Polyacrylonitrile/Aminated Polymeric Nanosphere Nanofibers as Efficient Adsorbents for Cr(VI) Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of APNs
2.3. Synthesis of PAN/APN and PAN Nanofibers
2.4. Characterization
2.5. Adsorption Experiment
2.6. Modeling
3. Results
3.1. Characterization of Adsorbent
3.2. Adsorption Kinetic
3.3. Adsorption Isotherms and Thermodynamics
3.4. Effect of pH and Ionic Strength
3.5. Cr(VI) Removal Performance in Bed Column
3.6. The Possible Mechanism of Cr(VI) Removal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, Y.; Tang, J.; Zhao, D. Application of iron sulfide particles for groundwater and soil remediation: A review. Water Res. 2016, 89, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Beigzadeh, P.; Moeinpour, F. Fast and efficient removal of silver (I) from aqueous solutions using aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles. T. Nonferrous Metals Soc. 2016, 26, 2238–2246. [Google Scholar] [CrossRef]
- Omidvar-Hosseini, F.; Moeinpour, F. Removal of Pb(II) from aqueous solutions using Acacia Nilotica seed shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles. J. Water Reuse Desalination 2016, 6, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Malkoc, E.; Nuhoglu, Y.; Dundar, M. Adsorption of chromium(VI) on pomace—An olive oil industry waste: Batch and column studies. J. Hazard. Mater. 2006, 138, 142–151. [Google Scholar] [CrossRef]
- Nematollahzadeh, A.; Seraj, S.; Mirzayi, B. Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chem. Eng. J. 2015, 277, 21–29. [Google Scholar] [CrossRef]
- Desai, C.; Jain, K.; Madamwar, D. Evaluation of In vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour. Technol. 2008, 99, 6059–6069. [Google Scholar] [CrossRef]
- Jiang, W.; Cai, Q.; Xu, W.; Yang, M.; Cai, Y.; Dionysiou, D.D.; O’Shea, K.E. Cr(VI) Adsorption and Reduction by Humic Acid Coated on Magnetite. Environ. Sci. Technol. 2014, 48, 8078–8085. [Google Scholar] [CrossRef]
- Miretzky, P.; Cirelli, A.F. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. J. Hazard. Mater. 2010, 180, 1–19. [Google Scholar] [CrossRef]
- Saha, B.; Orvig, C. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev. 2010, 254, 2959–2972. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Z.; Liu, J.; Jiang, G. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. J. Hazard. Mater. 2011, 192, 277–283. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006, 137, 762–811. [Google Scholar] [CrossRef] [PubMed]
- Polowczyk, I.; Urbano, B.F.; Rivas, B.L.; Bryjak, M.; Kabay, N. Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl-d-glucamine groups. Chem. Eng. J. 2016, 284, 395–404. [Google Scholar] [CrossRef]
- Dai, C.; Zuo, X.; Cao, B.; Hu, Y. Homogeneous and Heterogeneous (Fex, Cr1–x)(OH)3 Precipitation: Implications for Cr Sequestration. Environ. Sci. Technol. 2016, 50, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J.J. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Acc. Chem. Res. 2013, 46, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lv, L.; Pan, B.; Zhang, W.; Zhang, S.; Zhang, Q. Polymer-supported nanocomposites for environmental application: A review. Chem. Eng. J. 2011, 170, 381–394. [Google Scholar] [CrossRef]
- Beller, H.R.; Yang, L.; Varadharajan, C.; Han, R.; Lim, H.C.; Karaoz, U.; Molins, S.; Marcus, M.A.; Brodie, E.L.; Steefel, C.I.; et al. Divergent Aquifer Biogeochemical Systems Converge on Similar and Unexpected Cr(VI) Reduction Products. Environ. Sci. Technol. 2014, 48, 10699–10706. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, N.; Zaitsev, V.; Walcarius, A. Bifunctionalized Mesoporous Silicas for Cr(VI) Reduction and Concomitant Cr(III) Immobilization. Environ. Sci. Technol. 2008, 42, 6922–6928. [Google Scholar] [CrossRef]
- Zaitseva, N.; Zaitsev, V.; Walcarius, A. Chromium(VI) removal via reduction–sorption on bi-functional silica adsorbents. J. Hazard. Mater. 2013, 250–251, 454–461. [Google Scholar] [CrossRef]
- Dinda, D.; Kumar Saha, S. Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI). J. Hazard. Mater. 2015, 291, 93–101. [Google Scholar] [CrossRef]
- Kumar, A.S.K.; Kakan, S.S.; Rajesh, N. A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium. Chem. Eng. J. 2013, 230, 328–337. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Li, C.; Yang, W.; Song, T.; Tang, C.; Meng, Y.; Dai, S.; Wang, H.; Chai, L.; et al. Synthesis of Core–Shell Magnetic Fe3O4@poly(m-Phenylenediamine) Particles for Chromium Reduction and Adsorption. Environ. Sci. Technol. 2015, 49, 5654–5662. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Li, X.; Sun, B.; Shen, M.; Tan, X.; Ding, Y.; Jiang, Z.; Wang, C. Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem. Eng. J. 2015, 268, 290–299. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Yu, S.-H. Nanoparticles meet electrospinning: Recent advances and future prospects. Chem. Soc. Rev. 2014, 43, 4423–4448. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, A.; Mishra, B.G.; Hota, G. Electrospun Fe2O3–Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 2013, 258–259, 116–123. [Google Scholar] [CrossRef]
- Koushkbaghi, S.; Jafari, P.; Rabiei, J.; Irani, M.; Aliabadi, M. Fabrication of PET/PAN/GO/Fe3O4 nanofibrous membrane for the removal of Pb(II) and Cr(VI) ions. Chem. Eng. J. 2016, 301, 42–50. [Google Scholar] [CrossRef]
- Luo, C.; Wang, J.; Jia, P.; Liu, Y.; An, J.; Cao, B.; Pan, K. Hierarchically structured polyacrylonitrile nanofiber mat as highly efficient lead adsorbent for water treatment. Chem. Eng. J. 2015, 262, 775–784. [Google Scholar] [CrossRef]
- Wickramaratne, N.P.; Xu, J.; Wang, M.; Zhu, L.; Dai, L.; Jaroniec, M. Nitrogen Enriched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO2 Adsorption. Chem. Mater. 2014, 26, 2820–2828. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Li, J.; Luo, R.; Sun, X.; Shen, J.; Han, W.; Wang, L. Fe/N decorated mulberry-like hollow mesoporous carbon fibers as efficient electrocatalysts for oxygen reduction reaction. Carbon 2017, 114, 706–716. [Google Scholar] [CrossRef]
- Sun, X.; Yang, L.; Xing, H.; Zhao, J.; Li, X.; Huang, Y.; Liu, H. Synthesis of polyethylenimine-functionalized poly(glycidyl methacrylate) magnetic microspheres and their excellent Cr(VI) ion removal properties. Chem. Eng. J. 2013, 234, 338–345. [Google Scholar] [CrossRef]
- Bhaumik, M.; Maity, A.; Srinivasu, V.V.; Onyango, M.S. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J. Hazard. Mater. 2011, 190, 381–390. [Google Scholar] [CrossRef]
- Qiu, B.; Guo, J.; Zhang, X.; Sun, D.; Gu, H.; Wang, Q.; Wang, H.; Wang, X.; Zhang, X.; Weeks, B.L.; et al. Polyethylenimine Facilitated Ethyl Cellulose for Hexavalent Chromium Removal with a Wide pH Range. ACS Appl. Mater. Interfaces 2014, 6, 19816–19824. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, L.; Wang, H.; Chai, L. Adsorption of Cr(VI) using synthetic poly(m-phenylenediamine). J. Hazard. Mater. 2013, 260, 789–795. [Google Scholar] [CrossRef]
- Setshedi, K.Z.; Bhaumik, M.; Onyango, M.S.; Maity, A. High-performance towards Cr(VI) removal using multi-active sites of polypyrrole–graphene oxide nanocomposites: Batch and column studies. Chem. Eng. J. 2015, 262, 921–931. [Google Scholar] [CrossRef]
- Mao, N.; Yang, L.; Zhao, G.; Li, X.; Li, Y. Adsorption performance and mechanism of Cr(VI) using magnetic PS-EDTA resin from micro-polluted waters. Chem. Eng. J. 2012, 200–202, 480–490. [Google Scholar] [CrossRef]
- Maksin, D.D.; Nastasović, A.B.; Milutinović-Nikolić, A.D.; Suručić, L.T.; Sandić, Z.P.; Hercigonja, R.V.; Onjia, A.E. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers. J. Hazard. Mater. 2012, 209–210, 99–110. [Google Scholar] [CrossRef]
- Chen, J.-H.; Hsu, K.-C.; Chang, Y.-M. Surface Modification of Hydrophobic Resin with Tricaprylmethylammonium Chloride for the Removal of Trace Hexavalent Chromium. Ind. Eng. Chem. Res. 2013, 52, 11685–11694. [Google Scholar] [CrossRef]
- Mohan, D.; Rajput, S.; Singh, V.K.; Steele, P.H.; Pittman, C.U. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J. Hazard. Mater. 2011, 188, 319–333. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Chen, X.; Leng, L.; Wang, H.; Li, H.; Zeng, G. Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem. Eng. J. 2015, 262, 597–606. [Google Scholar] [CrossRef]
- Hu, J.; Lo; Chen, G. Fast Removal and Recovery of Cr(VI) Using Surface-Modified Jacobsite (MnFe2O4) Nanoparticles. Langmuir 2005, 21, 11173–11179. [Google Scholar] [CrossRef]
Adsorbents | Qm (mg/g) | Reference |
---|---|---|
Polypyrrole/GO | 625 | [33] |
G-PDAP/GO | 609.76 | [19] |
Poly(m-phenylenediamine) | 500.00 | [32] |
Magnetic PS-EDTA resin | 250.00 | [34] |
Fe3O4@poly(m-Phenylenediamine) | 246.09 | [21] |
Diethylene triamine grafted glycidyl methacrylate | 143 | [35] |
Hydrophobic resin with tricaprylmethylammonium chloride | 71.24 | [36] |
PEI-facilitated ethyl cellulose | 36.8 | [31] |
APNs | 698 | This work |
PAN/APNs | 556 | This work |
Samples | T (K) | Kc (L/g) | ∆G (kJ/mol) | ∆H (kJ/mol) | ∆S (J/(mol K)) |
---|---|---|---|---|---|
APNs | 298 | 1.61 | −1.16 | 16.32 | 59.00 |
308 | 2.00 | −1.77 | |||
318 | 2.43 | −2.34 | |||
PAN/APNs | 298 | 1.14 | −0.315 | 19.67 | 67.05 |
308 | 1.45 | −0.959 | |||
318 | 1.87 | −1.656 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Zeng, M.; Zhu, Z.; Zhou, Y.; Sun, X.; Li, J. Polyacrylonitrile/Aminated Polymeric Nanosphere Nanofibers as Efficient Adsorbents for Cr(VI) Removal. Molecules 2022, 27, 7133. https://doi.org/10.3390/molecules27207133
Qi J, Zeng M, Zhu Z, Zhou Y, Sun X, Li J. Polyacrylonitrile/Aminated Polymeric Nanosphere Nanofibers as Efficient Adsorbents for Cr(VI) Removal. Molecules. 2022; 27(20):7133. https://doi.org/10.3390/molecules27207133
Chicago/Turabian StyleQi, Junwen, Mengli Zeng, Zhigao Zhu, Yujun Zhou, Xiuyun Sun, and Jiansheng Li. 2022. "Polyacrylonitrile/Aminated Polymeric Nanosphere Nanofibers as Efficient Adsorbents for Cr(VI) Removal" Molecules 27, no. 20: 7133. https://doi.org/10.3390/molecules27207133