Highly Z-Selective Horner–Wadsworth–Emmons Olefination Using Modified Still–Gennari-Type Reagents
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Reaction of 1a or 1b with Aldehydes 2a–2m
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Negishi, E.-I.; Huang, Z.; Wang, G.; Mohan, S.; Wang, C.; Hattori, H. Recent Advances in Efficient and Selective Synthesis of Di-, Tri-, and Tetrasubstituted Alkenes via Pd-Catalyzed Alkenylation−Carbonyl Olefination Synergy. Acc. Chem. Res. 2008, 41, 1474–1485. [Google Scholar] [CrossRef]
- Siau, W.-Y.; Zhang, Y.; Zhao, Y. Stereoselective Synthesis of Z-Alkenes. Top. Curr. Chem. 2012, 327, 33–58. [Google Scholar] [PubMed]
- Maryanoff, B.E.; Reitz, A.B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev. 1989, 89, 863–927. [Google Scholar] [CrossRef]
- Bisceglia, J.Á.; Orelli, L.R. Recent applications of the Horner-Wadsworth-Emmons reaction to the synthesis of natural products. Curr. Org. Chem. 2012, 16, 2206–2230. [Google Scholar] [CrossRef]
- Bisceglia, J.Á.; Orelli, L.R. Recent progress in the Horner-Wadsworth-Emmons reaction. Curr. Org. Chem. 2015, 19, 744–775. [Google Scholar] [CrossRef]
- Kobayashi, K.; Tanaka, K., III; Kogen, H. Recent topics of the natural product synthesis by Horner–Wadsworth–Emmons reaction. Tetrahedron Lett. 2018, 59, 568–582. [Google Scholar] [CrossRef]
- Roman, D.; Sauer, M.; Beemelmanns, C. Applications of the Horner–Wadsworth–Emmons Olefination in Modern Natural Product Synthesis. Synthesis 2021, 53, 2713–2739. [Google Scholar]
- Nagaoka, H.; Kishi, Y. Further synthetic studies on rifamycin S. Tetrahedron 1981, 37, 3873–3888. [Google Scholar] [CrossRef]
- Motoyoshiya, J.; Kusaura, T.; Kokin, K.; Yokoya, S.; Takaguchi, Y.; Narita, S.; Aoyama, H. The Horner–Wadsworth–Emmons reaction of mixed phosphonoacetates and aromatic aldehydes: Geometrical selectivity and computational investigation. Tetrahedron 2001, 57, 1715–1721. [Google Scholar] [CrossRef]
- Deschamps, B.; Lampin, J.P.; Mathey, F.; Seyden-Penne, J. Stereoselectivity of wittig type olefin synthesis using 5 membered cyclic phosphine oxides or phosphonous acid dimethylamides. Tetrahedron Lett. 1977, 18, 1137–1140. [Google Scholar] [CrossRef]
- Breuer, E.; Bannet, D.M. Stereoselectivity of wittig type olefin synthesis using five-membered cyclic phosphonates. preferential formation of cis olefins. Tetrahedron Lett. 1977, 18, 1141–1144. [Google Scholar] [CrossRef]
- Patois, C.; Savignac, P. 1,3-Dimethyl 2-oxo 1,3,2-diazaphospholidine precursor of (Z) α,β-unsaturated esters. Tetrahedron Lett. 1991, 32, 1317–1320. [Google Scholar] [CrossRef]
- Still, W.C.; Gennari, C. Direct synthesis of Z-unsaturated esters. A useful modification of the horner-emmons olefination. Tetrahedron Lett. 1983, 24, 4405–4408. [Google Scholar] [CrossRef]
- Ando, K. Practical synthesis of Z-unsaturated esters by using a new Horner-Emmons reagent, ethyl diphenylphosphonoacetate. Tetrahedron Lett. 1995, 36, 4105–4108. [Google Scholar] [CrossRef]
- Ando, K. Highly Selective Synthesis of Z-Unsaturated Esters by Using New Horner−Emmons Reagents, Ethyl (Diarylphosphono)acetates. J. Org. Chem. 1997, 62, 1934–1939. [Google Scholar] [CrossRef]
- Ando, K. Z-Selective Horner−Wadsworth−Emmons Reaction of α-Substituted Ethyl (Diarylphosphono)acetates with Aldehydes. J. Org. Chem. 1998, 63, 8411–8416. [Google Scholar] [CrossRef]
- Touchard, F.P.; Capelle, N.; Mercier, M. Efficient and Scalable Protocol for the Z-Selective Synthesis of Unsaturated Esters by Horner—Wadsworth—Emmons Olefination. Adv. Synth. Catal. 2005, 347, 707–711. [Google Scholar] [CrossRef]
- Touchard, F.P. Phosphonate Modification for a Highly (Z)-Selective Synthesis of Unsaturated Esters by Horner–Wadsworth–Emmons Olefination. Eur. J. Org. Chem. 2005, 2005, 1790–1794. [Google Scholar] [CrossRef]
- Janicki, I.; Kiełbasiński, P. Still–Gennari Olefination and its Applications in Organic Synthesis. Adv. Synth. Catal. 2020, 362, 2552–2596. [Google Scholar] [CrossRef]
- Janicki, I.; Kiełbasiński, P. A Straightforward, Purification-Free Procedure for the Synthesis of Ando and Still–Gennari Type Phosphonates. Synthesis 2022, 54, 378–382. [Google Scholar] [CrossRef]
- Pihko, P.M.; Salo, T.M. Excess sodium ions improve Z selectivity in Horner–Wadsworth–Emmons olefinations with the Ando phosphonate. Tetrahedron Lett. 2003, 44, 4361–4364. [Google Scholar] [CrossRef]
- Janicki, I.; Kiełbasiński, P. Application of the Z-Selective Still–Gennari Olefination Protocol for the Synthesis of Z-α,β-Unsaturated Phosphonates. Synthesis 2018, 50, 4140–4144. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.M.; Singh, I.P. Determining and reporting purity of organic molecules: Why qNMR. Magn. Reson. Chem. 2013, 51, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Akkarasamiyo, S.; Chitsomkhuan, S.; Buakaew, S.; Samec, J.S.M.; Chuawong, P.; Kuntiyong, P. Synthesis of (Z)-Cinnamate Esters by Nickel-Catalyzed Stereoinvertive Deoxygenation of trans-3-Arylglycidates. Synlett 2022, 33, 1353–1356. [Google Scholar] [CrossRef]
- Shu, P.; Xu, H.; Zhang, L.; Li, J.; Liu, H.; Luo, Y.; Yang, X.; Ju, Z.; Xu, Z. Synthesis of (Z)-Cinnamate Derivatives via Visible-Light-Driven E-to-Z Isomerization. SynOpen 2019, 3, 103–107. [Google Scholar] [CrossRef]
- Gilchrist, T.L.; Rees, C.W.; Tuddenham, D. Generation of 3-methoxy-3a-methyl-3aH-indene and study of its cycloaddition reactions. J. Chem. Soc. Perkin Trans. I 1981, 3214–3220. [Google Scholar] [CrossRef]
- Lewis, F.D.; Howard, D.K.; Oxman, J.D.; Upthagrove, A.L.; Quillen, S.L. Lewis-acid catalysis of photochemical reactions. 6. Selective isomerization of .beta.-furylacrylic and urocanic esters. J. Am. Chem. Soc. 1986, 108, 5964–5968. [Google Scholar] [CrossRef] [PubMed]
- Longwitz, L.; Spannenberg, A.; Werner, T. Phosphetane Oxides as Redox Cycling Catalysts in the Catalytic Wittig Reaction at Room Temperature. ACS Catal. 2019, 9, 9237–9244. [Google Scholar] [CrossRef]
- Schabel, T.; Plietker, B. Microwave-Accelerated Ru-Catalyzed Hydrovinylation of Alkynes and Enynes: A Straightforward Approach toward 1,3-Dienes and 1,3,5-Trienes. Chem. Eur. J. 2013, 19, 6938–6941. [Google Scholar] [CrossRef]
- Claridge, T.D.W.; Davies, S.G.; Lee, J.A.; Nicholson, R.L.; Roberts, P.M.; Russell, A.J.; Smith, A.D.; Toms, S.M. Highly (E)-Selective Wadsworth−Emmons Reactions Promoted by Methylmagnesium Bromide. Org. Lett. 2008, 10, 5437–5440. [Google Scholar] [CrossRef] [PubMed]
- Ando, K. Convenient Preparations of (Diphenylphosphono)acetic Acid Esters and the Comparison of the Z-Selectivities of Their Horner–Wadsworth–Emmons Reaction with Aldehydes Depending on the Ester Moiety. J. Org. Chem. 1999, 64, 8406–8408. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Hammond, G.B.; Xu, B. Supported gold nanoparticles catalyzed cis-selective semihydrogenation of alkynes using ammonium formate as the reductant. Chem. Commun. 2016, 52, 6013–6016. [Google Scholar] [CrossRef] [PubMed]
- Puri, S.; Babu, M.H.; Reddy, M.S. BF3·OEt2-mediated syn-selective Meyer–Schuster rearrangement of phenoxy propargyl alcohols for Z-β-aryl-α,β-unsaturated esters. Org. Biomol. Chem. 2016, 14, 7001–7009. [Google Scholar] [CrossRef] [PubMed]
- Seifert, F.; Drikermann, D.; Steinmetzer, J.; Zi, Y.; Kupfer, S.; Vilotijevic, I. Z-Selective phosphine promoted 1,4-reduction of ynoates and propynoic amides in the presence of water. Org. Biomol. Chem. 2021, 19, 6092–6097. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Duan, D.; Liu, Y.; Lv, J. Carbocation Lewis Acid TrBF4-Catalyzed 1,2-Hydride Migration: Approaches to (Z)-α,β-Unsaturated Esters and α-Branched β-Ketocarbonyls. Org. Lett. 2019, 21, 8013–8017. [Google Scholar] [CrossRef] [PubMed]
- Murai, Y.; Nakagawa, A.; Kojima, S. Highly syn-Selective Elimination of Peterson anti-Adducts to Give Z-α,β-Unsaturated Esters. Chem. Lett. 2017, 46, 228–231. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Wei, S. Wittig Reactions of Stabilized Phosphorus Ylides with Aldehydes in Water. Synth. Commun. 2005, 35, 1213–1222. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kawaguchi, S.-I.; Nishimura, M.; Sato, Y.; Shimada, Y.; Tabuchi, A.; Nomoto, A.; Ogawa, A. Phosphorus-Recycling Wittig Reaction: Design and Facile Synthesis of a Fluorous Phosphine and Its Reusable Process in the Wittig Reaction. J. Org. Chem. 2020, 85, 14684–14696. [Google Scholar] [CrossRef] [PubMed]
Entry | Base | Temperature | Yield [b] | Z:E Ratio [c] |
---|---|---|---|---|
1 | NaH | −78 °C | traces | --- |
2 | NaH | −40 °C | 82% | 97:3 |
3 | NaH | −20 °C | 94% | 97:3 |
4 | NaH | 0 °C | 85% | 95:5 |
5 | NaH (excess) [d] | 0 °C | 55% | 95:5 |
6 | NaH + NaI [e] | −20 °C | 95% | 97:3 |
7 | KHMDS | −78 °C | 37% | 91:9 |
8 | KHMDS + 18-crown-6 [f] | −78 °C | 34% | 84:16 |
9 | KHMDS | −40 °C | 52% | 90:10 |
10 | KHMDS + 18-crown-6 [f] | −40 °C | 61% | 86:14 |
11 | t-BuOK | −20 °C | 62% | 81:19 |
12 | K2CO3 | r.t. | traces | traces of Z |
13 | Triton-B | −20 °C | 23% | 14:86 |
14 | (CF3)2CHONa | −20 °C | 93% | 96:4 |
Entry | Reagent | Temperature | Yield [b] | Z:E Ratio [c] |
---|---|---|---|---|
1 | −20 °C | 87% | 2:98 | |
2 | −20 °C | 79% | >99% E | |
3 | −20 °C | 99% | 68:32 | |
4 | −78 °C | 96% | 75:25 | |
5 | −20 °C | 99% | 64:36 | |
6 | −78 °C | 97% | 68:32 |
Entry | Substrate | Aldehyde | ||||||
---|---|---|---|---|---|---|---|---|
Product | Yield [b] | Z:E[c] | Product | Yield [b] | Z:E[c] | |||
1 | 2a | 3aa | 91% | 97:3 | 3ba | 95% (99%) [d] | 97:3 (74:26) [d] | |
2 | 2b | 3ab | 84% | 96:4 | 3bb | 81% | 96:4 | |
3 | 2c | 3ac | 84% | 95:5 | 3bc | 86% | 96:4 | |
4 | 2d | 3ad | 84% | 97:3 | 3bd | 87% | 98:2 | |
5 | 2e | 3ae | 98% | 95:5 | 3be | 99% | 96:4 | |
6 | 2f | 3af | 95% | 95:5 | 3bf | 95% | 94:6 | |
7 | 2g | 3ag | 99% | 94:6 | 3bg | 93% | 95:5 | |
8 | 2h | 3ah | 88% | 92:8 | 3bh | 79% | 95:5 | |
9 | 2i | 3ai | 79% | 94:6 | 3bi | 89% | 95:5 | |
10 | 2j | 3aj | 78% | 89:11 | 3bj | 82% | 91:9 | |
11 | 2k | 3ak | 69% | 86:14 | 3bk | 70% | 87:13 | |
12 | 2l | 3al | 88% | 88:12 | 3bl | 90% (92%) [d] | 88:12 (78:22) [d] | |
13 | 2m | 3am | 77% | 88:12 | 3bm | 90% | 88:12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicki, I.; Kiełbasiński, P. Highly Z-Selective Horner–Wadsworth–Emmons Olefination Using Modified Still–Gennari-Type Reagents. Molecules 2022, 27, 7138. https://doi.org/10.3390/molecules27207138
Janicki I, Kiełbasiński P. Highly Z-Selective Horner–Wadsworth–Emmons Olefination Using Modified Still–Gennari-Type Reagents. Molecules. 2022; 27(20):7138. https://doi.org/10.3390/molecules27207138
Chicago/Turabian StyleJanicki, Ignacy, and Piotr Kiełbasiński. 2022. "Highly Z-Selective Horner–Wadsworth–Emmons Olefination Using Modified Still–Gennari-Type Reagents" Molecules 27, no. 20: 7138. https://doi.org/10.3390/molecules27207138
APA StyleJanicki, I., & Kiełbasiński, P. (2022). Highly Z-Selective Horner–Wadsworth–Emmons Olefination Using Modified Still–Gennari-Type Reagents. Molecules, 27(20), 7138. https://doi.org/10.3390/molecules27207138