Chemical Properties of Peanut Oil from Arachis hypogaea L. ‘Tainan 14’ and Its Oxidized Volatile Formation
Abstract
:1. Introduction
2. Results
2.1. Chemical Property Changes
2.2. Oxidation Stability and Volatile Generation
3. Materials and Methods
3.1. Peanut Oil Production
3.2. Quality Analysis
3.3. Composition Analysis
3.4. Antioxidant Activity
3.5. Rancimat Test Kinetic Parameter
3.6. Volatile Compound Analysis
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bai, Y.; Zhai, Y.; Ji, C.; Zhang, T.; Chen, W.; Shen, X.; Hong, J. Environmental sustainability challenges of China’s edible vegetable oil industry: From farm to factory. Resour. Conserv. Recycl. 2021, 170, 105606. [Google Scholar] [CrossRef]
- El-Hamidi, M.; Zaher, F.A. Production of vegetable oils in the world and in Egypt: An overview. Bull. Natl. Res. Cent. 2018, 42, 1–9. [Google Scholar] [CrossRef]
- Siervo, M.; Montagnese, C.; Mathers, J.C.; Soroka, K.R.; Stephan, B.C.; Wells, J.C. Sugar consumption and global prevalence of obesity and hypertension: An ecological analysis. Public Health Nutr. 2014, 17, 587–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Hao, P.; Liu, B.; Meng, X. Effect of traditional Chinese cooking methods on fatty acid profiles of vegetable oils. Food Chem. 2017, 233, 77–84. [Google Scholar] [CrossRef]
- Zhou, Q.; Jia, X.; Deng, Q.; Chen, H.; Tang, H.; Huang, F. Quality evaluation of rapeseed oil in Chinese traditional stir-frying. Food Sci. Nutr. 2019, 7, 3731–3741. [Google Scholar] [CrossRef] [Green Version]
- Xuan, T.D.; Gangqiang, G.; Minh, T.N.; Quy, T.N.; Khanh, T.D. An overview of chemical profiles, antioxidant and antimicrobial activities of commercial vegetable edible oils marketed in Japan. Foods 2018, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Foster, R.; Williamson, C.S.; Lunn, J. Briefing Paper: Culinary oils and their health effects. Nutr. Bull. 2009, 34, 4–47. [Google Scholar] [CrossRef]
- Eyres, L. Frying oils: Selection, smoke points and potential deleterious effects for health. Food N. Z. 2015, 15, 30–31. [Google Scholar]
- Katragadda, H.R.; Fullana, A.; Sidhu, S.; Carbonell-Barrachina, Á.A. Emissions of volatile aldehydes from heated cooking oils. Food Chem. 2010, 120, 59–65. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Du, W.; Huang, F.; Jiang, H.; Bai, J.; Wang, H. Twenty-five-year trends in dietary patterns among Chinese adults from 1991 to 2015. Nutrients 2021, 13, 1327. [Google Scholar] [CrossRef]
- Siger, A.; Nogala-kalucka, M.; Lampart-Szczapa, E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids 2008, 15, 137–149. [Google Scholar] [CrossRef]
- Grosshagauer, S.; Steinschaden, R.; Pignitter, M. Strategies to increase the oxidative stability of cold pressed oils. LWT 2019, 106, 72–77. [Google Scholar] [CrossRef]
- Akin, G.; Arslan, F.N.; Elmasa, S.K.; Yilmaz, I. Cold-pressed pumpkin seed (Cucurbita pepo L.) oils from the central Anatolia region of Turkey: Characterization of phytosterols, squalene, tocols, phenolic acids, carotenoids and fatty acid bioactive compounds. Grasas Y Aceites 2018, 69, e232. [Google Scholar] [CrossRef]
- Nilova, L.; Pilipenko, T.; Malyutenkova, S. An investigation into the effects of bioactive substances from vegetable oils on the antioxidant properties of bakery products. Agron. Res. 2017, 15 (Suppl. S2), 1399–1410. [Google Scholar]
- Rastrelli, L.; Passi, S.; Ippolito, F.; Vacca, G.; De Simone, F. Rate of degradation of α-tocopherol, squalene, phenolics, and polyunsaturated fatty acids in olive oil during different storage conditions. J. Agric. Food Chem. 2002, 50, 5566–5570. [Google Scholar] [CrossRef]
- Yang, K.M.; Hsu, F.L.; Chen, C.W.; Hsu, C.L.; Cheng, M.C. Quality characterization and oxidative stability of camellia seed oils produced with different roasting temperatures. J. Oleo Sci. 2018, 67, ess17190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, C.F.; Ciou, J.Y.; Wu, C.L. Commercialized sesame oil analysis: Quality characterization and oxidative stability of blended sesame oil. ACS Food Sci. Technol. 2021, 1, 1222–1227. [Google Scholar] [CrossRef]
- Ciou, J.Y.; Chen, H.C.; Chen, C.W.; Yang, K.M. Relationship between antioxidant components and oxidative stability of peanut oils as affected by roasting temperatures. Agriculture 2021, 11, 300. [Google Scholar] [CrossRef]
- Mingrou, L.; Guo, S.; Ho, C.T.; Bai, N. Review on chemical compositions and biological activities of peanut (Arachis hypogeae L.). J. Food Biochem. 2022, 46, e14119. [Google Scholar] [CrossRef]
- Bonku, R.; Yu, J. Health aspects of peanuts as an outcome of its chemical composition. Food Sci. Hum. Wellness 2020, 9, 21–30. [Google Scholar] [CrossRef]
- Yang, K.M.; Chao, L.K.; Wu, C.S.; Ye, Z.S.; Chen, H.C. Headspace solid-phase microextraction analysis of volatile components in peanut oil. Molecules 2021, 26, 3306. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.T.; Maradza, W.; Xu, Y.F.; Ma, X.T.; Shi, R.; Zhao, R.Y.; Wang, X.D. Comparison of key aroma-active composition and aroma perception of cold-pressed and roasted peanut oils. Int. J. Food Sci. Technol. 2022, 57, 2968–2979. [Google Scholar] [CrossRef]
- Su, G.; Zheng, L.; Cui, C.; Yang, B.; Ren, J.; Zhao, M. Characterization of antioxidant activity and volatile compounds of Maillard reaction products derived from different peptide fractions of peanut hydrolysate. Food Res. Int. 2011, 44, 3250–3258. [Google Scholar] [CrossRef]
- Endo, Y. Analytical methods to evaluate the quality of edible fats and oils: The JOCS standard methods for analysis of fats, oils and related materials (2013) and advanced methods. J. Oleo Sci. 2018, 67, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Deng, L.; Zhu, X.M.; Fan, Y.; Hu, J.N.; Li, J.; Deng, Z.Y. Novel approach to evaluate the oxidation state of vegetable oils using characteristic oxidation indicators. J. Agric. Food Chem. 2014, 62, 12545–12552. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Wen, S.; Sun, Y.; Chen, J.; Gao, Y.; Yu, X. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chem. 2021, 358, 129834. [Google Scholar] [CrossRef]
- Lunn, J.; Theobald, H.E. The health effects of dietary unsaturated fatty acids. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Engin, K.N. Alpha-tocopherol: Looking beyond an antioxidant. Mol. Vis. 2009, 15, 855. [Google Scholar]
- Jing, P.; Zhao, S.J.; Jian, W.J.; Qian, B.J.; Dong, Y.; Pang, J. Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids. Molecules 2012, 17, 12910–12924. [Google Scholar] [CrossRef]
- Mohanan, A.; Nickerson, M.T.; Ghosh, S. Oxidative stability of flaxseed oil: Effect of hydrophilic, hydrophobic and intermediate polarity antioxidants. Food Chem. 2018, 266, 524–533. [Google Scholar] [CrossRef]
- Christodouleas, D.; Fotakis, C.; Papadopoulos, K.; Yannakopoulou, E.; Calokerinos, A.C. Development and validation of a chemiluminogenic method for the evaluation of antioxidant activity of hydrophilic and hydrophobic antioxidants. Anal. Chim. Acta 2009, 652, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Farhoosh, R. Shelf-life prediction of edible fats and oils using Rancimat. Lipid Technol. 2007, 19, 232–234. [Google Scholar] [CrossRef]
- Yang, K.M.; Cheng, M.C.; Chen, C.W.; Tseng, C.Y.; Lin, L.Y.; Chiang, P.Y. Characterization of volatile compounds with HS-SPME from oxidized n-3 PUFA rich oils via Rancimat tests. J. Oleo Sci. 2017, 66, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Farhoosh, R.; Niazmand, R.; Rezaei, M.; Sarabi, M. Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. Eur. J. Lipid Sci. Technol. 2008, 110, 587–592. [Google Scholar] [CrossRef]
- Kung, T.L.; Chen, Y.J.; Chao, L.K.; Wu, C.S.; Lin, L.Y.; Chen, H.C. Analysis of volatile constituents in Platostoma palustre (Blume) using headspace solid-phase microextraction and simultaneous distillation-extraction. Foods 2019, 8, 415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maire, M.; Rega, B.; Cuvelier, M.E.; Soto, P.; Giampaoli, P. Lipid oxidation in baked products: Impact of formula and process on the generation of volatile compounds. Food Chem. 2013, 141, 3510–3518. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, F.J.; Zamora, R. Formation of phenylacetic acid and benzaldehyde by degradation of phenylalanine in the presence of lipid hydroperoxides: New routes in the amino acid degradation pathways initiated by lipid oxidation products. Food Chem. X 2019, 2, 100037. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, H.; McClements, D.J.; Nie, S.; Shen, M.; Li, C.; Xie, M. pH and lipid unsaturation impact the formation of acrylamide and 5-hydroxymethylfurfural in model system at frying temperature. Food Res. Int. 2019, 123, 403–413. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. Formation of flavour compounds in the Maillard reaction. Biotechnol. Adv. 2006, 24, 230–233. [Google Scholar] [CrossRef]
- Vhangani, L.N.; Van Wyk, J. Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system. Food Chem. 2016, 208, 301–308. [Google Scholar] [CrossRef]
- AOCS. AOCS. AOCS Official Method Ce 2-66: Preparation of methyl esters of fatty acids. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; Firestone, D., Ed.; American Oil Chemists’ Society: Champaign, IL, USA, 1997. [Google Scholar]
- Han, J.; Yang, Y.; Feng, M. Contents of phytosterols in vegetables and fruits commonly consumed in China. Biomed. Environ. Sci. 2008, 21, 449–453. [Google Scholar] [CrossRef]
P12 | P14 | HP12 | HP14 | |
---|---|---|---|---|
Quality indices | ||||
Yield | 32.55 | 33.61 | 29.78 | 30.13 |
BI | 26.54 | 25.67 | 26.63 | 26.26 |
PV | 5.61 | 6.13 | 6.32 | 6.88 |
AV | 1.25 | 1.11 | 1.65 | 0.98 |
p-AV | 6.15 | 12.63 | 6.23 | 10.66 |
TOTOX | 17.35 | 24.86 | 20.63 | 24.42 |
Fatty acid compositions (%) | ||||
C16:0 | 14.03 | 13.44 | 13.88 | 13.04 |
C18:0 | 1.78 | 1.62 | 1.63 | 1.64 |
C18:1 | 37.70 | 41.41 | 37.84 | 41.68 |
C18:2 | 40.69 | 38.86 | 41.29 | 38.40 |
C20:0 | 0.94 | 0.77 | 0.91 | 0.82 |
C20:1 | 1.31 | 1.19 | 1.36 | 1.33 |
C22:0 | 2.43 | 1.96 | 2.18 | 2.16 |
C24:0 | 1.12 | 0.77 | 0.91 | 0.92 |
P12 | P14 | HP12 | HP14 | |
---|---|---|---|---|
Antioxidant Components | ||||
γ-tocopherol 1 | 56.15 ± 2.36 c | 43.67 ± 2.28 b | 63.51 ± 3.80 d | 34.73 ± 1.07 a |
α-tocopherol 1 | 55.59 ± 1.95 c | 48.65 ± 2.21 b | 52.41 ± 1.64 b | 38.86 ± 2.29 a |
squalene 1 | 7.36 ± 0.20 a | 8.25 ± 0.67 a | 9.41 ± 0.33 a | 8.11 ± 0.55 a |
campesterol 1 | 2.89 ± 0.07 a | 2.91 ± 0.15 a | 3.28 ± 0.21 a | 2.71 ± 0.28 a |
stigmasterol 1 | 2.58 ± 0.21 a | 2.69 ± 0.24 a | 3.11 ± 0.18 a | 2.41 ± 0.12 a |
stigmast-5-en-3-ol 1 | 8.56 ± 0.71 a | 8.23 ± 0.60 a | 7.82 ± 0.64 a | 7.91 ± 0.17 a |
stigmasta-5,24(28)-dien-3-ol 1 | 1.74 ± 0.30 a | 1.80 ± 0.32 a | 2.27 ± 0.33 a | 2.15 ± 0.47 a |
Total phenol 2 | 19.30 ± 1.69 b | 30.81 ± 2.61 c | 15.87 ± 1.75 a | 20.36 ± 1.42 b |
Total flavonoid 3 | 4.17 ± 0.33 a | 4.38 ± 0.32 ab | 4.59 ± 0.41 b | 4.91 ± 0.21 b |
Antioxidant activity | ||||
DPPH 4 | 40.82 ± 3.15 a | 46.21 ± 2.91 a | 41.14 ± 2.15 a | 44.18 ± 2.48 a |
FRAP 5 | 103.85 ± 6.61 a | 220.71 ± 10.92 d | 158.64 ± 9.62 b | 189.47 ± 11.74 c |
P12 | P14 | HP12 | HP14 | |
---|---|---|---|---|
Induction time (hours) | ||||
100 °C | 16.18 | 17.12 | 15.78 | 19.48 |
105 °C | 10.8 | 12.31 | 10.77 | 14.77 |
110 °C | 8.77 | 9.1 | 7.02 | 10.67 |
115 °C | 4.66 | 5.36 | 4.53 | 5.46 |
ln(K) = a(1/T) + b | ||||
a | −11.39 | −10.93 | −12.07 | −11.95 |
b | 27.73 | 26.45 | 29.58 | 28.99 |
Ea | 94.72 | 90.01 | 100.35 | 99.39 |
Peak | RI | Compounds |
---|---|---|
1 | 800 | hexanal |
2 | 812 | methylpyrazine |
3 | 829 | 2-furanmethanol |
4 | 881 | 2-acetylfuran |
5 | 886 | 2,5-dimethylpyrazine |
6 | 893 | ethenylpyrazine |
7 | 931 | benzaldehyde |
8 | 954 | 2,2-dimethoxyethanol |
9 | 957 | 1-octen-3-one |
10 | 964 | 1-octen-3-ol |
11 | 980 | ethyl-methylpyrazine |
12 | 992 | ethenyl-methylpyrazine |
13 | 1002 | benzenemethanol |
14 | 1008 | benzeneacetaldehyde |
15 | 1022 | 2-acetylpyrrole |
16 | 1032 | 2-octenal |
17 | 1036 | acetophenone |
18 | 1052 | 1-octanol |
19 | 1061 | ethyl-dimethylpyrazine |
20 | 1066 | 2,5-diethylpyrazine |
21 | 1074 | 2-methyl-5-propenylpyrazine |
22 | 1079 | maltol |
23 | 1082 | nonanal |
24 | 1087 | 2-acetyl-3-methylpyrazine |
25 | 1091 | benzyl nitrile |
26 | 1100 | undecane |
27 | 1103 | methyl nicotinate |
28 | 1110 | 5-methyl-6,7-dihydro-5H-cyclopenta[b]pyrazine |
29 | 1122 | 2-butyl-3-methylpyrazine |
30 | 1129 | 1-ethenyl-4-methoxybenzene |
31 | 1137 | diethyl-methylpyrazine |
32 | 1139 | 4-ethylphenol |
33 | 1155 | 2,4,6-trimethylbenzaldehyde |
34 | 1164 | 2-methyl-5H,6,7-dihydrocyclopentapyrazine |
35 | 1172 | 2-decanone |
36 | 1176 | 2-pentylpyridine |
37 | 1184 | 2,5-dimethyl-3-(2-methylpropyl)pyrazine |
38 | 1187 | 2,3-dihydrobenzofuran |
39 | 1193 | 2-acethyl-3,5-dimethylpyrazine |
40 | 1195 | 3,5-dimethyl-2-(Z-1-propenyl)-pyrazine |
41 | 1200 | dodecane |
42 | 1201 | 2-methyl-1,3-cyclohexanedione |
43 | 1204 | 4-Oxononanal |
44 | 1228 | 2-methyl-6-(3-methyl-butyl)-pyrazine |
45 | 1234 | 5-pentyl-3H-furan-2-one |
46 | 1238 | 2-phenyl-2-butenal |
47 | 1257 | 4-ethyl-2-methoxyphenol |
48 | 1260 | formamidobenzene |
49 | 1271 | 2,4-decadienal |
50 | 1289 | 2-methoxy-4-vinylphenol |
51 | 1290 | 2-hexylfuran |
52 | 1295 | 3-butyl-2,5-dimethylpyrazine |
53 | 1300 | tridecane |
54 | 1312 | methyl-2-(1-methyl-2-pyrrolidinylidene)acetate |
55 | 1322 | dihydro-5-pentyl-2(3H)-furanone |
56 | 1400 | tetradecane |
57 | 1416 | tridecanoic acid |
58 | 1458 | 3-eicosene |
Sample Name | Description |
---|---|
P12 | Unshelled peanuts roasted at 120 °C |
P14 | Unshelled peanuts roasted at 140 °C |
PH12 | Shelled peanuts roasted at 120 °C |
PH14 | Shelled peanuts roasted at 140 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.-M.; Cheng, M.-C.; Ye, Z.-S.; Chu, L.-P.; Chen, H.-C. Chemical Properties of Peanut Oil from Arachis hypogaea L. ‘Tainan 14’ and Its Oxidized Volatile Formation. Molecules 2022, 27, 6811. https://doi.org/10.3390/molecules27206811
Yang K-M, Cheng M-C, Ye Z-S, Chu L-P, Chen H-C. Chemical Properties of Peanut Oil from Arachis hypogaea L. ‘Tainan 14’ and Its Oxidized Volatile Formation. Molecules. 2022; 27(20):6811. https://doi.org/10.3390/molecules27206811
Chicago/Turabian StyleYang, Kai-Min, Ming-Ching Cheng, Zih-Sian Ye, Lee-Ping Chu, and Hsin-Chun Chen. 2022. "Chemical Properties of Peanut Oil from Arachis hypogaea L. ‘Tainan 14’ and Its Oxidized Volatile Formation" Molecules 27, no. 20: 6811. https://doi.org/10.3390/molecules27206811
APA StyleYang, K. -M., Cheng, M. -C., Ye, Z. -S., Chu, L. -P., & Chen, H. -C. (2022). Chemical Properties of Peanut Oil from Arachis hypogaea L. ‘Tainan 14’ and Its Oxidized Volatile Formation. Molecules, 27(20), 6811. https://doi.org/10.3390/molecules27206811