Optimization of Jinhua Ham Classification Method Based on Volatile Flavor Substances and Determination of Key Odor Biomarkers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimal Conditions for SPME Extraction
2.2. GC–MS Analysis of Different Grades of Jinhua Ham
2.3. Key Volatiles in Jinhua Ham
3. Materials and Methods
3.1. Materials and Reagents
3.2. Experimental Method
3.2.1. Optimization of Single Factor of Extracting Conditions
3.2.2. Gas Chromatography–Mass Spectrometry (GC–MS)
3.3. Qualitative and Semi-Quantitative
3.4. Odor Activity Value (OAV)
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, C.-Z.; Zhang, W.-G.; Zhou, G.-H.; Xu, X.-L.; Kang, Z.-L.; Yin, Y. Isolation and Identification of Antioxidant Peptides from Jinhua Ham. J. Agric. Food Chem. 2013, 61, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
- Tomažin, U.; Škrlep, M.; Povše, M.P.; Lukač, N.B.; Karolyi, D.; Červek, M.; Čandek-Potokar, M. The effect of salting time and sex on chemical and textural properties of dry cured ham. Meat Sci. 2019, 161, 107990. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, P.; Kruszewski, B.; Stachelska, M.A.; Szabłowska, E. Development of volatile profile of Kumpiak podlaski dry-cured ham during traditional ripening. Int. J. Food Sci. Technol. 2020, 55, 3630–3638. [Google Scholar] [CrossRef]
- Nie, W.; Du, Y.-Y.; Xu, F.-R.; Zhou, K.; Wang, Z.-M.; Al-Dalali, S.; Wang, Y.; Li, X.-M.; Ma, Y.-H.; Xie, Y.; et al. Oligopeptides from Jinhua ham prevent alcohol-induced liver damage by regulating intestinal homeostasis and oxidative stress in mice. Food Funct. 2021, 12, 10053–10070. [Google Scholar] [CrossRef]
- Liu, D.; Bai, L.; Feng, X.; Chen, Y.P.; Zhang, D.; Yao, W.; Zhang, H.; Chen, G.; Liu, Y. Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS). Meat Sci. 2020, 168, 108178. [Google Scholar] [CrossRef]
- Li, P.; Xu, F.; Zhou, H.; Gao, Y.; Zhu, H.; Nie, W.; Wang, Z.; Wang, Y.; Deng, J.; Zhou, K.; et al. Evolution of antioxidant peptides and their proteomic homology during processing of Jinhua ham. LWT 2022, 166, 113771. [Google Scholar] [CrossRef]
- Hu, S.; Zhou, G.; Xu, X.; Zhang, W.; Li, C. Contribution of cathepsin B and L to endogenous proteolysis in the course of modern Jinhua ham processing. Food Control 2022, 135, 108584. [Google Scholar] [CrossRef]
- Li, R.; Geng, C.; Xiong, Z.; Cui, Y.; Liao, E.; Peng, L.; Jin, W.; Wang, H. Evaluation of protein degradation and flavor compounds during the processing of Xuan’en ham. J. Food Sci. 2022, 87, 3366–3385. [Google Scholar] [CrossRef]
- Zhou, C.-Y.; Xia, Q.; He, J.; Sun, Y.-Y.; Dang, Y.-L.; Zhou, G.-H.; Geng, F.; Pan, D.-D.; Cao, J.-X. Insights into ultrasonic treatment on the mechanism of proteolysis and taste improvement of defective dry-cured ham. Food Chem. 2022, 388, 133059. [Google Scholar] [CrossRef]
- Zhou, C.-Y.; Bai, Y.; Wang, C.; Li, C.-B.; Xu, X.-L.; Pan, D.-D.; Cao, J.-X.; Zhou, G.-H. 1H NMR-based metabolomics and sensory evaluation characterize taste substances of Jinhua ham with traditional and modern processing procedures. Food Control 2021, 126, 107873. [Google Scholar] [CrossRef]
- Farag, M.A.; Dokalahy, E.U.; Eissa, T.F.; Kamal, I.M.; Zayed, A. Chemometrics-Based Aroma Discrimination of 14 Egyptian Mango Fruits of Different Cultivars and Origins, and Their Response to Probiotics Analyzed via SPME Coupled to GC–MS. ACS Omega 2022, 7, 2377–2390. [Google Scholar] [CrossRef] [PubMed]
- Brescia, F.F.; Pitelas, W.; Yalman, S.; Popa, F.; Hausmann, H.G.; Wende, R.C.; Fraatz, M.A.; Zorn, H. Formation of Diastereomeric Dihydromenthofurolactones by Cystostereum murrayi and Aroma Dilution Analysis Based on Dynamic Headspace Extraction. J. Agric. Food Chem. 2021, 69, 5997–6004. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, M.; Bely, M.; Albertin, W.; Masneuf-Pomarède, I.; Colonna-Ceccaldi, B.; Marullo, P.; Barbe, J.-C. Impact of Grape Maturity on Ester Composition and Sensory Properties of Merlot and Tempranillo Wines. J. Agric. Food Chem. 2022, 70, 11520–11530. [Google Scholar] [CrossRef] [PubMed]
- Bhave, A.; Schulzová, V.; Mrnka, L.; HajšLová, J. Influence of Harvest Date and Postharvest Treatment on Carotenoid and Flavonoid Composition in French Marigold Flowers. J. Agric. Food Chem. 2020, 68, 7880–7889. [Google Scholar] [CrossRef] [PubMed]
- Monsanto, M.; Mestrom, R.; Zondervan, E.; Bongers, P.; Meuldijk, J. Solvent Swing Adsorption for the Recovery of Polyphenols from Black Tea. Ind. Eng. Chem. Res. 2015, 54, 434–442. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Huang, S.-D. Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography for the Determination of Aromatic Amines. Anal. Chem. 1999, 71, 310–318. [Google Scholar] [CrossRef]
- Diwan, A.; Singh, B.; Roychowdhury, T.; Yan, D.; Tedone, L.; Nesterenko, P.N.; Paull, B.; Sevy, E.T.; Shellie, R.A.; Kaykhaii, M.; et al. Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering. Anal. Chem. 2016, 88, 1593–1600. [Google Scholar] [CrossRef]
- Gionfriddo, E.; Boyacı, E.; Pawliszyn, J. New Generation of Solid-Phase Microextraction Coatings for Complementary Separation Approaches: A Step toward Comprehensive Metabolomics and Multiresidue Analyses in Complex Matrices. Anal. Chem. 2017, 89, 4046–4054. [Google Scholar] [CrossRef] [Green Version]
- Rega, B.; Fournier, N.; Guichard, E. Solid Phase Microextraction (SPME) of Orange Juice Flavor: Odor Representativeness by Direct Gas Chromatography Olfactometry (D-GC-O). J. Agric. Food Chem. 2003, 51, 7092–7099. [Google Scholar] [CrossRef]
- Roberts, D.D.; Pollien, P.; Milo, C. Solid-Phase Microextraction Method Development for Headspace Analysis of Volatile Flavor Compounds. J. Agric. Food Chem. 2000, 48, 2430–2437. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Kao, T.-H.; Inbaraj, B.S.; Chen, B.-H. Improved Analytical Method for Determination of Furan and Its Derivatives in Commercial Foods by HS-SPME Arrow Combined with Gas Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2022, 70, 7762–7772. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Z.; Wang, Q.; Guo, L.; Wang, C.; Wang, Z.; Zhang, S.; Wu, Q. Construction of hypercrosslinked polymers for high-performance solid phase microextraction of phthalate esters from water samples. J. Chromatogr. A 2021, 1641, 461972. [Google Scholar] [CrossRef] [PubMed]
- Huan, Y.; Zhou, G.; Zhao, G.; Xu, X.; Peng, Z. Changes in flavor compounds of dry-cured Chinese Jinhua ham during processing. Meat Sci. 2005, 71, 291–299. [Google Scholar] [CrossRef]
- Toldra´, F. Proteolysis and lipolysis in flavour development of dry-cured meat products. Meat Sci. 1998, 49, S101–S110. [Google Scholar] [CrossRef]
- García-González, D.L.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T. Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Sci. 2008, 80, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Carrapiso, A.I.; Noseda, B.; García, C.; Reina, R.; del Pulgar, J.S.; Devlieghere, F. SIFT-MS analysis of Iberian hams from pigs reared under different conditions. Meat Sci. 2015, 104, 8–13. [Google Scholar] [CrossRef]
- Drumm, T.D.; Spanier, A.M. Changes in the content of lipid autoxidation and sulfur-containing compounds in cooked beef during storage. J. Agric. Food Chem. 1991, 39, 336–343. [Google Scholar] [CrossRef]
- Sánchez-Peña, C.M.; Luna, G.; González, D.G.; Aparicio, R. Characterization of French and Spanish dry-cured hams: Influence of the volatiles from the muscles and the subcutaneous fat quantified by SPME-GC. Meat Sci. 2005, 69, 635–645. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, J.; Li, Z.; Li, Q.; Lai, X.; Sun, L.; Chen, R.; Wen, S.; Sun, S.; Lai, Z. HS-SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process. Food Chem. 2021, 357, 129654. [Google Scholar] [CrossRef]
- Caliari, V.; Burin, V.M.; Rosier, J.P.; BordignonLuiz, M.T. Aromatic profile of Brazilian sparkling wines produced with classical and innovative grape varieties. Food Res. Int. 2014, 62, 965–973. [Google Scholar] [CrossRef]
NO. | Compounds | CAS | RI | Concentration (μg/kg) | |||
---|---|---|---|---|---|---|---|
Reference | Calculate | Grade Ⅰ | Grade II | Grade III | |||
Aldehydes | |||||||
1 | hexanal | 66-25-1 | 1084 | 1076 | 989 | 889.7 | 919.8 |
2 | heptenal | 18829-55-5 | 1332 | 1340 | 6.1 | 2.6 | 16.1 |
3 | benzaldehyde | 100-52-7 | 1520 | 1519 | 14.5 | 13.5 | 18.3 |
4 | octanal | 124-13-0 | 1291 | 1287 | 9.8 | 7.4 | - a |
5 | (E,E)-2,4-Heptadienal | 4313-03-5 | 1497 | 1503 | - | - | 1.3 |
6 | 2,4-decadienal | 2363-88-4 | 1762 | 1763 | 0.5 | - | - |
7 | phenylacetaldehyde | 122-78-1 | 1650 | 1639 | 8.4 | 1.2 | 1.2 |
8 | 2-octenal | 2363-89-5 | 1445 | 1438 | 1.8 | - | 6.1 |
9 | nonanal | 124-19-6 | 1382 | 1367 | 14.1 | 20.7 | - |
10 | (E)-2-nonenal | 18829-56-6 | 1551 | 1587 | 1.2 | - | 36.5 |
11 | decanal | 112-31-2 | 1485 | 1466 | 0.7 | 3.9 | 20.5 |
12 | heptanal | 111-71-7 | 1186 | 1186 | 21.3 | 29.6 | 14.5 |
13 | (E,E)-2,4-decadienal | 25152-84-5 | 1819 | 1810 | - | 10.3 | - |
14 | 2,4-nonadienal | 6750-03-4 | 1710 | 1702 | - | - | 1.8 |
15 | isovaleraldehyde | 590-86-3 | 936 | 954 | 19.7 | 27.7 | 42.6 |
16 | 2-methylbutanal | 96-17-3 | 926 | 950 | 155 | 58.5 | 4.4 |
17 | valeraldehyde | 110-62-3 | 1013 | 1029 | 177 | 89.4 | 44.5 |
Total | 1419.1 | 1154.5 | 1127.6 | ||||
Alcohols | |||||||
18 | 1-octanol | 111-87-5 | 1559 | 1598 | 0.3 | - | - |
19 | 1-penten-3-ol | 616-25-1 | 1157 | 1177 | 41.9 | - | - |
20 | 3-methyl-1-butanol | 123-51-3 | 1208 | 1196 | 33.6 | 30.3 | 5.1 |
21 | 2-methylbutan-1-ol | 137-32-6 | 1197 | 1160 | 11.6 | 13.2 | 6.6 |
22 | pentanol | 71-41-0 | 1210 | 1235 | 127.1 | 33 | 35 |
23 | 1-hexanol | 111-27-3 | 1384 | 1407 | 5.1 | - | 4.9 |
24 | oct-1-en-3-ol | 3391-86-4 | 1456 | 1452 | 22 | 2 | 15.6 |
25 | phenylethyl alcohol | 60-12-8 | 1931 | 1979 | 0.5 | - | - |
26 | heptan-1-ol | 111-70-6 | 1456 | 1473 | - | 4.1 | 3.8 |
27 | 2-cyclohexenol | 822-67-3 | 1471 | 1468 | - | - | 1.7 |
Total | 242.1 | 82.6 | 72.7 | ||||
Esters | |||||||
28 | ethyl caprate | 110-38-3 | 1624 | 1659 | - | 3 | 33.2 |
29 | γ-butyrolactone | 96-48-0 | 1595 | 1588 | 1.5 | - | - |
30 | ethyl isovalerate | 108-64-5 | 1067 | 1066 | - | 2.7 | - |
Total | 1.5 | 5.7 | 33.2 | ||||
Acids | |||||||
31 | acetic acid | 64-19-7 | 1465 | 1449 | 54.3 | 106.4 | 109.4 |
32 | 3-methylbutanoic acid | 503-74-2 | 1624 | 1589 | 49.9 | 84.8 | 83.8 |
33 | 2-methylbutyric acid | 116-53-0 | 1674 | 1696 | 12 | 36.2 | 63.8 |
34 | 1-hexanoic acid | 142-62-1 | 1849 | 1822 | 31 | 4.1 | 28.1 |
35 | propionic acid | 79-09-4 | 1486 | 1502 | - | 23.6 | 23 |
36 | isobutyric acid | 79-31-2 | 1584 | 1608 | - | 29.2 | 4.4 |
37 | 3-methylvaleric acid | 105-43-1 | 1762 | 1766 | - | 6.1 | - |
38 | butyric acid | 107-92-6 | 1628 | 1632 | - | - | 33.8 |
39 | valeric acid | 109-52-4 | 1730 | 1735 | - | - | 23.8 |
Total | 147.2 | 290.4 | 370.1 | ||||
Alkyl hydrocarbons | |||||||
40 | limonene | 138-86-3 | 1200 | 1244 | 2 | 4.8 | 5.6 |
41 | ethylcyclopentene | 2146-38-5 | 891 | 905 | - | 3.8 | - |
Total | 2 | 8.6 | 5.6 | ||||
Ketones | |||||||
42 | 3-octanone | 106-68-3 | 1241 | 1256 | 8.6 | - | - |
43 | 2-heptanone | 110-43-0 | 1184 | 1180 | 1.3 | - | 6.6 |
44 | amyl ketone | 927-49-1 | 1527 | 1562 | - | 10.2 | 0 |
45 | 3-hexanone | 589-38-8 | 1068 | 1093 | - | - | 6.9 |
46 | octane-2,5-dione | 3214-41-3 | 1319 | 1301 | - | - | 8.8 |
47 | 3,5-octadienone,3,5-octadien-2-one | 38284-27-4 | 1569 | 1573 | - | - | 1.4 |
48 | 2-decanone | 693-54-9 | 1480 | 1500 | - | - | 0.5 |
Total | 9.9 | 10.2 | 24.2 | ||||
Oxygen-containing heterocyclic compounds | |||||||
49 | 2-amylfuran | 3777-69-3 | 1231 | 1245 | 0.3 | 0.7 | 22.9 |
Nitrogen-containing heterocyclic compounds | |||||||
50 | 2,6-dimethylpyrazine | 108-50-9 | 1327 | 1334 | 0.6 | 0.7 | 2.7 |
51 | 2,3,5-trimethylpyrazine | 14667-55-1 | 1413 | 1418 | - | 0.5 | 19.7 |
52 | tetramethylpyrazine | 1124-11-4 | 1466 | 1481 | - | - | 16.7 |
53 | 2,5-dimethylpyrazine | 123-32-0 | 1332 | 1337 | - | 1.4 | - |
54 | 2-ethyl-6-methylpyrazine | 13925-03-6 | 1363 | 1376 | - | - | 1.3 |
Total | 0.6 | 2.6 | 40.4 | ||||
Sulfur compounds | |||||||
55 | dimethyl disulfide | 624-92-0 | 1078 | 1101 | - | - | 14.2 |
56 | dimethyl trisulfide | 3658-80-8 | 1400 | 1413 | - | - | 4.6 |
Total | - | - | 18.8 |
NO. | Compounds | Threshold (mg/kg) a | OAV | Odor b | ||
---|---|---|---|---|---|---|
I | II | III | ||||
1 | hexanal | 0.005 | 197.8 | 177.9 | 184.0 | fresh green fatty aldehydic grass leafy fruity sweaty |
2 | octanal | 0.000587 | 16.70 | 12.61 | - c | aldehydic waxy citrus orange peel green herbal fresh fatty |
3 | 2,4-decadienal | 0.0003 | 1.667 | - | - | orange sweet fresh citrus fatty green |
4 | phenylacetaldehyde | 0.0063 | 1.333 | 0.190 | 0.190 | green sweet floral hyacinth clover honey cocoa |
5 | 2-octenal | 0.0002 | 9.000 | - | 30.50 | fatty green herbal |
6 | nonanal | 0.0011 | 12.82 | 18.82 | - | waxy aldehydic rose fresh orris orange peel fatty peely |
7 | (E)-2-nonenal | 0.00019 | 6.316 | - | 192.1 | fatty green cucumber aldehydic citrus |
8 | decanal | 0.003 | 0.233 | 1.300 | 6.833 | sweet aldehydic waxy orange peel citrus floral |
9 | heptanal | 0.0028 | 7.607 | 10.57 | 5.179 | fresh aldehydic fatty green herbal wine-lee ozone |
10 | (E,E)-2,4-decadienal | 0.000027 | - | 381.5 | - | oily cucumber melon citrus pumpkin nut meat |
11 | 2,4-nonadienal | 0.00005 | - | - | 36 | fatty green cucumber |
12 | isovaleraldehyde | 0.0011 | 17.91 | 25.18 | 38.73 | ethereal aldehydic chocolate peach fatty |
13 | 2-methylbutanal | 0.0011 | 140.9 | 53.18 | 4.000 | musty cocoa phenolic coffee nutty malty fermented fatty alcoholic |
14 | valeraldehyde | 0.012 | 14.75 | 7.450 | 3.708 | fermented bready fruity nutty berry |
15 | 3-methyl-1-butanol | 0.004 | 8.400 | 7.575 | 1.275 | fusel oil alcoholic whiskey fruity banana |
16 | oct-1-en-3-ol | 0.0015 | 14.67 | 1.333 | 10.40 | mushroom earthy green oily fungal raw chicken |
17 | ethyl isovalerate | 0.00001 | - | 270.0 | - | fruity sweet apple pineapple tutti frutti |
18 | isobutyric acid | 0.0054 | - | 5.407 | 0.815 | acidic sour cheese dairy buttery rancid |
19 | 2-amylfuran | 0.0058 | 0.052 | 0.121 | 3.948 | fruity green earthy beany vegetable metallic |
20 | dimethyl disulfide | 0.0011 | - | - | 12.91 | sulfurous vegetable cabbage onion |
21 | dimethyl trisulfide | 0.0001 | - | - | 46.00 | sulfurous cooked onion savory meaty |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Shui, M.; Chen, D.; Ma, X.; Feng, T. Optimization of Jinhua Ham Classification Method Based on Volatile Flavor Substances and Determination of Key Odor Biomarkers. Molecules 2022, 27, 7087. https://doi.org/10.3390/molecules27207087
Xu Y, Shui M, Chen D, Ma X, Feng T. Optimization of Jinhua Ham Classification Method Based on Volatile Flavor Substances and Determination of Key Odor Biomarkers. Molecules. 2022; 27(20):7087. https://doi.org/10.3390/molecules27207087
Chicago/Turabian StyleXu, Ying, Mengzhu Shui, Da Chen, Xiaozhong Ma, and Tao Feng. 2022. "Optimization of Jinhua Ham Classification Method Based on Volatile Flavor Substances and Determination of Key Odor Biomarkers" Molecules 27, no. 20: 7087. https://doi.org/10.3390/molecules27207087
APA StyleXu, Y., Shui, M., Chen, D., Ma, X., & Feng, T. (2022). Optimization of Jinhua Ham Classification Method Based on Volatile Flavor Substances and Determination of Key Odor Biomarkers. Molecules, 27(20), 7087. https://doi.org/10.3390/molecules27207087