A More Sustainable Isocyanide Synthesis from N-Substituted Formamides Using Phosphorus Oxychloride in the Presence of Triethylamine as Solvent
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1 Synthesis of Isocyanide from N-Formamide
General Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pirrung, M.C.; Ghorai, S.; Ibarra-Rivera, T.R. Multicomponent Reactions of Convertible Isonitriles. J. Org. Chem. 2009, 74, 4110–4117. [Google Scholar] [CrossRef] [PubMed]
- Gokel, G.W. Addendum—Recent Developments in Isonitrile Chemistry. Org. Chem. 1971, 20, 235–256. [Google Scholar]
- Caputo, S.; Basso, A.; Moni, L.; Riva, R.; Rocca, V.; Banfi, L. Diastereoselective Ugi reaction of chiral 1,3-aminoalcohols derived from an organocatalytic Mannich reaction. Beilstein J. Org. Chem. 2016, 12, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Mocci, R.; Murgia, S.; De Luca, L.; Colacino, E.; Delogu, F.; Porcheddu, A. Ball-milling and cheap reagents breathe green life into the one hundred-year-old Hofmann reaction. Org. Chem. Front. 2017, 5, 531–538. [Google Scholar] [CrossRef]
- Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 2000, 39, 3168–3210. [Google Scholar] [CrossRef]
- Chandgude, A.L.; Dömling, A. An efficient Passerini tetrazole reaction (PT-3CR). Green Chem. 2016, 18, 3718–3721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Evanno, L.; Poupon, E. Biosynthetic Routes to Natural Isocyanides. Eur. J. Org. Chem. 2020, 2020, 1919–1929. [Google Scholar] [CrossRef]
- Zakrzewski, J.; Jezierska, J.; Hupko, J. 4-Isocyano-2,2,6,6-tetramethylpiperidin-1-oxyl: A valuable precursor for the synthesis of new nitroxides. Org. Lett. 2004, 6, 695–697. [Google Scholar] [CrossRef] [PubMed]
- Fattorusso, E.; Taglialatela-Scafati, O. Antimalarial lead compounds from marine organisms. Stud. Nat. Prod. Chem. 2005, 32, 169–207. [Google Scholar] [CrossRef]
- Pirrung, M.C.; Ghorai, S. Versatile, fragrant, convertible isonitriles. J. Am. Chem. Soc. 2006, 128, 11772–11773. [Google Scholar] [CrossRef]
- Bandgar, B.P.; Kinkar, S.N.; Chobe, S.S.; Yemul, G.G.M.O.S.; Dawane, B.S. Clean and Green Approach for N-formylation of Amines using Formic acid under neat reaction condition. Arch. Appl. Sci. Res. 2011, 3, 246–251. [Google Scholar]
- Hossaini, Z.; Rostami-Charati, F.; Moghadam, M.E.; Moghaddasi-Kochaksaraee, F. Expeditious solvent-free synthesis of 1,3-thiazolanes via multicomponent reactions. Chin. Chem. Lett. 2014, 25, 794–796. [Google Scholar] [CrossRef]
- Sheldon, R.A. Fundamentals of Green Chemistry: Efficiency in Reaction Design. Chem. Soc. Rev. 2012, 41, 1437–1451. Available online: http://www.rsc.org/suppdata/cs/c1/c1cs15219j/c1cs15219j.pdf (accessed on 16 April 2021). [CrossRef] [Green Version]
- Hooper, M.M.; DeBoef, B. A Green Multicomponent Reaction for the Organic Chemistry Laboratory. The Aqueous Passerini Reaction. J. Chem. Educ. 2009, 86, 1077–1079. [Google Scholar] [CrossRef]
- Noakes, G.R. The Structure. Nature 1950, 166, 923. [Google Scholar] [CrossRef]
- Paulsen, H. International Edition in English. Angew. Chem. Int. Ed. Engl. 1982, 21, 155–173. Available online: http://onlinelibrary.wiley.com/doi/10.1002/anie.198201553/abstract (accessed on 21 February 2021). [CrossRef]
- Ugi, I.; Werner, B.; Domling, A. The Chemistry of Isocyanides, their MultiComponent Reactions and their Libraries. Molecules 2003, 8, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Basoccu, F.; Cuccu, F.; Casti, F.; Mocci, R.; Fattuoni, C.; Porcheddu, A. A trustworthy mechanochemical route to isocyanides. Beilstein J. Org. Chem. 2022, 18, 732–737. [Google Scholar] [CrossRef]
- Patil, P.; Ahmadian-Moghaddam, M.; Dömling, A. Isocyanide 2.0. Green Chem. 2020, 22, 6902–6911. [Google Scholar] [CrossRef]
- Wanzlick, H.W.; Lehmann-Horchler, M.; Mohrmann, S.; Gritzky, R.; Heidepriem, H.; Pankow, B. New Methods of Preparative Organic Chemistry IV. Angew. Chem. Int. Ed. 1964, 3, 401–408. [Google Scholar] [CrossRef]
- Eckert, H.; Ugi, I. The Role of Isocyanides in the Synthesis of β-Lactam Antibiotics and Related Compounds. Stud. Nat. Prod. Chem. 1993, 12, 113–143. [Google Scholar] [CrossRef]
- Niznik, G.E.; Walborsky, H.M. Isocyanide reductions. A convenient method for deamination. J. Org. Chem. 1978, 43, 2396–2399. [Google Scholar] [CrossRef]
- Keita, M.; Vandamme, M.; Mahé, O.; Paquin, J.-F. Synthesis of isocyanides through dehydration of formamides using XtalFluor-E. Tetrahedron Lett. 2015, 56, 461–464. [Google Scholar] [CrossRef]
- Waibel, K.A.; Nickisch, R.; Möhl, N.; Seim, R.; Meier, M.A.R. A more sustainable and highly practicable synthesis of aliphatic isocyanides. Green Chem. 2020, 22, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Sankar, K.G.; Garima, P.; Vikas, C.; Darshan, R.S.; Tapan, M.S.; Nikita, P.B. One-pot preparation of isocyanides from amines and their multicomponent reactions: Crucial role of dehydrating agent and base. RSC Adv. 2013, 3, 10867–10874. [Google Scholar]
- Porcheddu, A.; Giacomelli, G.; Chimica, D. Microwave-Assisted Synthesis of Isonitriles: A General Simple Methodology. J. Org. Chem. 2005, 70, 2361–2363. [Google Scholar] [CrossRef]
- Luo, Q.-L.; Wang, X.; Wang, Q.-G. Synthesis of Isonitriles from N-Substituted Formamides Using Triphenylphosphine and Iodine. Synthesis 2014, 47, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 Selection Guide of Classical- and Less Classical-solvents. Green Chem. 2016, 18, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Giustiniano, M.; Basso, A.; Mercalli, V.; Massarotti, A.; Novellino, E.; Tron, G.C.; Zhu, J. To each his own: Isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. Chem. Soc. Rev. 2016, 46, 1295–1357. [Google Scholar] [CrossRef]
- Dömling, A. Novel synthesis of praziquantel. WO2009115333, 24 September 2009. [Google Scholar]
Entry | Solvent | Yield % | E-factor | Time |
---|---|---|---|---|
1 | THF | 72 | 10.4 | 1 h |
2 | Diethyl ether | 37 | 17.2 | 30 min |
2 | Toluene | 15 | 20.3 | 40 min |
3 | Acetonitrile | 56 | 46.4 | 1 h |
4 | DCM | 94 | 8.2 | 25 min |
5 | Solvent free | 98 | 5.5 | 5 min |
Entry | Solvent | Base | Time | Yield |
---|---|---|---|---|
1. | Solvent free | Pyridine | 20 min | 76% |
2. | Solvent free | Triethylamine | 5 min | 98% |
3. | Solvent free | Diisopropylamine | 25 min | 62% |
4. | Solvent free | Diisopropyl ethylamine | 30 min | 59% |
Entry | Reaction Condition | Time | Yield |
---|---|---|---|
1. | N-formamide (1 mmol)/POCl3 (1 mmol) 0 °C | 5 min | 98% |
2. | N-formamide (1 mmol)/POCl3 (1 mmol) r.t. | 35 min | 51% |
3. | N-formamide (1 mmol)/POCl3 (0.5 mmol) 0 °C | 20 min | 67% |
4. | N-formamide (1 mmol)/POCl3 (0.5 mmol) r.t. | 35 min | 28% |
5. | N-formamide (1 mmol)/POCl3 (1.5 mmol) 0 °C | 5 min | 89% |
6. | N-formamide (1 mmol)/POCl3 (1.5 mmol) r.t. | 5 min | 84% |
Entry | Product | Yield % | Entry | Product | Yield % |
---|---|---|---|---|---|
1. | 98 | 2 | 85 | ||
3. | 90 | 4. | 86 | ||
5. | 83 | 6. | 85 | ||
7. | 79 | 8 | 85 | ||
9 | 87 | 10 | 94 | ||
11 | 86 | 12 | 92 | ||
13 | 88 | 14 | 74 | ||
15 | 80 | 16 | 97 | ||
17 | 90 | 18 | 88 | ||
19 | 90 | 20 | 76 | ||
21 | 91 | 22 | 85 | ||
23 | 96 | 24 | 81 | ||
25 | 68 | 26 | 65 | ||
27 | 78 | 28 | 65 | ||
29 | 45 | 30 | 54 | ||
31 | 68 | 32 | 87 | ||
33 | 76 | 34 | 93 |
References | Waibel 2020 [18] | Wang 2015 [27] | Domling 2009 [30] | Patil 2020 [19] | This Method |
---|---|---|---|---|---|
Solvent used (mL) | 200 | 900 | 100 | 50 | 0 |
Aq. Waste generated (mL) | 500 | 3000 | 300 | 0 | 0 |
% Yield | 97 | 90 | 65 | 97 | 98 |
Reaction time (min) | 120 | 60 | 300 | 12 | 5 |
Number of Operations | 9 | 7 | 9 | 3 | 3 |
E-Factor | 7.41 | 18.4 | 50.5 | 8.4 | 5.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salami, S.A.; Siwe-Noundou, X.; Krause, R.W.M. A More Sustainable Isocyanide Synthesis from N-Substituted Formamides Using Phosphorus Oxychloride in the Presence of Triethylamine as Solvent. Molecules 2022, 27, 6850. https://doi.org/10.3390/molecules27206850
Salami SA, Siwe-Noundou X, Krause RWM. A More Sustainable Isocyanide Synthesis from N-Substituted Formamides Using Phosphorus Oxychloride in the Presence of Triethylamine as Solvent. Molecules. 2022; 27(20):6850. https://doi.org/10.3390/molecules27206850
Chicago/Turabian StyleSalami, Sodeeq Aderotimi, Xavier Siwe-Noundou, and Rui Werner Maçedo Krause. 2022. "A More Sustainable Isocyanide Synthesis from N-Substituted Formamides Using Phosphorus Oxychloride in the Presence of Triethylamine as Solvent" Molecules 27, no. 20: 6850. https://doi.org/10.3390/molecules27206850
APA StyleSalami, S. A., Siwe-Noundou, X., & Krause, R. W. M. (2022). A More Sustainable Isocyanide Synthesis from N-Substituted Formamides Using Phosphorus Oxychloride in the Presence of Triethylamine as Solvent. Molecules, 27(20), 6850. https://doi.org/10.3390/molecules27206850