | - | - | - | - | 100 | 7.5 | 500 |
Fluconazole | - | - | - | - | 8 | 8 | 16 |
Table 28.
Antimicrobial activity (MIC = µg/mL) of the compounds (am60–am61).
Table 28.
Antimicrobial activity (MIC = µg/mL) of the compounds (am60–am61).
Comp. | Microbial Strains (MIC = µg/mL) |
---|
Bacterial Species | Fungal Species |
---|
S. aureus | B. subtilis | E. coli | P. aeruginosa | A. harzianum | A. flavus | P. chrysogenum | C. albicans |
---|
am60 | 0.5 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
am61 | 4 | 4 | 2 | 2 | 8 | 8 | 8 | 2 |
Ciprofloxacin | 2 | 2 | 2 | 2 | NT | NT | NT | NT |
Ketoconazole | NT | NT | NT | NT | 2 | 2 | 2 | 2 |
Table 29.
Antimicrobial activity of the compounds (am62).
Table 29.
Antimicrobial activity of the compounds (am62).
Comp. | Inhibitory Zone = mm Diameter |
---|
Microbial Species |
---|
B. subtilis | S. aureus | P. aeruginosa | E. coli | C. albicans |
---|
am62 | - | 20 | 14 | 7 | 7 |
Imipenem | 34 | 30 | 35 | 20 | - |
Fluconazole | - | - | - | - | 28 |
Table 30.
Hypoglycemic effect of the compounds (ad1–ad3) on sucrose-loaded hyperglycemic rats.
Table 30.
Hypoglycemic effect of the compounds (ad1–ad3) on sucrose-loaded hyperglycemic rats.
Comp. | Dose (mg/dL) | % Activity | Significance |
---|
ad1 | 100 | 17.2 | p < 0.01 |
ad2 | 100 | 16.5 | p < 0.01 |
ad3 | 100 | 15.8 | p < 0.01 |
Metformin | 100 | 27.0 | p < 0.001 |
Table 31.
Antidiabetic potential of the compounds (ad4–ad6) in alloxan-induced diabetic rats.
Table 31.
Antidiabetic potential of the compounds (ad4–ad6) in alloxan-induced diabetic rats.
Comp. | Blood Glucose Level (mg/dL) | Log P | Change in Blood Glucose Level (from 1st to 6th Hour) |
---|
0 h | 1 h | 3 h | 6 h |
---|
ad4 | 312 ± 12.78 | 270 ± 10.67 | 135 ± 9.89 | 127 ± 7.76 | 3.22 | 185 |
ad5 | 303 ± 4.89 | 255 ± 7.56 | 211 ± 2.98 | 133 ± 10.56 | 2.95 | 170 |
ad6 | 302 ± 5.98 | 273 ± 7.65 | 211 ± 7.34 | 137 ± 6.34 | 2.95 | 165 |
Pioglitazone | 276 ± 4.84 | 213 ± 3.44 | 114 ± 5.49 | 89 ± 3.26 | 3.58 | 187 |
Table 32.
Hypoglycemic activity of the compounds (ad7–ad9) using a streptozotocin-induced diabetic rat model.
Table 32.
Hypoglycemic activity of the compounds (ad7–ad9) using a streptozotocin-induced diabetic rat model.
Comp. | % PGL Reduction |
---|
Control | 0.433 ± 1.17 |
ad7 | 46.13 ± 4.96 a |
ad8 | 46.03 ± 3.08 a |
ad9 | 45.96 ± 4.51 a |
Table 33.
Hypoglycemic effect of the compound ad10 depicted by docking score.
Table 33.
Hypoglycemic effect of the compound ad10 depicted by docking score.
Comp. | Mol-Dock Score | Re-Rank Score | H-Bond Score |
---|
ad10 | −141.292 | −87.586 | −7.001 |
Epalrestat | −113.889 | −70.997 | −1.481 |
Table 34.
Antidiabetic potential of the compounds (ad11–ad13) using molecular docking studies.
Table 34.
Antidiabetic potential of the compounds (ad11–ad13) using molecular docking studies.
Comp. | Docking Score (kcal/mol) | Interacting Residues |
---|
ad11 | −10.49 | His 323, His 449, Ser 289, Tyr 473 |
ad12 | −10.12 | His 323, His 449, Ser 289, Tyr 473 |
ad13 | −10.04 | His 323, His 449, Ser 289, Tyr 327 |
Rosiglitazone | −9.48 | His 323, His 449, Cys 285, Tyr 473 |
Table 35.
Aldose reductase inhibitory activity of the compound ad14.
Table 35.
Aldose reductase inhibitory activity of the compound ad14.
Comp. | % Inhibition | IC50(M) |
---|
10−4M | 10−5M | 10−6M |
---|
ad14 | 91.11 ± 3.59 | 49.91 ± 2.49 | 14.06 ± 1.88 | 3.446 × 10−5 ± 0.30 × 10−5 |
Table 36.
Antidiabetic potential of the compounds (ad15–ad16) using a sucrose-loaded model in rats.
Table 36.
Antidiabetic potential of the compounds (ad15–ad16) using a sucrose-loaded model in rats.
Comp. | Blood Glucose Level (mg/dL) | % Reduction in Blood Glucose Level |
---|
0 min | 30 min | 60 min | 90 min | 120 min |
---|
ad15 | 147 | 110 | 112 | 107 | 104 | −22.84 |
ad16 | 141 | 112 | 117 | 118 | 112 | −21.71 |
Pioglitazone | 139 | 105 | 110 | 112 | 115 | −23.07 |
Table 37.
Antidiabetic potential of the compounds (ad17–ad18) based on molecular docking studies.
Table 37.
Antidiabetic potential of the compounds (ad17–ad18) based on molecular docking studies.
Comp. | G Score | D Score | PMF Score | Chem Score | Interacting Residues |
---|
ad17 | −273.19 | −149.75 | −81.45 | −40.54 | Tyr 327, His 449 |
ad18 | −249.42 | −162.88 | −81.45 | −40.54 | Ser 289 |
Tesaglitazar | −279.20 | −157.61 | −67.78 | −34.20 | Ser 289, His 323, Tyr 473, Ser 342 |
Table 38.
Hypoglycemic activity of the compounds (ad19–ad20) in streptozotocin-induced diabetic rats.
Table 38.
Hypoglycemic activity of the compounds (ad19–ad20) in streptozotocin-induced diabetic rats.
Comp. | % PPAR-γ Transactivation | Blood Glucose Level after 15 Days (mg/dL) |
---|
ad19 | 64.67 | 134.0 ± 5.09 |
ad20 | 63.78 | 139.6 ± 6.40 |
Pioglitazone | 71.94 | 132.0 ± 5.20 |
Rosiglitazone | 85.27 | 144.2 ± 6.12 |
Table 39.
Hypoglycemic activity of the compounds (ad21–ad22) using a streptozotocin-induced diabetic model in rats.
Table 39.
Hypoglycemic activity of the compounds (ad21–ad22) using a streptozotocin-induced diabetic model in rats.
Comp. | Dose (mg/kg Body wt.) | % Reduction, Plasma Glucose (mg/dL) (mean ± SEM) |
---|
ad21 | 10/30/50 | 39.83 ± 0.29/44.62 ± 0.32/52.81 ± 0.32 |
ad22 | 10/30/50 | 36.76 ± 0.66/43.14 ± 0.35/49.99 ± 0.62 |
Rosiglitazone | 10/30/50 | 38.57 ± 0.25/14.83 ± 0.18/12.74 ± 0.16 |
Table 40.
PTP1B inhibition activity of the compounds (ad23–ad24).
Table 40.
PTP1B inhibition activity of the compounds (ad23–ad24).
Comp. | IC50(µM) |
---|
ad23 | 4.6 |
ad24 | 4.9 |
Ursolic acid | 4.0 |
Table 41.
Antidiabetic potential of the compounds (ad25–ad27) in alloxan-induced diabetes in rats.
Table 41.
Antidiabetic potential of the compounds (ad25–ad27) in alloxan-induced diabetes in rats.
Comp. | Blood Glucose Level (mg/dL) |
0 h | 3 h | 6 h |
ad25 | 343 ± 5.797 | 313.8 ± 9.411 ** | 303.2 ± 9.827 *** |
ad26 | 353.7 ± 6.026 | 315.8 ± 8.109 * | 311.2 ± 9.297 ** |
ad27 | 341.5 ± 6.158 | 320.5 ± 6.737 | 313.3 ± 9.500 ** |
Metformin | 343.3 ± 6.206 | 322.8 ± 4.989 ** | 292.0 ± 7.767 *** |
Table 42.
Antidiabetic potential of the compounds (ad28–ad30) in alloxan-induced diabetes in rats.
Table 42.
Antidiabetic potential of the compounds (ad28–ad30) in alloxan-induced diabetes in rats.
Comp. | Mean ± SEM Blood Glucose Level (mg/dL) |
---|
0 h | 1 h | 2 h | 4 h | 6 h | 8 h |
---|
ad28 | 305.3 ± 5.46 * | 290.3 ± 7.32 | 200.3 ± 9.29 | 145.33 ± 1.76 | 102.0 ± 5.78 * | 90.58 ± 4.73 |
ad29 | 306.0 ± 2.08 | 280.3 ± 3.85 ** | 208.3 ± 3.39 | 155.6 ± 3.48 ** | 110.3 ± 6.02 | 94.7 ± 4.41 |
ad30 | 316.0 ± 6.51 ** | 297.3 ± 6.37 * | 195.3 ± 6.02 | 142.0 ± 8.67 | 105.3 ± 6.02 ** | 95.0 ± 2.89 |
Glibenclamide | 383.8 ± 14.28 | 222.8 ± 8.05 ** | 180.3 ± 6.92 | 120.42 ± 9.86 * | 93.6 ± 4.95 | 85.42 ± 2.53 |
Table 43.
Antidiabetic potential of compound ad31 using PTP1B inhibitory studies.
Table 43.
Antidiabetic potential of compound ad31 using PTP1B inhibitory studies.
Comp. | IC50 (µM) |
---|
ad31 | 9.96 |
Suramin | 9.76 |
Table 44.
Antidiabetic potential of the compounds (ad32–ad33) based on PTP1B inhibitory studies.
Table 44.
Antidiabetic potential of the compounds (ad32–ad33) based on PTP1B inhibitory studies.
Comp. | IC50 (µM) |
---|
40a | 6.89 |
40b | 8.53 |
Suramin | 9.76 |
Table 45.
Antidiabetic potential of the compounds (ad34–ad35) in alloxan-induced diabetes in rats.
Table 45.
Antidiabetic potential of the compounds (ad34–ad35) in alloxan-induced diabetes in rats.
Comp. | % Decrease in Plasma Glucose Level (PG) at Various Drug Doses (mg/kg Bodyweight) |
---|
10 mg | 30 mg | 100 mg |
---|
ad34 | 42.48 ± 3.25 | 62.24 ± 3.42 | 70.35 ± 3.14 |
ad35 | 45.42 ± 1.25 | 58.36 ± 2.36 | 68.42 ± 2.16 |
Pioglitazone | 47.25 ± 5.50 | 64.59 ± 5.42 | 75.43 ± 3.40 |
Table 46.
Antidiabetic potential of the compounds (ad36–ad39) in streptozotocin-induced diabetes in rats.
Table 46.
Antidiabetic potential of the compounds (ad36–ad39) in streptozotocin-induced diabetes in rats.
Comp. (mg/kg Body wt.) | Blood Glucose Level (mg/dL) |
---|
0-Day | 3-Day | 7-Day | 10-Day |
---|
ad36 | 87 ± 4.31 | 429 ± 7.77 | 246.66 ± 13.78 | 112 ± 10.13 |
ad37 | 80 ± 4.31 | 416 ± 7.77 | 240.66 ± 13.78 | 117 ± 10.13 |
ad38 | 85 ± 5.22 | 425 ± 9.34 | 233.52 ± 19.15 | 119 ± 18.54 |
ad39 | 82 ± 5.22 | 418 ± 9.34 | 232.52 ± 19.15 | 120 ± 18.54 |
Glibenclamide | 89 ± 5.34 | 411 ± 13.11 | 227.45 ± 10.38 | 109 ± 13.16 |
Table 47.
Antidiabetic potential of the compounds (ad40–ad41) using the alloxan-induced model in rats.
Table 47.
Antidiabetic potential of the compounds (ad40–ad41) using the alloxan-induced model in rats.
Comp. | Mean ± SEM Blood Glucose Level (mg/dL) | % Reduction in Blood Glucose Level after 14 Days |
---|
0 h | 3 h | 6 h | 24 h | 14 days |
---|
ad40 | 355 ± 24.59 | 322.8 ± 24.10 | 253.8 ± 23.45 | 231.4 ± 23.48 | 123 ± 18.7 | 65.35 |
ad41 | 376.4 ± 21.00 | 342.8 ± 21.58 | 315.2 ± 21.66 | 276 ± 21.79 | 146.4 ± 20.5 | 61.10 |
Metformin | 441.8 ± 18.71 | 399.4 ± 17.72 | 289.4 ± 18.46 | 219.6 ± 18.40 | 112.8 ± 16.84 | 73.83 |
Pioglitazone | 402.2 ± 28.7 | 363.4 ± 26.08 | 302.4 ± 26.87 | 232.2 ± 20.53 | 123.8 ± 16.94 | 69.22 |
Table 48.
Antidiabetic potential of the compounds (ad42–ad43) in alloxan-induced diabetes in rats.
Table 48.
Antidiabetic potential of the compounds (ad42–ad43) in alloxan-induced diabetes in rats.
Comp. (mg/kg Body wt.) | Blood Glucose Level (mg/dL) |
---|
0-Day | 3-Day | 5-Day | 7-Day |
---|
ad42 | 186.17 ± 1.16 | 198.23 ± 0.77 | 162.47 ± 1.22 | 109.45 ± 2.13 |
ad43 | 188.68 ± 1.23 | 195.35 ± 1.16 | 175.65 ± 0.86 | 118.63 ± 0.89 |
Rosiglitazone | 188.45 ± 1.99 | 156.88 ± 0.82 | 125.77 ± 1.45 | 104.10 ± 1.72 |
Table 49.
Antidiabetic potential of the compounds (ad44–ad46) based on α-amylase and α-glucosidase inhibitory studies.
Table 49.
Antidiabetic potential of the compounds (ad44–ad46) based on α-amylase and α-glucosidase inhibitory studies.
Comp. | C log P (Lipophilicity) | MR (Molar Refractivity) | % Inhibition (250 µg/mL) |
---|
α-Amylase | α-Glucosidase |
---|
ad44 | 6.45 | 123 | 37.04 | 36 |
ad45 | 5.63 | 116.9 | 36.18 | 35.2 |
ad46 | 6.49 | 125.34 | 33.05 | 32.2 |
Acarbose | −6.6 | 141 | 43.05 | 40.91 |
Table 50.
Antidiabetic potential of the compounds (ad47–ad49) using an alloxan-induced model in rats.
Table 50.
Antidiabetic potential of the compounds (ad47–ad49) using an alloxan-induced model in rats.
Comp. | Mean ± SEM Blood Glucose Level (mg/dL) |
---|
0 h | 2 h | 4 h | 6 h | 12 h | 15th Day |
---|
ad47 | 259.33 ± 25.65 | 234.61 ± 17.45 | 209.33 ± 5.84 | 183.00 ± 3.21 | 161.65 ± 2.72 | 158.64 ± 2.90 |
ad48 | 256.69 ± 16.19 | 224.00 ± 7.63 | 198.33 ± 1.76 | 177.64 ± 2.02 | 159.00 ± 2.08 | 159.00 ± 1.15 |
ad49 | 253.00 ± 8.71 | 230.64 ± 4.33 | 207.65 ± 2.33 | 175.61 ± 3.93 | 162.34 ± 2.90 | 159.00 ± 0.57 |
Pioglitazone | 310.64 ± 8.09 | 165.00 ± 3.60 | 145.67 ± 4.09 | 137.00 ± 2.64 | 119.33 ± 2.96 | 104.33 ± 2.33 |
Table 51.
Antidiabetic potential of the compounds (ad50–ad51) according to α-amylase inhibitory activity.
Table 51.
Antidiabetic potential of the compounds (ad50–ad51) according to α-amylase inhibitory activity.
Comp. | % Inhibition | IC50 (µg/mL) |
---|
25 µg/mL | 50 µg/mL | 75 µg/mL | 100 µg/mL |
---|
ad50 | 32.59 | 51.78 | 66.98 | 81.30 | 22.35 |
ad51 | 27.77 | 53.23 | 62.27 | 79.43 | 27.63 |
Acarbose | 37.35 | 53.45 | 73.25 | 88.57 | 21.44 |
Table 52.
Antidiabetic potential of the compounds (ad52–ad54).
Table 52.
Antidiabetic potential of the compounds (ad52–ad54).
Comp. | Mean ± S.E.M Blood Glucose Level (mg/dL) |
---|
ad52 | 82.81 ± 1.115 |
ad53 | 86.31 ± 0.993 |
ad54 | 87.21 ± 1.233 |
Rosiglitazone | 65.58 ± 1.013 |
Table 53.
Antidiabetic potential of the compounds (ad55–ad56) using a sucrose-loaded model in rats.
Table 53.
Antidiabetic potential of the compounds (ad55–ad56) using a sucrose-loaded model in rats.
Comp. | Blood Glucose Level (mg/dL) |
---|
0 h | 1 h | 2 h | 4 h |
---|
ad55 | 96.5 ± 3.86 | 98.5 ± 5.01 *** | 82.5 ± 2.87 *** | 86.2 ± 4.25 *** |
ad56 | 91.6 ± 2.17 | 91.5 ± 3.58 *** | 86.2 ± 4.21 *** | 80.6 ± 3.25 *** |
Pioglitazone | 98.5 ± 4.35 | 119 ± 3.57 *** | 95.5 ± 5.12 *** | 107.5 ± 3.62 *** |
Table 54.
In vitro antioxidant activity of the synthesized compounds (ao1–ao2) using the DPPH scavenging method.
Table 54.
In vitro antioxidant activity of the synthesized compounds (ao1–ao2) using the DPPH scavenging method.
Comp. | IC50 = µg/mL |
---|
ao1 | 09.18 |
ao2 | 12.67 |
Ascorbic Acid | 40.00 |
Table 55.
Antioxidant activity of the compounds (ao3–ao4).
Table 55.
Antioxidant activity of the compounds (ao3–ao4).
Comp. | % Inhibition | IC50 = µg/mL |
---|
25 µg/mL | 50 µg/mL | 75 µg/mL | 100 µg/mL |
---|
ao3 | 36.83 | 45.41 | 71.51 | 87.34 | 27.66 |
ao4 | 35.89 | 42.67 | 70.25 | 85.44 | 29.04 |
Ascorbic Acid | 38.99 | 55.78 | 72.51 | 93.15 | 21.64 |
Table 56.
In vitro antioxidant activity of the synthesized compounds (ao5–ao6) using the DPPH scavenging method.
Table 56.
In vitro antioxidant activity of the synthesized compounds (ao5–ao6) using the DPPH scavenging method.
Comp. | % Radical Scavenging Activity | IC50 = µg/mL |
---|
25 µg/mL | 50 µg/mL | 75 µg/mL | 100 µg/mL |
---|
ao5 | 53.35 | 58.15 | 62.52 | 65.98 | 3.38 |
ao6 | 53.34 | 56.91 | 61.60 | 65.68 | 6.29 |
Ascorbic Acid | 53.65 | 58.03 | 62.32 | 66.29 | 2.84 |
Table 57.
Antioxidant screening results of the synthesized compounds (ao7–ao8) by applying the DPPH scavenging method.
Table 57.
Antioxidant screening results of the synthesized compounds (ao7–ao8) by applying the DPPH scavenging method.
Comp. | Mean abs ± SEM | % Inhibition |
---|
ao7 | 0.5616 ± 0.0005 | 66.80 |
ao8 | 0.5140 ± 0.0014 | 65.50 |
Ascorbic Acid | 0.5260 ± 0.05 | 68.50 |
Table 58.
Antioxidant screening results of the synthesized compounds (ao9-ao10) by applying the DPPH and ABTS+ scavenging methods.
Table 58.
Antioxidant screening results of the synthesized compounds (ao9-ao10) by applying the DPPH and ABTS+ scavenging methods.
Comp. | % Radical Scavenging |
---|
DPPH | ABTS |
---|
ao9 | 92.55 | 70.66 |
ao10 | 89.61 | 58.27 |
BHT | 63.50 | - |
Trolox | 73.62 | 54.35 |
Ascorbic Acid | 77.20 | - |
Table 59.
In vitro antioxidant activity of the synthesized compounds (ao11–ao12) using the DPPH scavenging method.
Table 59.
In vitro antioxidant activity of the synthesized compounds (ao11–ao12) using the DPPH scavenging method.
Comp. | % Radical Scavenging Activity | IC50 µg/mL |
---|
10 µg/mL | 50 µg/mL | 100 µg/mL | 250 µg/mL | 500 µg/mL |
---|
ao11 | 8.73 | 35.39 | 46.59 | 57.34 | 62.65 | 75.00 |
ao12 | 10.56 | 45.76 | 59.58 | 65.45 | 71.98 | 80.00 |
Ascorbic Acid | 35.84 | 41.35 | 58.83 | 69.28 | 84.67 | 26.00 |
Table 60.
Antioxidant activity of the synthesized compounds (ao13-ao14).
Table 60.
Antioxidant activity of the synthesized compounds (ao13-ao14).
Comp. | EC50 (µg/mL) |
---|
DPPH Radical Scavenging Activity | Superoxide Anion Scavenging Activity | Lipid Peroxidation Inhibition | Erythrocyte Hemolysis Inhibition |
---|
ao13 | 58.68 | 79.94 | 131.79 | 96.62 |
ao14 | 52.18 | 101.18 | 149.70 | 107.28 |
Luteolin | 44.18 | 31.01 | 149.70 | 107.28 |
Ascorbic Acid | 40.28 | 21.01 | 139.97 | 96.63 |
Table 61.
In vitro antioxidant activity of the synthesized compounds (ao15–ao16) using the DPPH scavenging method.
Table 61.
In vitro antioxidant activity of the synthesized compounds (ao15–ao16) using the DPPH scavenging method.
Comp. | % Inhibition |
---|
10 µg/mL | 20 µg/mL | 30 µg/mL | 40 µg/mL | 50 µg/mL |
---|
ao15 | 39.6 | 44.4 | 48.9 | 58.1 | 66.8 |
ao16 | 39.2 | 43.9 | 48.9 | 55.5 | 65.5 |
Ascorbic Acid | 49.3 | 53.2 | 57.9 | 65.8 | 70.2 |
Table 62.
In vitro antioxidant activity of the synthesized compounds (ao17–ao18).
Table 62.
In vitro antioxidant activity of the synthesized compounds (ao17–ao18).
Comp. | IC50 (µM) |
---|
ao17 | 940 |
ao18 | 998 |
Ascorbic acid | 971 |
Table 63.
In vitro antioxidant activity of the synthesized compounds (ao19–ao20).
Table 63.
In vitro antioxidant activity of the synthesized compounds (ao19–ao20).
Comp. | IC50 (µg/mL) |
---|
ao19 | 12.78 |
ao20 | 16.44 |
Ascorbic acid | 23.15 |
Table 64.
In vitro antioxidant activity of the synthesized compounds (ao21–ao22).
Table 64.
In vitro antioxidant activity of the synthesized compounds (ao21–ao22).
Comp. | IC50 (µg/mL) |
---|
ao19 | 10.78 |
ao20 | 11.16 |
Ascorbic acid | 23.15 |
Table 65.
Patent grant information of the thiazolidinedione analogues.
Table 65.
Patent grant information of the thiazolidinedione analogues.
S. No. | Patent No. | Title | Procedure/Activity | Reference |
---|
1 | WO/2019/016826 | Novel 5-[4-(2-biphenyl-4-yl-2-oxo-ethoxy)-benzylidene]-thiazolidine-2,4-diones, their synthesis, and uses thereof. | Antidiabetic activity | [93] |
2 | WO/2002/026735 | Sodium salts of 5-’4-’2-(n-methyl-n-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione. | Synthetic procedure | [94] |
3 | WO/2006/010345 | Salt of oxalic acid with 5-[4-[2-(n-methyl-n-(2-pyridyl)-amino)ethoxy]benzyl]thiazolidin -2,4-dione and a method of its preparation and its use. | Antidiabetic activity | [95] |
4 | US 6,784,184 B2 | 5-(arylsulfonyl)-,5-(arylsulfinyl) and 5-(arylsulfanyl)-thiazolidine-2,4-diones useful for the inhibition of farnesyl-protein transferase. | Anticancer activity | [96] |
5 | WO/2003/053962 | 5-(4-(2-(n-methyl-n-(2-pyridyl)amino)ethoxy)benzyl)thiazolidine-2, 4-dione malic acid salt and its use against diabetes mellitus. | Antidiabetic activity | [97] |
6 | US 2020/0093812 A1 | 5-[[4-[2-[5-(1-Hydroxyethyl)pyridin-2-yl] ethoxy]phenyl]methyl]-1,3-thiazolidine-2,4-dione for treating nonalcoholic fatty liver disease. | Treatment of non-alcoholic fatty liver disease | [98] |
7 | EP0508740A1 | Thiazolidinedione derivatives, their production, and their use. | Hypoglycemic and hypolipidemic activity | [99] |
8 | WO03053367A2 | Hydrogenation of precursors to thiazolidinedione antihyperglycemics. | Anti-hyperglycemic activity | [100] |
9 | CN101531657A | Dimethyldiguanide of the thiazolidinedione pharmaceutical, preparation method and use thereof. | Anti-diabetic activity | [101] |
10 | CN104230915A | Thiazolidinedione-containing phenylpiperazine derivatives, as well as the preparation method and applications of thiazolidinedione-containing phenylpiperazine derivatives. | Anti-cancer activity | [102] |
11 | WO2010077101A2 | Novel thiazolidinedione derivative and use thereof. | Treatment of CVS, renal disease, and GIT disease | [103] |
12 | JP2002322177A | Thiazolidinedione derivative. | Anticancer activity | [104] |
13 | WO2007109037A2 | Thiazolidinedione analogues. | Antihypertensive activity | [105] |
14 | WO2017021634A1 | Association between 3-[(3-{[4-(4-morpholinylmethyl)-1H-pyrrol-2-yl] methylene}-2-oxo-2,3-dihydro-1h-indol-5-yl)methyl]-1,3-thiazolidine-2,4-dione and a tyrosine kinase inhibitor of the EGFR. | Anticancer activity | [106] |