Resveratrol Analogues as Selective Estrogen Signaling Pathway Modulators: Structure–Activity Relationship
Abstract
:1. Introduction
2. Results and Discussion
2.1. Binding Affinity of Resveratrol and Its Analogues to ERα and ERβ
2.2. Docking Studies
2.3. Impact on the Proliferation of Estrogen-Dependent MCF−7 and Ishikawa Cell Lines—In Vitro Study
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Ligand-Binding Studies by Fluorescence Polarization
3.3. Computational Details
3.4. Cell Culture
3.5. Ishikawa Cells Proliferation
3.6. MCF-7 Cells Proliferation
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020, 10, 1111. [Google Scholar] [CrossRef] [PubMed]
- Gille, L.; Murias, M.; Handler, N.; Erker, T.; Szekeres, T.; Nohl, H.; Jager, W. Cytotoxicity and Antioxidant-Derived Prooxidants of Hydroxystilbenes. Pharmacology 2004, 72, 152. [Google Scholar]
- Qasem, R.J. The Estrogenic Activity of Resveratrol: A Comprehensive Review of in Vitro and in Vivo Evidence and the Potential for Endocrine Disruption. Crit. Rev. Toxicol. 2020, 50, 439–462. [Google Scholar] [CrossRef] [PubMed]
- Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, Prooxidant and Cytotoxic Activity of Hydroxylated Resveratrol Analogues: Structure-Activity Relationship. Biochem. Pharmacol. 2005, 69, 903–912. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant Properties of Resveratrol: A Structure–Activity Insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Shah, A.A.; Shah, A.; Kumar, A.; Lakra, A.; Singh, D.; Nayak, Y. Phytoestrogenic Potential of Resveratrol by Selective Activation of Estrogen Receptor-α in Osteoblast Cells. Rev. Bras. Farmacogn. 2022, 32, 248–256. [Google Scholar] [CrossRef]
- Ashby, J.; Tinwell, H.; Pennie, W.; Brooks, A.N.; Lefevre, P.A.; Beresford, N.; Sumpter, J.P. Partial and Weak Oestrogenicity of the Red Wine Constituent Resveratrol: Consideration of Its Superagonist Activity in MCF-7 Cells and Its Suggested Cardiovascular Protective Effects. J. Appl. Toxicol. 1999, 19, 39–45. [Google Scholar] [CrossRef]
- Basly, J.P.; Marre-Fournier, F.; Le Bail, J.C.; Habrioux, G.; Chulia, A.J. Estrogenic/Antiestrogenic and Scavenging Properties of (E)- and (Z)-Resveratrol. Life Sci. 2000, 66, 769–777. [Google Scholar] [CrossRef]
- van Duursen, M.B.M. Modulation of Estrogen Synthesis and Metabolism by Phytoestrogens in Vitro and the Implications for Women’s Health. Toxicol. Res. 2017, 6, 772–794. [Google Scholar] [CrossRef] [Green Version]
- Gehm, B.D.; McAndrews, J.M.; Chien, P.Y.; Jameson, J.L. Resveratrol, a Polyphenolic Compound Found in Grapes and Wine, Is an Agonist for the Estrogen Receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 14138–14143. [Google Scholar] [CrossRef] [Green Version]
- Mgbonyebi, O.P.; Russo, J.; Russo, I.H. Antiproliferative Effect of Synthetic Resveratrol on Human Breast Epithelial Cells. Int. J. Oncol. 1998, 12, 865–869. [Google Scholar] [CrossRef]
- Levenson, A.S.; Gehm, B.D.; Pearce, S.T.; Horiguchi, J.; Simons, L.A.; Ward, J.E.; Jameson, J.L.; Jordan, V.C. Resveratrol Acts as an Estrogen Receptor (ER) Agonist in Breast Cancer Cells Stably Transfected with ER Alpha. Int. J. Cancer 2003, 104, 587–596. [Google Scholar] [CrossRef]
- Sinha, D.; Sarkar, N.; Biswas, J.; Bishayee, A. Resveratrol for Breast Cancer Prevention and Therapy: Preclinical Evidence and Molecular Mechanisms. Semin. Cancer Biol. 2016, 40–41, 209–232. [Google Scholar] [CrossRef]
- Chakraborty, S.; Levenson, A.S.; Biswas, P.K. Structural Insights into Resveratrol’s Antagonist and Partial Agonist Actions on Estrogen Receptor Alpha. BMC Struct. Biol. 2013, 13, 27. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-J.; Hsu, Y.-L.; Huang, Y.-F.; Tsai, E.-M. Molecular Mechanisms of Anticancer Effects of Phytoestrogens in Breast Cancer. Curr. Protein Pept. Sci. 2018, 19, 323–332. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Mattson, M.P.; Calabrese, V. Resveratrol Commonly Displays Hormesis: Occurrence and Biomedical Significance. Hum. Exp. Toxicol. 2010, 29, 980–1015. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Dahlman-Wright, K.; Gustafsson, J.-Å. Estrogen Receptor Alpha and Beta in Health and Disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 557–568. [Google Scholar] [CrossRef]
- Fuentes, N.; Silveyra, P. Estrogen Receptor Signaling Mechanisms. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 116, pp. 135–170. ISBN 978-0-12-815561-5. [Google Scholar]
- Yu, K.; Huang, Z.-Y.; Xu, X.-L.; Li, J.; Fu, X.-W.; Deng, S.-L. Estrogen Receptor Function: Impact on the Human Endometrium. Front. Endocrinol. 2022, 13, 827724. [Google Scholar] [CrossRef]
- Yu, P.; Wang, Y.; Li, C.; Lv, L.; Wang, J. Protective Effects of Downregulating Estrogen Receptor Alpha Expression in Cervical Cancer. Anticancer. Agents Med. Chem. 2018, 18, 1975–1982. [Google Scholar] [CrossRef]
- Xu, X.-L.; Huang, Z.-Y.; Yu, K.; Li, J.; Fu, X.-W.; Deng, S.-L. Estrogen Biosynthesis and Signal Transduction in Ovarian Disease. Front. Endocrinol. 2022, 13, 827032. [Google Scholar] [CrossRef]
- Haldosén, L.-A.; Zhao, C.; Dahlman-Wright, K. Estrogen Receptor Beta in Breast Cancer. Mol. Cell. Endocrinol. 2014, 382, 665–672. [Google Scholar] [CrossRef]
- Leygue, E.; Murphy, L.C. A Bi-Faceted Role of Estrogen Receptor β in Breast Cancer. Endocr. -Relat. Cancer 2013, 20, R127–R139. [Google Scholar] [CrossRef]
- De Amicis, F.; Chimento, A.; Montalto, F.; Casaburi, I.; Sirianni, R.; Pezzi, V. Steroid Receptor Signallings as Targets for Resveratrol Actions in Breast and Prostate Cancer. Int. J. Mol. Sci. 2019, 20, 1087. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Akwabi-Ameyaw, A.; Britton, J.E.; Katamreddy, S.R.; Navas, F.; Miller, A.B.; Williams, S.P.; Gray, D.W.; Orband-Miller, L.A.; Shearin, J.; et al. Synthesis of 3-Alkyl Naphthalenes as Novel Estrogen Receptor Ligands. Bioorganic Med. Chem. Lett. 2008, 18, 5075–5077. [Google Scholar] [CrossRef]
- RCSB Protein Data Bank (RCSB PDB). RCSB PDB-3DT3: Human Estrogen Receptor Alpha LBD with GW368. Available online: https://www.rcsb.org/structure/3dt3 (accessed on 11 July 2022).
- Kucinska, M.; Giron, M.-D.; Piotrowska, H.; Lisiak, N.; Granig, W.H.; Lopez-Jaramillo, F.-J.; Salto, R.; Murias, M.; Erker, T. Novel Promising Estrogenic Receptor Modulators: Cytotoxic and Estrogenic Activity of Benzanilides and Dithiobenzanilides. PLoS ONE 2016, 11, e0145615. [Google Scholar] [CrossRef]
- Yu, E.; Xu, Y.; Shi, Y.; Yu, Q.; Liu, J.; Xu, L. Discovery of Novel Natural Compound Inhibitors Targeting Estrogen Receptor α by an Integrated Virtual Screening Strategy. J. Mol. Model 2019, 25, 278. [Google Scholar] [CrossRef]
- Czaja, K.; Kujawski, J.; Śliwa, P.; Kurczab, R.; Kujawski, R.; Stodolna, A.; Myślińska, A.; Bernard, M.K. Theoretical Investigations on Interactions of Arylsulphonyl Indazole Derivatives as Potential Ligands of VEGFR2 Kinase. Int. J. Mol. Sci. 2020, 21, 4793. [Google Scholar] [CrossRef]
- Pratama, M.R.F.; Poerwono, H.; Siswandono, S. Design and Molecular Docking of Novel 5-O-Benzoylpinostrobin Derivatives as Anti-Breast Cancer. Thai J. Pharm. Sci. 2020, 43, 201–212. [Google Scholar]
- McCullough, C.; Neumann, T.S.; Gone, J.R.; He, Z.; Herrild, C.; Wondergem (nee Lukesh), J.; Pandey, R.K.; Donaldson, W.A.; Sem, D.S. Probing the Human Estrogen Receptor-α Binding Requirements for Phenolic Mono- and Di-Hydroxyl Compounds: A Combined Synthesis, Binding and Docking Study. Bioorganic Med. Chem. 2014, 22, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Amaya, S.C.; Savaris, R.F.; Filipovic, C.J.; Wise, J.D.; Hestermann, E.; Young, S.L.; Lessey, B.A. Resveratrol and Endometrium: A Closer Look at an Active Ingredient of Red Wine Using In Vivo and In Vitro Models. Reprod. Sci. 2014, 21, 1362–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.H.; O’Donnell, A.L.; Mohamed, S.; Mousa, S.; Dandona, P. Overexpression of Estrogen Receptor-α in the Endometrial Carcinoma Cell Line Ishikawa: Inhibition of Growth and Angiogenic Factors. Gynecol. Oncol. 2004, 95, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Bhat, K.P.; Pezzuto, J.M. Resveratrol Exhibits Cytostatic and Antiestrogenic Properties with Human Endometrial Adenocarcinoma (Ishikawa) Cells. Cancer Res. 2001, 61, 6137–6144. [Google Scholar] [PubMed]
- Wober, J.; Weißwange, I.; Vollmer, G. Stimulation of Alkaline Phosphatase Activity in Ishikawa Cells Induced by Various Phytoestrogens and Synthetic Estrogens. J. Steroid Biochem. Mol. Biol. 2002, 83, 227–233. [Google Scholar] [CrossRef]
- Ford, C.H.J.; Al-Bader, M.; Al-Ayadhi, B.; Francis, I. Reassessment of Estrogen Receptor Expression in Human Breast Cancer Cell Lines. Anticancer Res. 2011, 31, 521–527. [Google Scholar]
- Al-Bader, M.; Ford, C.; Al-Ayadhy, B.; Francis, I. Analysis of Estrogen Receptor Isoforms and Variants in Breast Cancer Cell Lines. Exp. Ther. Med. 2011, 2, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Comşa, Ş.; Cîmpean, A.M.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 Years of Experience in Research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar]
- Tomé-Carneiro, J.; Larrosa, M.; González-Sarrías, A.; Tomás-Barberán, F.; García-Conesa, M.; Espín, J. Resveratrol and Clinical Trials: The Crossroad from In Vitro Studies to Human Evidence. Curr. Pharm. Des. 2013, 19, 6064–6093. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.M.; Yan, J.; Soleas, G.J. Absorption of Three Wine-Related Polyphenols in Three Different Matrices by Healthy Subjects. Clin. Biochem. 2003, 36, 79–87. [Google Scholar] [CrossRef]
- Sergides, C.; Chirilă, M.; Silvestro, L.; Pitta, D.; Pittas, A. Bioavailability and Safety Study of Resveratrol 500 Mg Tablets in Healthy Male and Female Volunteers. Exp. Med. 2016, 11, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Boocock, D.J.; Faust, G.E.S.; Patel, K.R.; Schinas, A.M.; Brown, V.A.; Ducharme, M.P.; Booth, T.D.; Crowell, J.A.; Perloff, M.; Gescher, A.J.; et al. Phase I Dose Escalation Pharmacokinetic Study in Healthy Volunteers of Resveratrol, a Potential Cancer Chemopreventive Agent. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1246–1252. [Google Scholar] [CrossRef] [Green Version]
- Borgert, C.J.; LaKind, J.S.; Witorsch, R.J. A Critical Review of Methods for Comparing Estrogenic Activity of Endogenous and Exogenous Chemicals in Human Milk and Infant Formula. Env. Health Perspect. 2003, 111, 1020–1036. [Google Scholar] [CrossRef] [Green Version]
- Bowers, J.L.; Tyulmenkov, V.V.; Jernigan, S.C.; Klinge, C.M. Resveratrol Acts as a Mixed Agonist/Antagonist for Estrogen Receptors α and Β*. Endocrinology 2000, 141, 3657–3667. [Google Scholar] [CrossRef]
- Gehm, B.D.; Levenson, A.S.; Liu, H.; Lee, E.-J.; Amundsen, B.M.; Cushman, M.; Jordan, V.C.; Jameson, J.L. Estrogenic Effects of Resveratrol in Breast Cancer Cells Expressing Mutant and Wild-Type Estrogen Receptors: Role of AF-1 and AF-2. J. Steroid Biochem. Mol. Biol. 2004, 88, 223–234. [Google Scholar] [CrossRef]
- Ruotolo, R.; Calani, L.; Fietta, E.; Brighenti, F.; Crozier, A.; Meda, C.; Maggi, A.; Ottonello, S.; Del Rio, D. Anti-Estrogenic Activity of a Human Resveratrol Metabolite. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1086–1092. [Google Scholar] [CrossRef]
- Biagi, M.; Bertelli, A.A.E. Wine, Alcohol and Pills: What Future for the French Paradox? Life Sci. 2015, 131, 19–22. [Google Scholar] [CrossRef]
- Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French Paradox Revisited. Front. Pharm. 2012, 3, 141. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Serrero, G. Resveratrol, a Natural Product Derived from Grape, Exhibits Antiestrogenic Activity and Inhibits the Growth of Human Breast Cancer Cells. J. Cell Physiol. 1999, 179, 297–304. [Google Scholar] [CrossRef]
- Stahl, S.; Chun, T.-Y.; Gray, W.G. Phytoestrogens Act as Estrogen Agonists in an Estrogen-Responsive Pituitary Cell Line. Toxicol. Appl. Pharmacol. 1998, 152, 41–48. [Google Scholar] [CrossRef]
- Klinge, C.M.; Risinger, K.E.; Watts, M.B.; Beck, V.; Eder, R.; Jungbauer, A. Estrogenic Activity in White and Red Wine Extracts. J. Agric. Food Chem. 2003, 51, 1850–1857. [Google Scholar] [CrossRef]
- Maier-Salamon, A.; Böhmdorfer, M.; Riha, J.; Thalhammer, T.; Szekeres, T.; Jaeger, W. Interplay between Metabolism and Transport of Resveratrol. Ann. N. Y. Acad. Sci. 2013, 1290, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Murias, M.; Miksits, M.; Aust, S.; Spatzenegger, M.; Thalhammer, T.; Szekeres, T.; Jaeger, W. Metabolism of Resveratrol in Breast Cancer Cell Lines: Impact of Sulfotransferase 1A1 Expression on Cell Growth Inhibition. Cancer Lett. 2008, 261, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Murias, M.; Luczak, M.W.; Niepsuj, A.; Krajka-Kuzniak, V.; Zielinska-Przyjemska, M.; Jagodzinski, P.P.; Jäger, W.; Szekeres, T.; Jodynis-Liebert, J. Cytotoxic Activity of 3,3′,4,4′,5,5′-Hexahydroxystilbene against Breast Cancer Cells Is Mediated by Induction of P53 and Downregulation of Mitochondrial Superoxide Dismutase. Toxicol. Vitr. 2008, 22, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, R.; Ebrahimzadeh, M.A. Resveratrol—A Comprehensive Review of Recent Advances in Anticancer Drug Design and Development. Eur. J. Med. Chem. 2020, 200, 112356. [Google Scholar] [CrossRef]
- Kucinska, M.; Piotrowska, H.; Luczak, M.W.; Mikula-Pietrasik, J.; Ksiazek, K.; Wozniak, M.; Wierzchowski, M.; Dudka, J.; Jäger, W.; Murias, M. Effects of Hydroxylated Resveratrol Analogs on Oxidative Stress and Cancer Cells Death in Human Acute T Cell Leukemia Cell Line: Prooxidative Potential of Hydroxylated Resveratrol Analogs. Chem. Biol. Interact. 2014, 209, 96–110. [Google Scholar] [CrossRef]
- Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jäger, W. Resveratrol Analogues as Selective Cyclooxygenase-2 Inhibitors: Synthesis and Structure-Activity Relationship. Bioorg. Med. Chem. 2004, 12, 5571–5578. [Google Scholar] [CrossRef]
- Gaussian 16 Rev. C.01/C.02 Release Notes|Gaussian.Com. Available online: https://gaussian.com/relnotes/ (accessed on 17 September 2022).
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions. Protein Eng. Des. Sel. 1995, 8, 127–134. [Google Scholar] [CrossRef]
- Psi4 1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability|Journal of Chemical Theory and Computation. Available online: https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00174 (accessed on 17 September 2022).
- Ligasová, A.; Koberna, K. DNA Dyes—Highly Sensitive Reporters of Cell Quantification: Comparison with Other Cell Quantification Methods. Molecules 2021, 26, 5515. [Google Scholar] [CrossRef]
Compound | Pos. 3 (=R1) | Pos. 4 (=R2) | Pos. 5 (=R3) | Pos. 3′ (=R4) | Pos. 4′ (=R5) | Pos. 5′ (=R6) |
---|---|---|---|---|---|---|
M1 | -OCH₃ | -H | -OCH₃ | -H | -OCH₃ | -H |
M2 | -OCH₃ | -OCH₃ | -OCH₃ | -H | -OCH₃ | -H |
M3 | -OCH₃ | -H | -OCH₃ | -OCH₃ | -H | -OCH₃ |
M4 | -OCH₃ | -H | -OCH₃ | -OCH₃ | -OCH₃ | -H |
M5 | -OCH₃ | -OCH₃ | -OCH₃ | -OCH₃ | -H | -OCH₃ |
M6 | -OCH₃ | -OCH₃ | -OCH₃ | -OCH₃ | -OCH₃ | -OCH₃ |
M7 | -OH | -H | -OH | -H | -OH | -H |
M8 | -OH | -OH | -OH | -H | -OH | -H |
M9 | -OH | -H | -OH | -OH | -H | -OH |
M10 | -OH | -H | -OH | -OH | -OH | -H |
M11 | -OH | -OH | -OH | -OH | -H | -OH |
M12 | -OH | -OH | -OH | -OH | -OH | -OH |
Compound | ERα Agonist EC50 (nM) | ERβ Agonist EC50 (nM) |
---|---|---|
resveratrol | 21.2 ± 2.2 | 32.3 ± 3.6 |
M8 | 108.5 ± 10.2 | 8.1 ± 1.6 |
estradiol | 8.3 ± 2.1 | 3.1 ± 0.9 |
Compound | ERα antagonist EC50 (nM) | ERβ antagonist EC50 (nM) |
M11 | 1012.3 ± 30.5 | >5000 |
M12 | 110.2 ± 15.5 | >5000 |
tamoxifen | 25.1 ± 3.6 | 240.2 ± 14.5 |
Contacts | Electrostatics | Exchange | Induction | Dispersion | Total SAPT0 |
---|---|---|---|---|---|
Glu353_estradiol | −16.48923 | 20.23436 | −8.87314 | −4.35977 | −15.11974 |
Glu353_M11 | −5.58802 | 8.24529 | −1.55134 | −6.79997 | −9.07403 |
Glu353_M12 | −7.23545 | 7.55212 | −1.67306 | −7.19391 | −13.62578 |
Glu353_M8 | −3.10338 | 28.25146 | −9.06124 | −6.54009 | 15.21372 |
Glu353_resveratrol | −0.04736 | 7.90314 | −1.92755 | −3.18726 | 4.36802 |
Glu353_tamoxifen | 0.06031 | 0.00046 | −0.02167 | −0.24192 | −0.32322 |
Leu346_estradiol | −2.98294 | 4.04051 | −0.88196 | −4.95162 | −7.61105 |
Leu346_M11 | −0.12331 | 0 | −0.00235 | −0.01384 | −0.22231 |
Leu346_M12 | 0.17741 | 0 | −0.00204 | −0.01417 | 0.25688 |
Leu346_M8 | 1.61081 | 0.8349 | −0.41181 | −2.44566 | −0.65619 |
Leu346_resveratrol | −0.69714 | 0.04584 | −0.11532 | −1.24237 | −3.20152 |
Leu346_tamoxifen | −0.09257 | 0.00032 | −0.01715 | −0.16193 | −0.43239 |
Leu387_estradiol | −7.32042 | 27.15115 | −4.08131 | −11.49336 | 6.78245 |
Leu387_M11 | −1.97959 | 8.37737 | −2.2794 | −5.13834 | −1.62543 |
Leu387_M12 | −1.93474 | 7.15897 | −1.66628 | −4.70677 | −1.83076 |
Leu387_M8 | 0.70104 | 2.78983 | −0.66255 | −4.62453 | −2.86244 |
Leu387_resveratrol | −4.72523 | 14.06595 | −2.517 | −9.62002 | −4.45619 |
Leu387_tamoxifen | −0.0311 | 0.03712 | −0.00821 | −0.37893 | −0.60736 |
Phe404_estradiol | −5.86981 | 26.08135 | −3.4992 | −12.04759 | 7.43375 |
Phe404_M11 | −0.06108 | −0.00002 | −0.01645 | −0.09533 | −0.2755 |
Phe404_M12 | 0.0765 | −0.00002 | −0.01385 | −0.09806 | −0.05646 |
Phe404_M8 | −1.37589 | 3.62802 | −0.65048 | −5.83775 | −6.75066 |
Phe404_resveratrol | −2.67406 | 10.12713 | −1.38583 | −7.92448 | −2.9597 |
Phe404_tamoxifen | −0.01185 | 0 | −0.00042 | −0.01658 | −0.04596 |
Trp383_estradiol | −0.08804 | 0.02432 | −0.02605 | −0.6719 | −1.21379 |
Trp383_M11 | −0.6325 | 0.00003 | −0.03516 | −0.12425 | −1.26194 |
Trp383_M12 | 0.51117 | 0.00002 | −0.0319 | −0.12425 | 0.5658 |
Trp383_M8 | −0.29856 | 0.00114 | −0.02108 | −0.44586 | −1.21807 |
Trp383_resveratrol | −0.30921 | 0.00078 | −0.02223 | −0.31586 | −1.0303 |
Trp383_tamoxifen | −3.32377 | 11.98675 | −1.40812 | −10.75084 | −5.57119 |
Contacts | Electrostatics | Exchange | Induction | Dispersion | Total SAPT0 |
---|---|---|---|---|---|
Gly472_estradiol | 0.67436 | 2.07195 | −0.42113 | −2.26001 | 0.10386 |
Gly472_M11 | −0.35218 | 0.93438 | −0.26853 | −1.18058 | −1.38151 |
Gly472_M12 | 1.32746 | 0.85342 | −0.27736 | −1.22162 | 1.08668 |
Gly472_M8 | 2.18831 | 4.18735 | −0.84722 | −2.52704 | 4.78306 |
Gly472_resveratrol | 1.18342 | 3.43909 | −0.56283 | −2.29321 | 2.81503 |
Gly472_tamoxifen | −0.00946 | 0 | −0.00005 | −0.00121 | −0.01708 |
His475_estradiol | 2.6531 | 0.32233 | −0.2649 | −1.1753 | 2.44654 |
His475_M11 | −8.82514 | 7.30577 | −2.10095 | −3.77149 | −11.7796 |
His475_M12 | −9.74329 | 16.46084 | −4.11932 | −6.04703 | −5.49602 |
His475_M8 | −5.37217 | 7.33722 | −1.4282 | −4.28748 | −5.97701 |
His475_resveratrol | −7.87121 | 7.70495 | −1.86333 | −3.38573 | −8.62985 |
His475_tamoxifen | 0.00019 | 0 | 0 | −0.00103 | −0.00132 |
Ile376_estradiol | −1.30063 | 6.40377 | −1.14341 | −3.91051 | 0.07843 |
Ile376_M11 | −0.79526 | 2.10206 | −0.40792 | −2.30483 | −2.24053 |
Ile376_M12 | −0.01665 | 1.65675 | −0.38003 | −2.25141 | −1.57979 |
Ile376_M8 | −0.19615 | 1.61684 | −0.22421 | −2.36771 | −1.86646 |
Ile376_resveratrol | −0.62198 | 4.52934 | −0.69196 | −3.92697 | −1.13396 |
Ile376_tamoxifen | 0.02073 | 0 | −0.00017 | −0.00308 | 0.02785 |
Ile380_estradiol | 0.03227 | 0.01127 | −0.00866 | −0.50132 | −0.74332 |
Ile380_M11 | 0.08539 | 0.00143 | −0.00339 | −0.22014 | −0.21785 |
Ile380_M12 | 0.0868 | 0.00136 | −0.00482 | −0.2241 | −0.22432 |
Ile380_M8 | 0.04291 | 0.0004 | −0.00576 | −0.21957 | −0.29007 |
Ile380_resveratrol | 0.13932 | 0.00055 | −0.0065 | −0.24107 | −0.17163 |
Ile380_tamoxifen | 0.01516 | 0 | −0.00034 | −0.01263 | 0.00349 |
Leu298_estradiol | −0.04451 | 0.23119 | −0.12607 | −1.75834 | −2.70551 |
Leu298_M11 | −3.442 | 0.51532 | −0.49191 | −2.31155 | −9.13157 |
Leu298_M12 | 0.86562 | 0.34692 | −0.21914 | −2.18667 | −1.90159 |
Leu298_M8 | 0.57419 | 1.13771 | −0.37985 | −2.36568 | −1.64719 |
Leu298_resveratrol | −3.26084 | 2.76471 | −0.95337 | −2.90107 | −6.93308 |
Leu298_tamoxifen | −0.03978 | 0 | −0.00095 | −0.01014 | −0.08108 |
Leu339_estradiol | −3.67128 | 8.14513 | −1.27868 | −9.21987 | −9.60098 |
Leu339_M11 | −1.31019 | 8.0409 | −1.70312 | −7.86206 | −4.51701 |
Leu339_M12 | −6.77811 | 7.65731 | −1.62827 | −7.81049 | −13.6405 |
Leu339_M8 | −2.9227 | 5.78307 | −0.93685 | −6.63826 | −7.51341 |
Leu339_resveratrol | −1.34789 | 7.12232 | −1.18906 | −7.29872 | −4.324 |
Leu339_tamoxifen | 0.21284 | 0.14239 | −0.0332 | −0.84432 | −0.83233 |
Leu343_estradiol | −2.18674 | 13.09303 | −2.21457 | −6.18217 | 3.99922 |
Leu343_M11 | −2.36232 | 5.97714 | −0.90422 | −3.47968 | −1.22563 |
Leu343_M12 | −1.89879 | 6.0387 | −0.83481 | −3.65332 | −0.55493 |
Leu343_M8 | −3.74278 | 7.31482 | −1.18679 | −3.67933 | −2.06224 |
Leu343_resveratrol | 0.54534 | 8.09066 | −2.46044 | −4.20701 | 3.13709 |
Leu343_tamoxifen | 0.06469 | 0.21826 | −0.10876 | −1.02673 | −1.3586 |
Met336_estradiol | −4.83937 | 13.30994 | −1.95439 | −7.8959 | −2.19874 |
Met336_M11 | −0.87805 | 0.07175 | −0.13742 | −1.25052 | −3.49673 |
Met336_M12 | −0.3888 | 0.08958 | −0.13754 | −1.31122 | −2.78558 |
Met336_M8 | −0.61499 | 2.07571 | −0.46877 | −3.18665 | −3.49747 |
Met336_resveratrol | −0.62168 | 1.34148 | −0.35293 | −2.64949 | −3.6376 |
Met336_tamoxifen | 0.00693 | −0.00001 | −0.00365 | −0.03468 | −0.05005 |
Met340_estradiol | −0.00016 | 0 | 0.00001 | 0 | −0.00023 |
Met340_M11 | −0.93804 | 8.09994 | −1.91689 | −3.86824 | 2.19404 |
Met340_M12 | −1.22265 | 6.13644 | −1.08073 | −3.37871 | 0.72404 |
Met340_M8 | −1.21279 | 3.35209 | −0.42284 | −2.76341 | −1.66842 |
Met340_resveratrol | −1.47083 | 2.07677 | −0.34852 | −2.7766 | −4.01457 |
Met340_tamoxifen | 0.23072 | 0.00275 | −0.00888 | −0.23187 | −0.0116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobylka, P.; Kucinska, M.; Kujawski, J.; Lazewski, D.; Wierzchowski, M.; Murias, M. Resveratrol Analogues as Selective Estrogen Signaling Pathway Modulators: Structure–Activity Relationship. Molecules 2022, 27, 6973. https://doi.org/10.3390/molecules27206973
Kobylka P, Kucinska M, Kujawski J, Lazewski D, Wierzchowski M, Murias M. Resveratrol Analogues as Selective Estrogen Signaling Pathway Modulators: Structure–Activity Relationship. Molecules. 2022; 27(20):6973. https://doi.org/10.3390/molecules27206973
Chicago/Turabian StyleKobylka, Paulina, Malgorzata Kucinska, Jacek Kujawski, Dawid Lazewski, Marcin Wierzchowski, and Marek Murias. 2022. "Resveratrol Analogues as Selective Estrogen Signaling Pathway Modulators: Structure–Activity Relationship" Molecules 27, no. 20: 6973. https://doi.org/10.3390/molecules27206973
APA StyleKobylka, P., Kucinska, M., Kujawski, J., Lazewski, D., Wierzchowski, M., & Murias, M. (2022). Resveratrol Analogues as Selective Estrogen Signaling Pathway Modulators: Structure–Activity Relationship. Molecules, 27(20), 6973. https://doi.org/10.3390/molecules27206973