Green Synthesis of Indeno[1,2-b]quinoxalines Using β-Cyclodextrin as Catalyst
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. General Procedure for the Synthesis of Compounds 2.3(aa-bb)
3.3. Recycle of β-CD after Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Akondi, A.M.; Mekala, S.; Kantam, M.L.; Trivedi, R.; Chowhan, L.R.; Das, A. An expedient microwave assisted regio and stereoselective synthesis of spiroquinoxaline pyrrolizine derivatives and their AChE inhibitory activity. N. J. Chem. 2017, 41, 873–878. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Chen, Y.-R.; Tzeng, C.-C.; Liu, W.; Chou, C.-K.; Chiu, C.-C.; Chen, Y.-H. Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents. Eur. J. Med. Chem. 2016, 108, 258–273. [Google Scholar] [CrossRef]
- Kailasam, S.M.; Balasubramanian, M.; Werner, K.; Parameswaran, R.S. Enantioselective approach towards the synthesis of spiro-indeno[1,2-b]quinoxaline pyrrolothiazoles as antioxidant and antiproliferative. Tetrahedron Lett. 2018, 59, 2921–2929. [Google Scholar]
- Khan, M.S.; Munawar, M.A.; Ashraf, M.; Alam, U.; Ata, A.; Asiri, A.M.; Kousar, S.; Khan, M.A. Synthesis of novel indenoquinoxaline derivatives as potent α-glucosidase inhibitors. Bioorg. Med. Chem. 2014, 22, 1195–1200. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Khlebnikov, A.I.; Potapov, A.S.; Kovrizhina, A.R.; Matveevskaya, V.V.; Belyanin, M.L.; Atochin, D.N.; Zanoza, S.O.; Gaidarzhy, N.M.; Lyakhov, S.A.; et al. Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. Eur. J. Med. Chem. 2019, 161, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Hanks, T.S.; Kochetkova, I.; Pascual, D.W.; Jutila, M.A.; Quinn, M.T. Identification and Characterization of a Novel Class of c-Jun N-terminal Kinase Inhibitors. Mol. Pharm. 2012, 81, 832–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, W.; Zhao, Q.; Yu, M.; Guo, L.; Chang, H.-M.; Jiang, X.; Luo, Y.-F.; Huang, W.; He, G. Design and synthesis of novel spirooxindole-indenoquinoxaline derivatives as novel tryptophanyl-tRNA synthetase inhibitors. Mol. Divers. 2020, 24, 1043–1063. [Google Scholar] [CrossRef]
- Obot, I.B.; Obi-Egbedi, N.O. Indeno-1-one [2,3-b]quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5M H2SO4 solution. Mater. Chem. Phys. 2010, 122, 325–328. [Google Scholar] [CrossRef]
- Kumari, R.; Singh, M. Photocatalytic Reduction of Fluorescent Dyes in Sunlight by Newly Synthesized Spiroindenoquinoxaline Pyrrolizidines. ACS Omega 2020, 5, 23201–23218. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bhardwaj, D.; Saini, M.R. Recent advancement in the synthesis of diverse spiro-indeno[1,2-b]quinoxalines: A review. RSC Adv. 2021, 11, 4760–4804. [Google Scholar] [CrossRef]
- Lassagne, F.; Chevallier, F.; Roisnel, T.; Dorcet, V.; Mongin, F.; Domingo, L.R. A Combined Experimental and Theoretical Study of the Ammonium Bifluoride Catalyzed Regioselective Synthesis of Quinoxalines and Pyrido[2,3-b]pyrazines. Synthesis 2015, 47, 2680–2689. [Google Scholar] [CrossRef]
- Khazaei, A.; Massoudi, A.; Chegeni, M. Synthesis of Bisindolylindeno[1,2-b]quinoxaline and Bisindolylindeno[3,4-b]pyrazine with Poly (N,N’-dibromo-N-ethylnaphthyl-2,7-disulfonamide). Synth. Commun. 2014, 44, 633–639. [Google Scholar] [CrossRef]
- Baghbanian, S.M. Propylsulfonic acid functionalized nanozeolite clinoptilolite as heterogeneous catalyst for the synthesis of quinoxaline derivatives. Chin. Chem. Lett. 2015, 26, 1113–1116. [Google Scholar] [CrossRef]
- Chang, M.-Y.; Lee, T.-W.; Hsu, R.-T.; Yen, T.-L. Synthesis of Quinoxaline Analogues. Synthesis 2011, 19, 3143–3151. [Google Scholar] [CrossRef]
- Nagarajaiah, H.; Mishra, A.K.; Moorthy, J.N. Mechanochemical solid-state synthesis of 2-aminothiazoles, quinoxalines and benzoylbenzofurans from ketones by one-pot sequential acid- and base-mediated reactions. Org. Biomol. Chem. 2016, 14, 4129–4135. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Z.-J.; Zhang, L.-R.; Jiao, N. Et3N-catalyzed oxidative dehydrogenative coupling of α-unsubstituted aldehydes and ketones with aryl diamines leading to quinoxalines using molecular oxygen as oxidant. Tetrahedron 2012, 68, 5258–5262. [Google Scholar] [CrossRef]
- Trost, B.M. The Atom Economy—A Search for Synthetic Efficiency. Science 1991, 254, 1471–1477. [Google Scholar] [CrossRef]
- Trost, B.M. Atom Economy—A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way. Angew. Chem. Int. Ed. Engl. 1995, 34, 259–281. [Google Scholar] [CrossRef]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Takahashi, K. Organic Reactions Mediated by Cyclodextrins. Chem. Rev. 1998, 98, 2013–2033. [Google Scholar] [CrossRef]
- Bai, C.-C.; Tian, B.-R.; Zhao, T.; Huang, Q.; Wang, Z.-Z. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications. Molecules 2017, 22, 1475. [Google Scholar] [CrossRef] [Green Version]
- Kanchana, U.S.; Diana, E.J.; Mathew, T.V.; Anilkumar, G. Cyclodextrin based palladium catalysts for Suzuki reaction: An overview. Carbohydr. Res. 2020, 489, 107954. [Google Scholar] [CrossRef] [PubMed]
- Madhav, B.; Narayana Murthy, S.; Prakash Reddy, V.; Rama Rao, K.; Nageswar, Y.V.D. Biomimetic synthesis of quinoxalines in water. Tetrahedron Lett. 2009, 50, 6025–6028. [Google Scholar] [CrossRef]
- Akkilagunta, V.K.; Reddy, V.P.; Kakulapati, R.R. Aqueous-Phase Aerobic Oxidation of Alcohols by Ru/C in the Presence of Cyclodextrin: One-Pot Biomimetic Approach to Quinoxaline Synthesis. Synlett 2010, 17, 2571–2574. [Google Scholar] [CrossRef]
- Trofymchuk, I.M.; Belyakova, L.A.; Grebenyuk, A.G. Study of complex formation between β-cyclodextrin and benzene. J. Incl. Phenom. Macrocycl. Chem. 2011, 69, 371–375. [Google Scholar] [CrossRef]
- Chalumot, G.; Yao, C.; Pino, V.; Anderson, J.L. Determining the stoichiometry and binding constants of inclusion complexes formed between aromatic compounds and β-cyclodextrin by solid-phase microextraction coupled to high-performance liquid chromatography. J. Chromatogr. A 2009, 1216, 5242–5248. [Google Scholar] [CrossRef]
- Evens, C.H.; Partyka, M.; Stam, J.A. Naphthalene Complexation by β-Cyclodextrin: Influence of Added Short Chain Branched and Linear Alcohols. J. Incl. Phenom. Macrocycl. Chem. 2000, 38, 381–396. [Google Scholar] [CrossRef]
- Dalmolin, M.C.; Silva, C.E.D.; Lunelli, C.E.; Zaioncz, S.; Farago, P.V.; Zawadzki, S.F. Modified β-cyclodextrin/amlodipine inclusion complexes: Preparation and application in aqueous systems. J. Mol. Liq. 2019, 276, 531–540. [Google Scholar] [CrossRef]
- Ji, H.-B.; Huang, L.-Q.; Shen, H.-M.; Zhou, X.-T. β-Cyclodextrin-promoted synthesis of 2-phenylbenzimidazole in water using air as an oxidant. Chem. Eng. J. 2011, 167, 349–354. [Google Scholar] [CrossRef]
- Song, J.-L.; Li, X.-L.; Chen, Y.-X.; Zhao, M.-M.; Dou, Y.-N.; Chen, B.-H. Transition-Metal-Free Synthesis of Quinoxalines from o-Phenylenediamines and Arylacetaldehydes under Basic Conditions. Synlett 2012, 23, 2416–2420. [Google Scholar] [CrossRef]
- Cheng, Y.-M.; Wang, X.-Y.; Li, W.-W.; Chang, D. DFT study on the effects of β-cyclodextrin in synthesis of 2-phenylbenzimidazole via benzaldehyde and o-phenylenediamine. J. Mol. Modeling 2016, 22, 292. [Google Scholar] [CrossRef] [PubMed]
- Shivhare, K.N.; Siddiqui, I.R. β-cyclodextrin mediated synthesis of indole derivatives: Reactions of isatins with 2-amino(or 2-thiole)anilines by supramolecular catalysis in water. Supramol. Chem. 2019, 31, 52–61. [Google Scholar] [CrossRef]
Entry | 2.2a/2.1a | Cat | Solvent | Temperature (°C) | Time (h) | Yield c (2.3) |
---|---|---|---|---|---|---|
1 | 1.5 | No Catalyst | H2O | R.T | 24 | Trace |
2 | 1.5 | α-CD (20 Mol%) | H2O | R.T | 24 | 61 |
3 | 1.5 | β-CD (20 Mol%) | H2O | R.T | 24 | 85 |
4 | 1.5 | γ-CD (20 Mol%) | H2O | R.T | 24 | 52 |
5 | 1.5 | Trimethyl-β-CD (20 Mol%) | H2O | R.T | 24 | 38 |
6 | 1.5 | 2,6-Dimethyl-β-CD (20 Mol%) | H2O | R.T | 24 | 56 |
7 | 1.5 | Me-β-CD | H2O | R.T | 24 | 53 |
8 | 1.5 | NEt3 (20 Mol%) | H2O | 60 | 24 | 33 |
9 | 1.5 | β-CD (20 Mol%, grind) | None | R.T | 0.5 | 70 |
10 b | 1.5 | β-CD (20 Mol%) | H2O | R.T | 24 | Trace |
11 | 1.5 | β-CD (20 Mol%) | DMSO | R.T | 24 | 73 |
12 | 1.5 | β-CD (20 Mol%) | DMF | R.T | 24 | 76 |
13 | 1.5 | β-CD (20 Mol%) | EtOH | R.T | 24 | 67 |
14 | 1.5 | β-CD (20 Mol%) | H2O | 60 | 24 | 43 |
15 | 1.5 | β-CD (15 Mol%) | H2O | R.T | 12 | 85 |
16 | 1.2 | β-CD (15 Mol%) | H2O | R.T | 12 | 85 |
17 | 1.0 | β-CD (15 Mol%) | H2O | R.T | 12 | 81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, L.-G.; Song, M.-M.; Feng, J.-F.; Tan, M.; Liu, F.; Qiu, Z.-J.; Zhang, S.; Li, B.-J. Green Synthesis of Indeno[1,2-b]quinoxalines Using β-Cyclodextrin as Catalyst. Molecules 2022, 27, 580. https://doi.org/10.3390/molecules27020580
Liao L-G, Song M-M, Feng J-F, Tan M, Liu F, Qiu Z-J, Zhang S, Li B-J. Green Synthesis of Indeno[1,2-b]quinoxalines Using β-Cyclodextrin as Catalyst. Molecules. 2022; 27(2):580. https://doi.org/10.3390/molecules27020580
Chicago/Turabian StyleLiao, Li-Guo, Meng-Meng Song, Jun-Feng Feng, Min Tan, Fan Liu, Zhen-Jiang Qiu, Sheng Zhang, and Bang-Jing Li. 2022. "Green Synthesis of Indeno[1,2-b]quinoxalines Using β-Cyclodextrin as Catalyst" Molecules 27, no. 2: 580. https://doi.org/10.3390/molecules27020580
APA StyleLiao, L.-G., Song, M.-M., Feng, J.-F., Tan, M., Liu, F., Qiu, Z.-J., Zhang, S., & Li, B.-J. (2022). Green Synthesis of Indeno[1,2-b]quinoxalines Using β-Cyclodextrin as Catalyst. Molecules, 27(2), 580. https://doi.org/10.3390/molecules27020580