Analytical and Chemometric Characterization of Fino and Amontillado Sherries during Aging in Criaderas y Solera System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Reagents
2.3. Oenological Control Parameters
2.4. Organic Acids
2.5. Acetaldehyde, Acetal, Acetoin, Methanol, Esters and Higher Alcohols
2.6. Folin-Ciocalteau Index
2.7. Phenolic Compounds and Furfurals
2.8. Color Measurements
2.9. Tasting Sessions
2.10. Statistical Analysis
3. Results and Discussion
3.1. Oenological Control Parameters of Sobretabla, Fino and Amontillado Sherry Wines
3.1.1. Alcoholic Strength
3.1.2. pH, Total Acidity and Volatile Acidity
3.1.3. Total Sulfur Dioxide
3.1.4. Sulfates and Phosphates
3.1.5. Potassium and Calcium
3.1.6. Glycerol
3.1.7. Density, Total Dry Extract, Reducing Substances, Sugar-Free Extract
3.2. Organic Acids Present in Sobretabla, Fino and Amontillado Sherry Wines
3.3. Acetaldehyde, Acetal, Acetoin, Methanol, Esters and Higher Alcohols in Sobretabla, Fino and Amontillado Sherry Wines
3.4. Phenolic Composition and Folin-Ciocalteau Index of Sobretabla, Fino and Amontillado Sherry Wines
3.5. Evolution of Color during Aging of Sobretabla, Fino and Amontillado Sherry Wines
3.6. Hierarchical Cluster Analysis of Fino and Amontillado Sherry Wines
3.7. Factor Analysis with Factor Extraction Using Principal Component
3.8. Multiple Linear Regression Analysis for Predicting the Age of Wines
3.8.1. Determination of the Average Age of Fino Wines during the Aging Process
3.8.2. Determination of the Average Age of Amontillado Wines during the Aging Process
3.9. Tasting Sessions of Fino and Amontillado Sherry Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- López-Toledano, A.; Mayen, M.; Mérida, J.; Medina, M. Compuestos fenolicos y color en tres tipos de vinos generosos sometidos a diferentes procesos de envejecimiento. Inf. Tecnol. 2001, 12, 71–76. [Google Scholar]
- Zea, L.; Moyano, L.; Moreno, J.; Cortes, B.; Medina, M. Discrimination of the aroma fraction of Sherry wines obtained by oxidative and biological aging. Food Chem. 2001, 75, 79–84. [Google Scholar] [CrossRef]
- Moyano, L.; Zea, L.; Moreno, J.A.; Medina, M. Evaluation of the active odorants in Amontillado sherry wines during the aging process. J. Agric. Food Chem. 2010, 58, 6900–6904. [Google Scholar] [CrossRef]
- European Parliament; Council of European Union. Regulation (EC) 2019/787 of 17 April 2019, on the definition, description, presentation and labelling of spirit drinks, the use of the names of spirit drinks in the presentation and labelling of ther foodstuffs, the protection of geographical indications for spirit drinks, the use of ethyl alcohol and distillates of agricultural origin in alcoholic beverages, and repealing Regulation (EC) 110/2008. Off. J. Eur. Union 2019, L130, 17–27. [Google Scholar]
- Aging. Available online: https://www.sherry.wine/sherry-wine/production/aging (accessed on 14 December 2021).
- Sherry Academy. Available online: https://www.sherry.wine/professionals/sherry-academy (accessed on 14 December 2021).
- Mangas, J.; Rodríguez, R.; Moreno, J.; Blanco, D. Volatiles in Distillates of Cider Aged in American Oak Wood. J. Agric. Food Chem. 1996, 44, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Conner, J.M.; Paterson, A.; Piggott, J.R. Analysis of lignin from oak casks used for the maturation of Scotch whisky. J. Sci. Food Agric. 1992, 60, 349–353. [Google Scholar] [CrossRef]
- Pérez-Coello, M.S.; González-Viñas, M.A.; García-Romero, E.; Cabezudo, M.D.; Sanz, J. Chemical and sensory changes in white wines fermented in the presence of oak chips. Int. J. Food Sci. Technol. 2000, 35, 23–32. [Google Scholar] [CrossRef]
- Canas, S. Phenolic Composition and Related Properties of Aged Wine Spirits: Influence of Barrel Characteristics. A Review. Beverages 2017, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Chanivet, M.; Valcárcel-Muñoz, M.J.; García-Moreno, M.V.; Guillén-Sánchez, D.A. Characterization of the Aromatic and Phenolic Profile of Five Different Wood Chips Used for Aging Spirits and Wines. Foods 2020, 9, 1613. [Google Scholar] [CrossRef]
- Cernîsev, S. Analysis of lignin-derived phenolic compounds and their transformations in aged wine distillates. Food Control 2017, 73, 281–290. [Google Scholar] [CrossRef]
- Guillén, D.A.; Palma, M.; Natera, R.; Romero, R.; Barroso, C.G. Determination of the age of Sherry wines by regression techniques using routine parameters and phenolic and volatile compounds. J. Agric. Food Chem. 2005, 53, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Guillén, M.M.; Schwarz-Rodríguez, M.; Rodríguez-Dodero, M.C.; García-Moreno, M.V.; Guillén-Sánchez, D.A.; García-Barroso, C. Discriminant ability of phenolic compounds and short chain organic acids profiles in the determination of quality parameters of Brandy de Jerez. Food Chem. 2019, 286, 275–281. [Google Scholar] [CrossRef] [PubMed]
- García Moreno, M.V.; García Barroso, C. Comparison of the evolution of low molecular weight phenolic compounds in typical Sherry wines: Fino, Amontillado, and Oloroso. J. Agric. Food Chem. 2002, 50, 7556–7563. [Google Scholar] [CrossRef] [PubMed]
- International Organization of Vine and Wine. Method OIV-MA-F1-03. Determination of the acquired alcoholic strength by volume (ASV) of concentrated musts (CM) and grape sugar (or rectified concentrated musts, RCM). In Compendium of International Methods of Analysis; OIV: Paris, France, 2011; pp. 1–6. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- International Organization of Vine and Wine. Method OIV-MA-AS313-01. Total Acidity. In Compendium of International Methods of Analysis; OIV: Paris, France, 2015; pp. 1–3. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- International Organization of Vine and Wine. Method OIV-MA-AS313-02. Volatile Acidity. In Compendium of International Methods of Analysis; OIV: Paris, France, 2015; pp. 1–5. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- International Organization of Vine and Wine. Method OIV-MA-AS312-05. Glycerol. In Compendium of International Methods of Analysis; OIV: Paris, France, 2009; pp. 1–3. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- International Organization of Vine and Wine. Method OIV-MA-AS323-04B. Sulfur dioxide. In Compendium of International Methods of Analysis; OIV: Paris, France, 2009; pp. 1–3. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- International Organization of Vine and Wine. Method OIV-MA-AS321-05A. Sulfates. In Compendium of International Methods of Analysis; OIV: Paris, France, 2009; pp. 1–2. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- International Organization of Vine and Wine. Method OIV-MA-AS321-04. Total Phosphorus. In Compendium of International Methods of Analysis; OIV: Paris, France, 2009; pp. 1–2. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- International Organization of Vine and Wine. Method OIV-MA-AS2-03A. Total Dry Matter. In Compendium of International Methods of Analysis; OIV: Paris, France, 2009; pp. 1–5. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- International Organization of Vine and Wine. Method OIV-MA-AS311-01A. Reducing substances. In Compendium of International Methods of Analysis; OIV: Paris, France, 2009; pp. 1–5. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- Valcárcel-Muñoz, M.J.; Guerrero-Chanivet, M.; García-Moreno, M.V.; Rodríguez-Dodero, M.C.; Guillén-Sánchez, D.A. Comparative Evaluation of Brandy de Jerez Aged in American Oak Barrels with Different Times of Use. Foods 2021, 10, 288. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. Method OIV-MA-AS2-10. Folin-Ciocalteau Index. In Compendium of International Methods of Analysis; OIV: Paris, France, 2009; pp. 1–2. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- Schwarz, M.; Rodríguez, M.C.; Guillén, D.A.; Barroso, C.G. Development and validation of UPLC for the determination of phenolic compounds and furanic derivatives in Brandy de Jerez. J. Sep. Sci. 2009, 32, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- International Organization of Vine and Wine. Method OIV-MA-AS2-07B. Chromatic Characteristics. In Compendium of International Methods of Analysis; OIV: Paris, France, 2009; pp. 1–10. Available online: https://www.oiv.int/public/medias/7907/oiv-vol1-compendium-of-international-methods-of-analysis.pdf (accessed on 31 December 2021).
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization (ISO): Geneva, Switzerland, 2007. Available online: https://www.iso.org/standard/36385.html (accessed on 31 December 2021).
- ISO 3591:1977; Sensory Analysis—Apparatus—Wine-Tasting Glass. International Organization for Standardization (ISO): Geneva, Switzerland, 1977. Available online: https://www.iso.org/standard/9002.html (accessed on 31 December 2021).
- ISO 4121:2003; Sensory Analysis—Guidelines for the Use of Quantitative Response Scales. International Organization for Standardization (ISO): Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/33817.html (accessed on 31 December 2021).
- Zara, G.; Angelozzi, D.; Belviso, S.; Bardi, L.; Goffrini, P.; Lodi, T.; Budroni, M.; Mannazzu, I. Oxygen is required to restore flor strain viability and lipid biosynthesis under fermentative conditions. FEMS Yeast Res. 2009, 9, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Carrascal García, V. Estudio de los Ácidos Orgánicos en Brandy de Jerez y su Relación con las Prácticas Tradicionales de Elaboración; Universidad de Cádiz: Cádiz, Spain, 2004. [Google Scholar]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Moreno-Arribas, M.V.; Carmen-Polo, M. Occurrence of lactic acid bacteria and biogenic amines in biologically aged wines. Food Microbiol. 2008, 25, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Roldán, A.; Lasanta, C.; Caro, I.; Palacios, V. Effect of lysozyme on “flor” velum yeasts in the biological aging of sherry wines. Food Microbiol. 2012, 30, 245–252. [Google Scholar] [CrossRef]
- Cordero-Bueso, G.; Ruiz-Muñoz, M.; González-Moreno, M.; Chirino, S.; Bernal-Grande, M.C.; Cantoral, J.M. The microbial diversity of Sherry wines. Fermentation 2018, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Lasanta, C.; Gómez, J. Tartrate stabilization of wines. Trends Food Sci. Technol. 2012, 28, 52–59. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. Treatment with calcium sulphate (plastering) (3/85). In International Code of Oenological Practices; OIV: Paris, France, 2015; pp. 1–2. Available online: https://www.oiv.int/public/medias/7713/en-oiv-code-2021.pdf (accessed on 31 December 2021).
- García-Ruiz, J.M.; Alcántara, R.; Martín, J. Effects of Reutilized Potassium Bitartrate Seeds on the Stabilization of Dry Sherry Wine. Am. J. Enol. Vitic. 1995, 46, 525–528. [Google Scholar]
- Martínez, E.; Caro, I.; Bonat, M.; Pérez, L.; Domecq, B. Dry extract in sherry and its evolution in the aging process. Am. J. Enol. Vitic. 1987, 38, 321–325. [Google Scholar]
- Le Floch, A.; Jourdes, M.; Teissedre, P.-L. Polysaccharides and lignin from oak wood used in cooperage: Composition, interest, assays: A review. Carbohydr. Res. 2015, 417, 94–102. [Google Scholar] [CrossRef]
- Sarni, F.; Moutounet, M.; Puech, J.L.; Rabier, P. Effect of heat treatment of oak wood extractable compounds. Holzforschung 1990, 44, 461–466. [Google Scholar] [CrossRef]
- Martínez-Montero, C.; Rodríguez-Dodero, M.C.; Guillén-Sánchez, D.A.; García-Barroso, C. Sugar contents of Brandy de Jerez during its aging. J. Agric. Food Chem. 2005, 53, 1058–1064. [Google Scholar] [CrossRef]
- Alexandre, H. Flor yeasts of Saccharomyces cerevisiae—Their ecology, genetics and metabolism. Int. J. Food Microbiol. 2013, 167, 269–275. [Google Scholar] [CrossRef]
- Moreno, J.A.; Zea, L.; Moyano, L.; Medina, M. Aroma compounds as markers of the changes in sherry wines subjected to biological aging. Food Control 2005, 16, 333–338. [Google Scholar] [CrossRef]
- Martínez, P.; Valcárcel, M.J.; Pérez, L.; Benítez, T. Metabolism of Saccharomyces cerevisiae flor yeasts during fermentation and biological aging of Fino sherry: By-products and aroma compounds. Am. J. Enol. Vitic. 1998, 49, 240–250. [Google Scholar]
- Valcárcel-Muñoz, M.J. Estudio de la Composición del “Velo de Flor” en un Soleraje de Fino; Comunicación interna Bodegas Fundador, S.L.U.; Bodegas Fundador: Jerez de la Frontera, Spain, 2020. [Google Scholar]
- Zara, S.; Gross, M.K.; Zara, G.; Budroni, M.; Bakalinsky, A.T. Ethanol-independent biofilm formation by a flor wine yeast strain of saccharomyces cerevisiae. Appl. Environ. Microbiol. 2010, 76, 4089–4091. [Google Scholar] [CrossRef] [Green Version]
- Fabios, M.; Lopez-Toledano, A.; Mayen, M.; Merida, J.; Medina, M. Phenolic compounds and browning in sherry wines subjected to oxidative and biological aging. J. Agric. Food Chem. 2000, 48, 2155–2159. [Google Scholar] [CrossRef] [PubMed]
- Merida, J.; Lopez-Toledano, A.; Marquez, T.; Millan, C.; Ortega, J.M.; Medina, M. Retention of browning compounds by yeasts involved in the winemaking of sherry type wines. Biotechnol. Lett. 2005, 27, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
Descriptor | Definition | Pattern |
---|---|---|
Odour | ||
Aromatic intensity | Intensity of all the positive aromatic notes of the wine. | Amontillado wine with 50 years old of average aging. |
Yeast | Aromas of fresh bread dough, characteristic of organic aging. | Fino wine with 5 years old of medium aging, extracted from casks with an intense white flor yeast development and clear hints of pungency (acetaldehyde and almond). |
Nuts | Nut aromas, mainly almond in Fino wines and hazelnut and other nuts in Amontillado wines. | The aromatic intensity pattern for Amontillado and the yeast pattern for Fino wines. |
Oak | Characteristic aromas of oak, with hints of dried fruits and vanilla. | Amontillado wine with 50 years old of average aging. |
Flavor | ||
Dryness | Dry sensation of the wine, without astringency on the palate. | Amontillado wine with 20 years old of average aging. |
Equilibrium | Overall positive evaluation of the sensations in the mouth, with a good integration of the acidity, without astringency or harshness, but with the aromatic reminder of the oak, as appropriate for an oak-aged wine. | The aromatic intensity pattern for Amontillados and the yeast pattern for Fino wines. |
Persistence | Time evaluation of the positive olfactory-gustatory notes remaining after the final sip. | The aromatic intensity pattern for Amontillado and the yeast pattern for Fino wines. |
Vintage | Sobretabla | 3rd Cra F | 2nd Cra F | 1st Cra F | Solera F | 5th Cra A | 4th Cra A | 3rd Cra A | 2nd Cra A | 1st Cra A | Solera A | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alcoholic strength | 15.63 ± 0.15 a | 15.10 ± 0.26 b,c | 15.17 ± 0.15 a | 15.27 ± 0.15 a | 15.10 ± 0.20 a | 14.97 ± 0.15 a | 17.10 ± 0.20 d | 17.63 ± 0.21 e | 18.43 ± 0.06 a | 19.17 ± 0.06 g | 19.87 ± 0.06 a | 20.63 ± 0.12 i |
Density | 986.1 ± 0.3 a | 986.3 ± 0.5 a | 985.6 ± 0.3 b | 985.1 ± 0.2 c | 984.5 ± 0.2 d | 984.1 ± 0.2 e | 983.3 ± 0.2 f | 984.1 ± 0.1 d,e | 984.3 ± 0.1 d,e | 984.5 ± 0.1 d | 985.3 ± 0.1 b,c | 985.8 ± 0.1 a,b |
pH | 3.20 ± 0.05 a,c | 3.15 ± 0.07 a,b,c | 3.14 ± 0.03 b,c | 3.12 ± 0.02 b,d | 3.09 ± 0.01 d | 3.09 ± 0.02 d | 3.19 ± 0.01 c,e | 3.22 ± 0.02 a | 3.24 ± 0.01 a,f | 3.27 ± 0.01 f | 3.29 ± 0.02 f | 3.29 ± 0.02 f |
Total acidity | 5.99 ± 0.23 a | 5.30 ± 0.18 b | 4.91 ± 0.12 c | 4.78 ± 0.10 c | 4.41 ± 0.04 d | 4.12 ± 0.03 e | 4.93 ± 0.08 c | 5.59 ± 0.13 f | 6.40 ± 0.03 g | 6.93 ± 0.10 h | 7.30 ± 0.06 i | 7.71 ± 0.17 j |
Volatile acidity | 0.25 ± 0.08 a | 0.29 ± 0.08 a,c | 0.30 ± 0.04 a,c | 0.26 ± 0.02 a | 0.23 ± 0.06 a | 0.15 ± 0.02 b | 0.34 ± 0.04 c | 0.48 ± 0.02 d | 0.58 ± 0.02 e | 0.66 ± 0.02 f | 0.75 ± 0.02 g | 0.88 ± 0.02 h |
Total sulfur dioxide | 67 ± 11 a | 51 ± 10 b | 44 ± 7 b,c | 39 ± 3 c,d | 31 ± 3 d,e | 23 ± 2 e | 14 ± 2 f | 9 ± 1 f,e | 5 ± 1 e | 4 ± 1 e | 1 ± 1 e | 1 ± 1 e |
Sulfates | 1.27 ± 0.23 a | 1.19 ± 0.06 a,b | 1.12 ± 0.03 b,c | 1.05 ± 0.02 b,c,d | 0.98 ± 0.03 c,d | 0.96 ± 0.02 d | 1.17 ± 0.03 a,c,d | 1.27 ± 0.05 a | 1.49 ± 0.04 e | 1.76 ± 0.04 f | 1.95 ± 0.10 g | 2.23 ± 0.04 h |
Phosphates | 85.33 ± 16.26 a | 76.00 ± 6.56 b | 70.00 ± 2.65 b,c | 66.67 ± 2.52 c | 61.33 ± 1.53 c,d | 57.67 ± 1.53 d | 60.67 ± 2.08 d | 66.67 ± 2.52 c,d | 77.67 ± 1.53 a,b | 86.33 ± 2.08 a | 98.33 ± 2.52 e | 116.67 ± 2.52 e |
Potassium | 1136 ± 43 a | 881 ± 33 b | 792 ± 9 c | 772 ± 6 c | 784 ± 14 c | 802 ± 6 c | 1091 ± 13 e | 1201 ± 9 f | 1379 ± 10 g | 1658 ± 12 h | 2142 ± 9 i | 2575 ± 60 j |
Calcium | 110 ± 21 a,c | 106 ± 16 a,b,c | 99 ± 3 a,b | 99 ± 3 a | 97 ± 2 a | 95 ± 2 b | 97 ± 3 a,b | 101 ± 3 a,b | 104 ± 3 a,b,c | 108 ± 2 a,b,c | 115 ± 4 c,d | 125 ± 3 d |
Glycerol | 7151 ± 711 a | 5136 ± 548 b | 3641 ± 131 c | 2171 ± 68 d | 1176 ± 81 e,g | 611 ± 59 f | 1097 ± 90 e | 1290 ± 30 e,g | 1595 ± 78 g | 2075 ± 48 d | 2650 ± 60 h | 3741 ± 183 c |
Total dry extract | 20.17 ± 0.40 a | 19.13 ± 0.42 b | 17.63 ± 0.40 c | 16.63 ± 0.40 d | 14.50 ± 0.79 e | 13.10 ± 0.17 f | 17.07 ± 0.12 c,d | 20.60 ± 0.70 a | 23.40 ± 0.17 g | 26.10 ± 0.00 h | 30.23 ± 0.25 i | 33.50 ± 0.35 j |
Reducing substances | 2.63 ± 0.49 a | 1.10 ± 0.20 b | 0.80 ± 0.10 b,c | 0.73 ± 0.06 c | 0.70 ± 0.10 c | 0.60 ± 0.10 c | 1.63 ± 0.12 d | 2.27 ± 0.06 e | 2.83 ± 0.15 a,f | 3.03 ± 0.21 f | 3.53 ± 0.23 g | 4.90 ± 0.26 h |
Sugar-free extract | 17.53 ± 0.23 a | 18.03 ± 0.61 a,b | 16.83 ± 0.38 a | 15.90 ± 0.46 c | 13.80 ± 0.78 d | 12.50 ± 0.10 e | 15.43 ± 0.12 c | 18.33 ± 0.68 b | 20.57 ± 0.21 f | 23.07 ± 0.21 g | 26.70 ± 0.46 h | 28.60 ± 0.56 i |
Average Age (Years Old) | Volume of Wine in the Casks (%) | Concentration Increase of Non-Volatile Compounds (%) |
---|---|---|
1 | 97.00 | 1.03 |
2 | 94.09 | 1.06 |
3 | 91.27 | 1.10 |
4 | 88.53 | 1.13 |
5 | 85.87 | 1.16 |
8 | 78.37 | 1.28 |
12 | 69.38 | 1.44 |
16 | 61.43 | 1.63 |
20 | 54.38 | 1.84 |
30 | 40.10 | 2.49 |
40 | 29.57 | 3.38 |
Vintage | Sobretabla | 3rd Cra F | 2nd Cra F | 1st Cra F | Solera F | 5th Cra A | 4th Cra A | 3rd Cra A | 2nd Cra A | 1st Cra A | Solera A | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Citric acid | 244 ± 67 a | 177 ± 41 b | 146 ± 0 b,c,d | 128 ± 7 c,e | 101 ± 4 e,f | 75 ± 8 f | 88 ± 9 f | 94 ± 4 e,f | 100 ± 2 e,f | 106 ± 4 e,f | 108 ± 5 d,e,f | 113 ± 5 d,e,f |
Tartaric acid | 5121 ± 439 a | 3809 ± 161 b | 3024 ± 63 c | 2782 ± 53 d | 2490 ± 26 e | 2139 ± 47 f | 1599 ± 71 g | 1430 ± 36 g,h | 1193 ± 31 h,i | 1235 ± 36 h,i | 1046 ± 21 i,j | 951 ± 36 j |
Malic acid | 491 ± 116 a | 385 ± 54 b | 105 ± 7 c | 32 ± 9 d | 12 ± 5 d | 4 ± 3 d | 15 ± 2 d | 20 ± 3 d | 22 ± 3 d | 26 ± 3 d | 47 ± 4 c,d | 65 ± 5 d |
Succinic acid | 641 ± 82 a | 573 ± 86 b | 507 ± 22 c | 428 ± 9 d | 397 ± 4 d | 381 ± 6 d | 502 ± 18 c | 603 ± 18 a,b | 728 ± 8 e | 847 ± 20 f | 1028 ± 18 g | 1246 ± 15 h |
Lactic acid | 267 ± 71 a | 301 ± 27 a,b | 479 ± 10 c | 413 ± 9 d | 213 ± 11 e | 116 ± 7 f | 340 ± 14 b | 462 ± 14 c | 582 ± 13 g | 703 ± 20 h | 855 ± 12 i | 1016 ± 40 j |
Vintage | Sobretabla | 3rd Cra F | 2nd Cra F | 1st Cra F | Solera F | 5th Cra A | 4th Cra A | 3rd Cra A | 2nd Cra A | 1st Cra A | Solera A | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetaldehyde | 72.3 ± 19.0 a | 113.3 ± 21.8 b | 178.0 ± 11.4 c | 237.3 ± 9.6 d | 369.3 ± 14.2 e | 487.0 ± 14.5 f | 256.3 ± 12.2 d | 220.7 ± 3.5 d,g | 197.7 ± 4.2 c,h | 198.0 ± 3.6 c,h | 203.3 ± 5.7 g,h | 192.7 ± 9.1 c,h |
Acetaldehyde-dietilacetal | 7.0 ± 2.6 a | 11.0 ± 2.0 a | 18.0 ± 2.0 b | 25.0 ± 1.0 c | 38.0 ± 1.7 d | 50.3 ± 2.1 e | 35.3 ± 5.9 d,f | 31.3 ± 2.1 f,g | 28.7 ± 2.1 c,g | 28.7 ± 1.5 c,g | 32.7 ± 4.2 f,g | 29.7 ± 3.1 c,g |
Acetoin | 4.0 ± 1.0 a | 11.0 ± 3.0 b | 25.3 ± 2.1 c | 37.3 ± 1.5 d | 54.0 ± 3.6 e | 78.3 ± 2.5 f | 69.7 ± 4.0 g,i | 63.7 ± 2.1 h,i | 60.7 ± 1.2 h | 60.0 ± 2.6 h | 66.7 ± 2.5 g,i | 65.7 ± 1.5 g,i |
Ethyl acetate | 49.0 ± 6.1 a | 61.3 ± 10.5 b | 56.3 ± 4.2 a,b | 44.7 ± 3.1 a,d | 37.3 ± 1.5 d | 36.7 ± 4.0 d | 107.0 ± 7.0 e | 150.3 ± 4.7 f | 173.3 ± 4.5 g | 203.0 ± 4.6 h | 241.7 ± 4.0 i | 282.0 ± 5.6 j |
Methanol | 65.7 ± 7.4 a,b | 62.7 ± 9.0 a | 61.7 ± 3.1 a | 66.7 ± 1.5 a,b | 67.0 ± 3.0 a,b | 71.0 ± 1.0 b,c | 78.0 ± 3.0 c | 88.0 ± 3.6 d | 97.3 ± 3.5 e | 101.0 ± 3.0 e,f | 104.7 ± 2.1 f | 117.3 ± 4.5 g |
Higher alcohols | ||||||||||||
N-Propanol | 30.0 ± 2.6 a | 35.0 ± 5.3 b | 37.3 ± 2.5 c | 41.3 ± 1.5 c | 45.7 ± 3.1 d | 46.3 ± 1.5 d | 50.7 ± 1.5 e | 54.7 ± 2.5 e,f | 57.3 ± 2.1 f | 61.7 ± 1.2 g | 67.7 ± 1.5 h | 72.7 ± 1.5 i |
Isobutanol | 37.7 ± 4.5 a | 44.7 ± 1.2 b | 47.7 ± 1.2 b,c | 51.3 ± 0.6 c,d | 53.3 ± 1.2 d | 55.0 ± 1.0 d | 67.0 ± 1.7 e | 69.7 ± 1.5 e,f | 72.7 ± 1.5 f | 77.0 ± 3.0 g | 80.0 ± 3.6 g | 86.3 ± 1.5 h |
2-Methyl-1-butanol | 40.0 ± 7.2 a | 41.3 ± 4.0 a,b | 44.3 ± 2.5 a,b,c | 46.3 ± 2.1 b,c | 48.7 ± 2.1 c,d | 54.0 ± 2.6 d,e | 55.7 ± 2.5 e,f | 57.0 ± 1.7 f,g | 60.0 ± 2.0 f,g,h | 61.3 ± 1.2 g,h | 61.7 ± 2.1 g,h | 64.0 ± 4.0 h |
3-Methyl-1-butanol | 154.3 ± 26.1 a | 167.3 ± 19.6 a,b | 172.0 ± 3.6 b | 182.3 ± 5.0 b,c | 191.0 ± 2.6 c,d | 205.0 ± 8.9 d,e | 219.3 ± 4.7 e,f | 227.7 ± 5.1 f,g | 233.0 ± 4.6 f,g | 235.7 ± 4.7 f,g | 237.0 ± 3.6 g | 242.3 ± 4.0 g |
Hexanol | 1.17 ± 0.57 a | 0.83 ± 0.25 b | 0.73 ± 0.06 b | 0.70 ± 0.10 b | 0.77 ± 0.12 b | 0.70 ± 0.10 b | 0.80 ± 0.10 b | 0.77 ± 0.06 b | 0.77 ± 0.06 b | 0.73 ± 0.06 b | 0.80 ± 0.10 b | 0.87 ± 0.06 a,b |
2-Phenyl ethanol | 16.87 ± 12.19 a | 18.20 ± 4.83 a,b | 19.90 ± 0.62 a,b | 20.60 ± 1.21 a,b,c | 20.93 ± 0.55 a,b,c | 21.37 ± 0.50 a,b,c,d | 23.90 ± 0.44 b,c,d,e | 26.57 ± 0.93 c,d,e,f | 27.57 ± 1.15 d,e,f | 29.23 ± 0.29 e,f,g | 31.13 ± 0.40 f,g | 34.40 ± 0.30 g |
Ethyl esters of organic acids | ||||||||||||
Ethyl lactate | 20.20 ± 3.97 a | 23.73 ± 0.90 b | 27.07 ± 0.35 b | 31.13 ± 0.31 c | 31.63 ± 0.70 c | 33.20 ± 0.95 c | 80.67 ± 1.27 d | 103.27 ± 2.18 e | 126.17 ± 4.77 f | 146.70 ± 0.72 g | 173.80 ± 0.30 h | 199.30 ± 2.05 i |
Diethyl succinate | 1.10 ± 0.35 a | 4.77 ± 0.70 b | 12.07 ± 0.72 c | 14.80 ± 0.46 d | 16.27 ± 0.35 e | 18.50 ± 1.11 f | 52.77 ± 0.91 g | 59.17 ± 0.64 h | 65.20 ± 0.89 i | 70.33 ± 0.45 j | 81.73 ± 0.85 k | 93.93 ± 1.37 l |
Ethyl esters of fatty acids | ||||||||||||
Ethyl caproate | 0.23 ± 0.15 a,c | 0.27 ± 0.06 a,b,c | 0.20 ± 0.10 a | 0.30 ± 0.10 a,b,c | 0.33 ± 0.06 c,d | 0.37 ± 0.06 c,d | 0.33 ± 0.06 c,d | 0.37 ± 0.06 b,d | 0.33 ± 0.06 c,d | 0.33 ± 0.06 c,d | 0.43 ± 0.06 d | 0.47 ± 0.06 e |
Ethyl caprylate | 0.57 ± 0.25 a | 0.53 ± 0.06 a | 0.67 ± 0.06 a,b | 0.70 ± 0.10 a,b | 0.87 ± 0.06 b,c | 1.07 ± 0.12 c | 4.03 ± 0.15 d | 4.40 ± 0.10 e | 4.67 ± 0.15 f | 4.90 ± 0.10 g | 5.23 ± 0.06 a | 5.50 ± 0.10 i |
Ethyl caprate | 0.17 ± 0.12 a | 0.17 ± 0.06 a | 0.17 ± 0.06 a | 0.20 ± 0.10 a | 0.27 ± 0.06 a,b | 0.33 ± 0.06 b,c | 0.37 ± 0.06 b,c | 0.37 ± 0.06 b,c | 0.43 ± 0.06 c | 0.33 ± 0.06 b,c | 0.33 ± 0.06 b,c | 0.33 ± 0.06 b,c |
Ethyl laureate | 0.13 ± 0.06 | 0.13 ± 0.06 | 0.17 ± 0.06 | 0.13 ± 0.06 | 0.17 ± 0.06 | 0.23 ± 0.06 | 0.23 ± 0.06 | 0.20 ± 0.10 | 0.23 ± 0.12 | 0.20 ± 0.10 | 0.20 ± 0.10 | 0.20 ± 0.10 |
Ethyl myristate | 0.07 ± 0.06 | 0.03 ± 0.06 | 0.07 ± 0.06 | 0.07 ± 0.06 | 0.07 ± 0.06 | 0.10 ± 0.00 | 0.13 ± 0.06 | 0.10 ± 0.10 | 0.07 ± 0.06 | 0.10 ± 0.10 | 0.13 ± 0.06 | 0.13 ± 0.06 |
Ethyl palmitate | 0.13 ± 0.06 a,b,c | 0.13 ± 0.06 a,b,c | 0.07 ± 0.06 a | 0.10 ± 0.10 a,c | 0.13 ± 0.06 a,b,c,d | 0.17 ± 0.06 a,b,c,d | 0.17 ± 0.06 a,b,c,d | 0.23 ± 0.06 b,c,d | 0.23 ± 0.06 b,c,d | 0.20 ± 0.10 c,d | 0.23 ± 0.06 d | 0.23 ± 0.06 d |
Wine Type | Sacch. Cerevisiae (Race: Beticus) | Sacch. Cerevisiae (Race: Montuliensis) | Sacch. Cerevisiae (Race: Cheresiensis) | Sacch. Cerevisiae (Race: Rouxii) |
---|---|---|---|---|
Sobretabla | 100 | 0 | 0 | 0 |
3rd Criadera. Fino | 91 ± 9 | 5 ± 2 | 4 ± 2 | 0 |
2nd Criadera. Fino | 81 ± 11 | 11 ± 4 | 8 ± 4 | 0 |
1st Criadera. Fino | 72 ± 8 | 19 ± 5 | 8 ± 2 | 1 ± 0 |
Solera Fino | 58 ± 8 | 38 ± 9 | 3 ± 1 | 1 ± 0 |
Vintage | Sobretabla | 3rd Cra F | 2nd Cra F | 1st Cra F | Solera F | 5th Cra A | 4th Cra A | 3rd Cra A | 2nd Cra A | 1st Cra A | Solera A | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FCI | 246 ± 13 a | 265 ± 10 b | 282 ± 4 c | 293 ± 6 c,d | 300 ± 3 d | 306 ± 7 d | 377 ± 8 e | 414 ± 8 f | 436 ± 9 g | 455 ± 7 h | 469 ± 7 i | 534 ± 10 j |
Gallic acid | 3.83 ± 0.31 a | 4.93 ± 0.54 b | 6.78 ± 0.68 c | 8.21 ± 0.2 d | 9.62 ± 0.21 e | 11.06 ± 0.31 f | 11.27 ± 0.23 f | 12.26 ± 0.26 g | 11.72 ± 0.27 g,f | 9.73 ± 0.55 e | 9.69 ± 0.73 e | 10.14 ± 0.79 e |
p-Hydroxybenzoic acid | 0.24 ± 0.10 a | 0.46 ± 0.15 a | 0.47 ± 0.03 c | 0.54 ± 0.04 c,d | 0.59 ± 0.04 c,d | 0.61 ± 0.03 d | 0.77 ± 0.04 e | 0.86 ± 0.07 e | 1.03 ± 0.07 f | 1.25 ± 0.07 g | 1.82 ± 0.13 h | 1.94 ± 0.07 h |
Vanillic acid | 0.09 ± 0.02 a | 0.32 ± 0.12 b | 0.50 ± 0.04 c | 0.49 ± 0.04 c | 0.62 ± 0.05 d | 0.63 ± 0.04 d | 1.01 ± 0.04 e | 1.42 ± 0.03 f | 1.86 ± 0.06 a | 2.31 ± 0.08 h | 3.29 ± 0.11 i | 4.76 ± 0.09 j |
Syringic acid | 0.39 ± 0.14 a | 0.40 ± 0.08 a | 0.53 ± 0.04 a,b | 0.70 ± 0.03 b,c | 0.82 ± 0.04 c | 1.02 ± 0.04 d | 1.10 ± 0.06 d | 1.53 ± 0.03 e | 2.52 ± 0.05 f | 3.49 ± 0.07 g | 4.86 ± 0.21 h | 6.31 ± 0.25 i |
Protocathetic acid | 0.31 ± 0.12 a | 0.53 ± 0.11 a | 2.04 ± 0.13 b | 3.24 ± 0.07 c | 3.71 ± 0.12 d | 3.53 ± 0.21 d | 3.63 ± 0.18 d | 3.81 ± 0.22 d,e | 4.04 ± 0.10 e,f | 4.32 ± 0.21 f | 5.03 ± 0.29 g | 6.08 ± 0.18 h |
Caffeic acid | 4.97 ± 0.71 a | 4.43 ± 0.18 b | 3.92 ± 0.10 c | 3.74 ± 0.16 c | 3.60 ± 0.11 c | 3.00 ± 0.12 d | 2.90 ± 0.13 d | 2.00 ± 0.07 e | 0.84 ± 0.05 f | 0.82 ± 0.15 f | 0.58 ± 0.10 f,g | 0.33 ± 0.04 g |
trans-Caftaric acid | 41.71 ± 13.83 a | 31.62 ± 2.50 b | 26.15 ± 0.76 b,c | 23.47 ± 0.65 c | 19.23 ± 1.24 c,d | 15.53 ± 1.15 d,e | 11.82 ± 0.94 e,f | 9.28 ± 0.53 e,f,g | 7.67 ± 0.30 f,g | 6.63 ± 0.43 f,g | 4.31 ± 0.21 g | 2.14 ± 0.34 g |
p-Coumaric acid | 0.41 ± 0.10 a | 0.50 ± 0.08 b | 0.84 ± 0.07 c | 0.98 ± 0.04 c,d | 1.07 ± 0.05 d | 1.12 ± 0.03 d | 1.64 ± 0.04 e | 1.73 ± 0.02 e,f | 1.80 ± 0.08 f | 2.62 ± 0.12 g | 3.46 ± 0.19 h | 4.18 ± 0.07 i |
cis-Coutaric acid | 5.65 ± 0.52 a | 5.31 ± 0.33 a,b | 5.03 ± 0.25 b | 3.94 ± 0.13 c | 3.24 ± 0.13 d | 2.90 ± 0.16 d | 1.65 ± 0.08 e | 1.42 ± 0.10 e,f | 1.10 ± 0.06 f,g | 0.81 ± 0.09 g | 1.02 ± 0.10 g | 1.10 ± 0.20 f,g |
trans-Coutaric acid | 9.79 ± 2.13 a | 9.10 ± 0.57 a,b | 8.57 ± 0.17 b,c | 7.73 ± 0.27 c,d | 6.75 ± 0.15 d,e | 5.72 ± 0.26 e,f | 4.95 ± 0.10 f,g | 4.36 ± 0.13 g | 3.90 ± 0.13 g | 3.86 ± 0.11 g | 2.03 ± 0.10 g,h | 1.14 ± 0.10 h |
Ferulic acid | 0.42 ± 0.13 a | 0.42 ± 0.03 a | 0.44 ± 0.04 a | 0.65 ± 0.04 b | 0.84 ± 0.05 c | 0.88 ± 0.07 c,d | 1.02 ± 0.03 e | 0.96 ± 0.02 d,e | 0.72 ± 0.01 b | 0.55 ± 0.04 f | 0.47 ± 0.04 a,f | 0.54 ± 0.08 f |
Fertaric acid | 7.56 ± 1.19 a | 5.83 ± 0.45 b | 4.26 ± 0.10 c | 3.77 ± 0.09 c,d | 3.47 ± 0.06 d | 2.83 ± 0.09 e | 2.54 ± 0.09 e,f | 2.14 ± 0.06 f,e | 1.71 ± 0.04 e,f | 1.43 ± 0.06 a | 1.09 ± 0.04 f,g | 0.74 ± 0.08 g |
p-Hydroxybenzaldehyde | 0.16 ± 0.08 a | 0.28 ± 0.09 a,b | 0.28 ± 0.05 a,b | 0.39 ± 0.02 b | 0.45 ± 0.05 b | 0.48 ± 0.04 b | 0.98 ± 0.05 c | 1.33 ± 0.07 d | 1.73 ± 0.07 e | 2.19 ± 0.16 f | 3.24 ± 0.26 g | 4.33 ± 0.27 h |
Vanillin | 0.13 ± 0.04 a | 0.12 ± 0.04 a | 0.13 ± 0.02 a | 0.14 ± 0.02 a | 0.20 ± 0.02 a,b | 0.27 ± 0.04 b | 0.44 ± 0.03 c | 0.81 ± 0.03 d | 1.55 ± 0.02 e | 1.84 ± 0.12 f | 2.40 ± 0.10 g | 3.03 ± 0.15 h |
Syringaldehyde | 0.39 ± 0.10 a | 0.40 ± 0.08 b | 0.68 ± 0.04 c | 0.79 ± 0.05 c,d | 0.82 ± 0.04 c,d | 0.88 ± 0.04 d | 1.55 ± 0.03 e | 2.42 ± 0.06 a | 3.33 ± 0.07 a | 4.73 ± 0.17 h | 6.36 ± 0.19 i | 8.04 ± 0.18 j |
5-Hydroxymethylfurfural | 0.74 ± 0.09 a | 0.94 ± 0.08 a | 1.06 ± 0.07 a | 1.17 ± 0.08 a | 1.05 ± 0.16 a | 0.97 ± 0.11 a | 4.08 ± 0.30 b | 8.27 ± 0.37 c | 14.36 ± 0.48 d | 18.26 ± 1.31 e | 28.37 ± 2.00 f | 38.62 ± 1.47 g |
Furfural | 0.09 ± 0.04 a | 0.09 ± 0.02 a | 0.11 ± 0.02 a | 0.12 ± 0.03 a | 0.13 ± 0.03 a | 0.16 ± 0.02 a | 2.54 ± 0.13 b | 4.07 ± 0.09 c | 6.59 ± 0.32 d | 10.03 ± 0.39 e | 14.56 ± 0.46 f | 18.96 ± 0.71 g |
Vintage | Sobretabla | 3rd Cra F | 2nd Cra F | 1st Cra F | Solera F | 5th Cra A | 4th Cra A | 3rd Cra A | 2nd Cra A | 1st Cra A | Solera A | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A470 | 0.076 ± 0.003 a | 0.081 ± 0.003 a,b | 0.090 ± 0.003 b,c | 0.094 ± 0.003 c,d | 0.102 ± 0.003 d,e | 0.112 ± 0.004 e | 0.202 ± 0.010 f | 0.272 ± 0.006 g | 0.324 ± 0.008 h | 0.374 ± 0.009 i | 0.479 ± 0.006 j | 0.653 ± 0.013 k |
Variables | Factor 1 | Factor 2 |
---|---|---|
Total acidity (g tartaric acid/L) | 0.949518 | |
Volatile acidity (g acetic acid/L) | 0.958833 | |
Citric acid (mg/L) | −0.921827 | |
Tartaric acid (mg/L) | −0.790403 | |
Malic acid (mg/L) | −0.928412 | |
Succinic acid (mg/L) | 0.982632 | |
Lactic acid (mg/L) | 0.961339 | |
Glycerol (mg/L) | −0.959727 | |
Sulfate (g K2SO4/L) | 0.984878 | |
Phosphate (mg PO4/L) | 0.911762 | |
Potassium (mg/L) | 0.975139 | |
Total dry extract(g/L) | 0.985320 | |
Total reducing matter (g/L) | 0.921695 | |
Absorbance 470 nm (a.u.) | 0.946796 | |
Acetaldehyde (mg/L) | 0.798644 | |
Acetal (mg/L) | 0.930717 | |
Acetoin (mg/L) | 0.922805 | |
Ethyl acetate (mg/L) | 0.943450 | |
n-Propanol (mg/L) | 0.808014 | |
2-Phenyl ethanol (mg/L) | 0.796238 | |
Ethyl lactate (mg/L) | 0.916330 | |
Diethyl succinate (mg/L) | 0.833209 | |
FCI (mg gallic acid/L) | 0.852561 | |
Gallic acid (mg/L) | 0.918513 | |
p-Hydroxybenzoic ac. (mg/L) | 0.922433 | |
Vanillic acid (mg/L) | 0.949567 | |
Syringic acid (mg/L) | 0.958999 | |
Caffeic acid (mg/L) | −0.796829 | |
p-Coumaric acid (mg/L) | 0.917132 | |
Vanillin (mg/L) | 0.962484 | |
Syringaldehyde (mg/L) | 0.963981 | |
5-Hydroxymethylfurfural(mg/L) | 0.974553 | |
Furfural (mg/L) | 0.974096 |
Model | Regression | R2 (Adjusted for DF) | p-Value Model (95%) |
---|---|---|---|
F1 | Average age (years old) = 5.7595 − 0.00398154 * Citric acid (mg/L) − 0.0023204 * Lactic acid (mg/L) − 0.00059102 * Glycerol (mg/L) | 98.7826 | 0.0000 |
F2 | Average age (years old) = −1.17355 + 0.283517 * Gallic acid (mg/L) + 1.43392 * p-Hydroxybenzoic acid (mg/L) + 2.61478 * Syringic acid (mg/L) − 0.0309252 * trans-Caftaric acid | 99.77145 | 0.0000 |
F3 | Average age (years old) = −4.13837 + 0.00564545 * Acetaldehyde (mg/L) + 0.0351109 * n-Propanol (mg/L) − 0.0407862 * 2-Phenyl ethanol (mg/L) + 0.168663 * Ethyl lactate (mg/L) | 99.7145 | 0.0000 |
F4 | Average age (years old) = 19.0455 − 0.00764656 * Potassium (mg/L) − 0.664414 * Total dry extract (g/L) + 1.15284 * Total reducing matter (g/L) | 98.5339 | 0.0000 |
F5 | Average age (years old) = 2.2474 − 0.000226935 * Glycerol (mg/L) + 0.00448994 * Acetaldehyde (mg/L) − 0.00146909 * Potassium (mg/L) + 1.86111 * Syringic acid (mg/L) | 99.9111 | 0.0000 |
Sample | Average Age (Years Old) | Forecast Age (Years Old) | Standard Forecast Error | Absolute Error (Years Old) |
---|---|---|---|---|
6 | 1 | 1.17622 | 0.0646336 | −0.17622 |
10 | 2 | 2.19731 | 0.0581641 | −0.19731 |
15 | 3 | 2.97550 | 0.0586390 | 0.02450 |
19 | 4 | 4.08016 | 0.0565806 | −0.08016 |
23 | 5 | 5.04895 | 0.0607497 | −0.04895 |
Model | Regression | R2 (Adjusted for DF) | p-Value Model (95%) |
---|---|---|---|
A1 | Average age (years old) = −3.89092 − 0.0831495 * Citric acid (mg/L) + 0.19105 * Malic acid (mg/L) + 0.0328913 * Succinic acid (mg/L) | 99.8702 | 0.0000 |
A2 | Average age (years old) = 11.0696 + 4.07776 * Vanillic acid (mg/L) − 1.89923 * trans-coutaric acid + 1.45669 * Syringaldehyde (mg/L) | 99.9456 | 0.0000 |
A3 | Average age (years old) = −48.6603 + 0.029585 * Acetaldehyde (mg/L) − 0.0506701 * Ethyl lactate (mg/L) + 0.975076 * Diethyl succinate (mg/L) + 4.13569 * Ethyl myristate (mg/L) + 6.14993 * Ethyl palmitate (mg/L) | 99.9050 | 0.0000 |
A4 | Average age (years old) = −12.3184 − 4.80344 * Sulfate(g K2SO4/L) + 0.0122141 * Potassium (mg/L) + 0.398934 * Total dry extract(g/L) + 27.9698 * Absorbance 470 nm (a.u.) | 99.8177 | 0.0000 |
A5 | Average age (years old) = −19.7424 + 2.07137 * Vanillic acid (mg/L) + 0.399041 * Diethyl succinate (mg/L) − 3.37782 * Sulfate (g K2SO4/L) + 0.00783484 * Potassium (mg/L) | 99.9489 | 0.0000 |
Sample | Average Age (Years Old) | Forecast Age (Years Old) | Standard Forecast Error | Absolute Error (Years Old) |
---|---|---|---|---|
26 | 8 | 7.7019 | 0.3062 | 0.2981 |
31 | 12 | 12.0571 | 0.2682 | −0.0571 |
36 | 16 | 15.9034 | 0.2685 | 0.0966 |
41 | 30 | 30.0863 | 0.3471 | −0.0863 |
46 | 40 | 40.8162 | 0.2935 | −0.8162 |
Wine | Aromatic Intensity | Yeast | Nuts | Oak | Dryness | Equilibrium | Persistence |
---|---|---|---|---|---|---|---|
Young fortified wine (vintage) | 2.4 ± 0.5 a | 1.6 ± 0.5 a | 1.0 ± 0.0 a | 1.0 ± 0.0 a | 2.0 ± 0.6 a | 2.1 ± 0.4 a | 2.0 ± 0.6 a |
Fino Sherry 5 years old | 6.7 ± 0.5 b | 7.9 ± 0.7 c | 7.6 ± 0.5 c | 2.3 ± 0.5 b | 4.9 ± 0.7 b | 7.1 ± 0.7 b | 5.3 ± 0.5 b |
Amontillado Sherry 12 years old | 5.9 ± 0.7 b | 3.6 ± 0.5 b | 6.4 ± 0.5 b | 6.0 ± 0.8 c | 7.7 ± 0.5 c | 6.4 ± 0.5 b | 5.9 ± 0.7 b |
Amontillado Sherry >30 years old | 8.6 ± 0.5 c | 1.4 ± 0.5 a | 8.6 ± 0.5 d | 7.4 ± 0.8 d | 7.0 ± 0.8 c | 8.6 ± 0.5 c | 8.7 ± 0.5 c |
pANOVA | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Factor 1 loadings | 0.942 | 0.063 | 0.938 | 0.887 | 0.893 | 0.949 | 0.967 |
Factor 2 loadings | 0.174 | 0.983 | 0.304 | −0.405 | −0.084 | 0.238 | −0.068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valcárcel-Muñoz, M.J.; Guerrero-Chanivet, M.; Rodríguez-Dodero, M.d.C.; García-Moreno, M.d.V.; Guillén-Sánchez, D.A. Analytical and Chemometric Characterization of Fino and Amontillado Sherries during Aging in Criaderas y Solera System. Molecules 2022, 27, 365. https://doi.org/10.3390/molecules27020365
Valcárcel-Muñoz MJ, Guerrero-Chanivet M, Rodríguez-Dodero MdC, García-Moreno MdV, Guillén-Sánchez DA. Analytical and Chemometric Characterization of Fino and Amontillado Sherries during Aging in Criaderas y Solera System. Molecules. 2022; 27(2):365. https://doi.org/10.3390/molecules27020365
Chicago/Turabian StyleValcárcel-Muñoz, Manuel J., María Guerrero-Chanivet, María del Carmen Rodríguez-Dodero, María de Valme García-Moreno, and Dominico A. Guillén-Sánchez. 2022. "Analytical and Chemometric Characterization of Fino and Amontillado Sherries during Aging in Criaderas y Solera System" Molecules 27, no. 2: 365. https://doi.org/10.3390/molecules27020365
APA StyleValcárcel-Muñoz, M. J., Guerrero-Chanivet, M., Rodríguez-Dodero, M. d. C., García-Moreno, M. d. V., & Guillén-Sánchez, D. A. (2022). Analytical and Chemometric Characterization of Fino and Amontillado Sherries during Aging in Criaderas y Solera System. Molecules, 27(2), 365. https://doi.org/10.3390/molecules27020365