New, Eco-Friendly Method for Synthesis of 3-Chlorophenyl and 1,1′-Biphenyl Piperazinylhexyl Trazodone Analogues with Dual 5-HT1A/5-HT7 Affinity and Its Antidepressant-like Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Eco-Friendly Method of Synthesis
2.2. Molecular Modeling
2.3. ADMET In Silico Evaluation
2.4. Determination of Solubility
2.5. In Vitro Functional Activity Evaluation
2.6. Assessment of Preliminary In Vitro Safety Properties and Inhibition of CYP3A4
2.7. Behavioral Evaluation
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of 6-(3-Oxo[1,2,4]triazolo[4,3-a]pyridin-2(3H)-yl)hexanal (5)
3.1.2. Synthesis of 2-(6-(4-(Aryl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-ones hydrochlorides 7a·HCl and 7b·HCl in One-Step Procedures
2-(6-(4-(3-chlorophenyl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one hydrochloride 7a·HCl
3.1.3. Synthesis of 2-(6-(4-(Aryl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-ones hydrochlorides 7a·HCl and 7b·HCl in Two-Step Procedures
2-(6-(4-(3-chlorophenyl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one hydrochloride 7a·HCl
2-(6-(4-(2-phenylphenyl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one hydrochloride 7b·HCl
3.2. Molecular Modelling
3.2.1. Protein-Ligand Docking
3.2.2. QM/MM
3.3. Solubility Tests
3.4. Functional Assays
3.5. Safety Tests
3.5.1. Hepatotoxicity
3.5.2. Drug–Drug Interactions
3.5.3. Statistical Analysis
3.6. Behavioral evaluation
3.6.1. Animals
3.6.2. Drugs
3.6.3. Forced Swim Test in Swiss Albino Mice
3.6.4. Locomotor Activity in Mice
3.6.5. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 20 June 2022).
- Barros, M.B.A.; Lima, M.G.; Malta, D.C.; Szwarcwald, C.L.; Azevedo, R.C.S.; Romero, D.; de Souza Júnior, P.R.B.; Azevedo, L.O.; Machado, Í.E.; Damacena, G.N.; et al. Report on sadness/depression, nervousness/anxiety and sleep problems in the Brazilian adult population during the COVID-19 pandemic. Epidemiol. Serv. Saude 2020, 29, e2020427. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Naumenko, V.S.; Popova, N.K.; Lacivita, E.; Leopoldo, M.; Ponimaskin, E.G. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci. Ther. 2014, 20, 582–590. [Google Scholar] [CrossRef]
- Pucadyil, T.J.; Kalipatnapu, S.; Chattopadhyay, A. The Serotonin 1A A Receptor: A Representative Member of the Serotonin Receptor Family. Cell Mol. Neurobiol. 2005, 25, 553–580. [Google Scholar] [CrossRef]
- Albert, P.R.; Vahid-Ansari, F. The 5-HT1A receptor: Signaling to behavior. Biochimie 2019, 161, 34–45. [Google Scholar] [CrossRef]
- Le François, B.; Czesak, M.; Steubl, D.; Albert, P.R. Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology 2008, 55, 977–985. [Google Scholar] [CrossRef]
- Szewczyk, B.; Albert, P.R.; Burns, A.M.; Czesak, M.; Overholser, J.C.; Jurjus, G.J.; Meltzer, H.Y.; Konick, L.C.; Dieter, L.; Herbst, N.; et al. Gender-specific decrease in NUDR and 5-HT1A receptor proteins in the prefrontal cortex of subjects with major depressive disorder. Int. J. Neuropsychopharm. 2009, 12, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Hedlund, P.B. The 5-HT7 receptor and disorders of the nervous system: An overview. Psychopharmacol. (Berl.) 2009, 206, 345–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijata, M.; Bączyńska, E.; Müller, F.E.; Bijata, K.; Masternak, J.; Krzystyniak, A.; Szewczyk, B.; Siwiec, M.; Antoniuk, S.; Roszkowska, M.; et al. Activation of the 5-HT7 receptor and MMP-9 signaling module in the hippocampal CA1 region is necessary for the development of depressive-like behavior. Cell Rep. 2022, 38, 110532. [Google Scholar] [CrossRef]
- Kobe, F.; Guseva, D.; Jensen, T.P.; Wirth, A.; Renner, U.; Hess, D.; Müller, M.; Medrihan, L.; Zhang, W.; Zhang, M.; et al. 5-HT7R/G12 Signaling Regulates Neuronal Morphology and Function in an Age-Dependent Manner. J. Neurosci. 2012, 32, 2915–2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.H.; Xiang, K.; Xu, X.; Zhao, X.; Li, Y.; Zheng, L.; Wang, J. Co-activation of both 5-HT1A and 5-HT7 receptors induced attenuation of glutamatergic synaptic transmission in the rat visual cortex. Neurosci. Lett. 2018, 686, 122–126. [Google Scholar] [CrossRef]
- Sarkisyan, G.; Roberts, A.J.; Hedlund, P.B. The 5-HT7 receptor as a mediator and modulator of antidepressant-like behavior. Behav. Brain Res. 2010, 209, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; Wang, F.M.; Pan, Y.; Qiang, L.Q.; Cheng, G.; Zhang, W.Y.; Kong, L. Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Canale, V.; Kotańska, M.; Dziubina, A.; Stefaniak, M.; Siwek, A.; Starowicz, G.; Marciniec, K.; Kasza, P.; Satała, G.; Duszyńska, B.; et al. Design, Sustainable Synthesis and Biological Evaluation of a Novel Dual α2A/5-HT7 Receptor Antagonist with Antidepressant-Like Properties. Molecules 2021, 26, 3828. [Google Scholar] [CrossRef] [PubMed]
- Canale, V.; Kurczab, R.; Partyka, A.; Satała, G.; Słoczyńska, K.; Kos, T.; Jastrzębska-Więsek, M.; Siwek, A.; Pękala, E.; Bojarski, A.J.; et al. N-Alkylated arylsulfonamides of (aryloxy)ethyl piperidines: 5-HT7 receptor selectivity versus multireceptor profile. Bioorg. Med. Chem. 2016, 24, 130–139. [Google Scholar] [CrossRef]
- Kim, I.J.; Drahushuk, K.M.; Kim, W.Y.; Gonsiorek, E.A.; Lein, P.; Andres, D.A.; Higgins, D. Extracellular Signal-Regulated Kinases Regulate Dendritic Growth in Rat Sympathetic Neurons. J. Neurosci. 2004, 24, 3304–3312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaśkowska, J.; Zaręba, P.; Śliwa, P.; Pindelska, E.; Satała, G.; Majka, Z. Microwave-Assisted Synthesis of Trazodone and Its Derivatives as New 5-HT1A Ligands: Binding and Docking Studies. Molecules 2019, 24, 1609. [Google Scholar] [CrossRef] [Green Version]
- Zaręba, P.; Jaśkowska, J.; Czekaj, I.; Satała, G. Design, synthesis and molecular modelling of new bulky Fananserin derivatives with altered pharmacological profile as potential antidepressants. Bioorg. Med. Chem. 2019, 27, 3396–3407. [Google Scholar] [CrossRef]
- Kowalski, P.; Jaśkowska, J. An Efficient Synthesis of Aripiprazole, Buspirone and NAN190 by the Reductive Alkylation of Amines Procedure. Arch. Pharm. Pharm. Med. Chem. 2012, 345, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, P.; Mitka, K.; Jaśkowska, J.; Duszyńska, B.; Bojarski, A.J. New Arylpiperazines with Flexible versus Partly Constrained Linker as Serotonin 5-HT1A/5-HT7 Receptor Ligands. Arch. Pharm. 2013, 346, 339–348. [Google Scholar] [CrossRef]
- Xu, P.; Huang, S.; Zhang, H.; Mao, C.; Zhou, X.E.; Cheng, X.; Simon, I.A.; Shen, D.D.; Yen, H.-Y.; Robinson, C.V.; et al. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 2021, 592, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, A.J.; Mordalski, S.; Pándy-Szekeres, G.; Esguerra, M.; Mamyrbekov, A.; Munk, C.; Keserű, G.M.; Gloriam, D.E. GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Res. 2020, 49, D335–D343. [Google Scholar] [CrossRef]
- Marti-Solano, M.; Crilly, S.E.; Malinverni, D.; Munk, C.; Harris, M.; Pearce, A.; Quon, T.; Mackenzie, A.E.; Wang, X.; Peng, J.; et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 2020, 587, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Lacivita, V.E.; Patarnello, D.; Stroth, N.; Caroli, A.; Niso, M.; Contino, M.; De Giorgio, P.; Di Pilato, P.; Colabufo, N.A.; Berardi, F.; et al. Investigations on the 1-(2-Biphenyl)piperazine Motif: Identification of New Potent and Selective Ligands for the Serotonin7 (5-HT7) Receptor with Agonist or Antagonist Action in Vitro or ex Vivo. J. Med. Chem. 2012, 55, 6375–6380. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, J.; Lawless, M.S.; Waldman, M.; Gombar, V.; Fraczkiewicz, R. Modeling ADMET. Methods Mol. Biol. 2016, 1425, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Besnard, J.; Ruda, G.F.; Setola, V.; Abecassis, K.; Rodriguiz, R.M.; Huang, X.P.; Norval, S.; Sassano, M.F.; Shin, A.I.; Webster, L.A.; et al. Automated design of ligands to polypharmacological profiles. Nature 2012, 13, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Wang, Y.; Wu, C.; Yang, F.; Zheng, W.; Wu, S.; Liu, Y.; Wang, Z.; He, Y.; Shen, J. Synthesis and biological investigation of triazolopyridinone derivatives as potential multireceptor atypical antipsychotics. Bioorg. Med. Chem. Lett. 2020, 30, 127027. [Google Scholar] [CrossRef]
- Chen, C.; Senanayake, C.H.; Bill, T.J.; Larsen, R.D.; Verhoeven, T.R.; Reader, P.J. Improved Fischer Indole Reaction for the Preparation of N,N-Dimethyltryptamines: Synthesis of L-695,894, a Potent 5-HT1D Receptor Agonist. J. Org. Chem. 1994, 59, 3738–3741. [Google Scholar] [CrossRef]
- LigPrep, Version 3.7; Schrödinger, LLC: New York, NY, USA, 2016.
- Epik, Version 3.5; Schrödinger, LLC: New York, NY, USA, 2016.
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aid. Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein− ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- Friesner, R.A.; Farid, R.B.R.; Day, T.; Friesner, R.A.; Pearlstein, R.A. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg. Med. Chem. 2006, 14, 3160–3173. [Google Scholar] [CrossRef]
- Cho, A.E.; Guallar, V.; Berne, B.; Friesner, R.A. Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. J. Comput. Chem. 2005, 26, 915–931. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.B.; Philipp, D.M.; Friesner, R.A. A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. J. Comp. Chem. 2000, 21, 1442–1457. [Google Scholar] [CrossRef]
- Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 2013, 113, 2110–2142. [Google Scholar] [CrossRef]
- Binkley, J.S.; Pople, J.A.; Hehre, W.J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 1980, 102, 939–947. [Google Scholar] [CrossRef]
- Cheng, Y.; Prusoff, W. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. [Google Scholar] [CrossRef] [PubMed]
- Latacz, G.; Lubelska, A.; Jastrzębska-Więsek, M.; Partyka, A.; Marć, M.A.; Satała, G.; Wilczyńska, D.; Kotańska, M.; Więcek, M.; Kamińska, K.; et al. The 1,3,5-Triazine Derivatives as Innovative Chemical Family of 5-HT6 Serotonin Receptor Agents with Therapeutic Perspectives for Cognitive Impairment. Int. J. Mol. Sci. 2019, 20, 3420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kułaga, D.; Drabczyk, A.K.; Satała, G.; Latacz, G.; Rózga, K.; Plażuk, D.; Jaśkowska, J. Design and synthesis of new potent 5-HT7 receptor ligands as a candidate for the treatment of central nervous system diseases. Eur. J. Med. Chem. 2022, 227, 113931. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977, 229, 327–336. [Google Scholar] [CrossRef]
No. | R | RA | Solvent | Conditions | Yield [%] |
---|---|---|---|---|---|
1 | Cl | NaBH(OAc)3 | CH2Cl2 | RT, 2 h, CH3COOH | 62% |
2 | MW 100 W, 1 min, CH3COOH | 69% | |||
3 | NaBH4 | EtOH | RT, 20 h | 0% | |
4 | Reflux, 8 h | 0% | |||
5 | MW 100 W, 4 min | 16% | |||
6 | MW 100 W, 1 min (without RA) + 3 min (with RA) | 44% | |||
7 | - | 12% | |||
8 | NaBH4 + FePC | EtOH | 56% | ||
9 | - | 51% | |||
10 | Ph | NaBH4 + FePC | EtOH | MW 100 W, 1 min (without RA) + 3 min (with RA) | 63% |
11 | - | 56% |
Name | R | 5-HT1A | 5-HT7 | 5-HT2A Ki [nM] a | 5-HT6 Ki [nM] a | D2 Ki [nM] a | ||
---|---|---|---|---|---|---|---|---|
Ki [nM] a | Kb [nM] a | Ki [nM]a | Kb [nM] a | |||||
Trazodone [27,28] | 118 | 785 (EC50) | 1782 | - | 27 | >10,000 | 4142 | |
7a·HCl [18] | 3-Cl | 16 | n.d. | 278 | 87 | 342 | 1945 | 137 |
7b·HCl [18] | 2-Ph | 20 | 12 | 19 | 18 | 328 | 1188 | 191 |
Treatment a | Dose (mg/kg) | Number of Movements/3–6 min |
---|---|---|
Vehicle | - | 102.0 ± 32.2 |
7a·HCl | 0.625 | 28.0 ± 10.4 |
Vehicle | - | 159.9 ± 30.5 |
7b·HCl | 1.25 | 141.3 ± 54.6 |
2.5 | 233.7 ± 77.6 | |
Vehicle | - | 93.6 ± 27.9 |
Escitalopram | 1.25 | 100.3 ± 31.4 |
2.5 | 85.4 ± 31.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaręba, P.; Partyka, A.; Latacz, G.; Satała, G.; Zajdel, P.; Jaśkowska, J. New, Eco-Friendly Method for Synthesis of 3-Chlorophenyl and 1,1′-Biphenyl Piperazinylhexyl Trazodone Analogues with Dual 5-HT1A/5-HT7 Affinity and Its Antidepressant-like Activity. Molecules 2022, 27, 7270. https://doi.org/10.3390/molecules27217270
Zaręba P, Partyka A, Latacz G, Satała G, Zajdel P, Jaśkowska J. New, Eco-Friendly Method for Synthesis of 3-Chlorophenyl and 1,1′-Biphenyl Piperazinylhexyl Trazodone Analogues with Dual 5-HT1A/5-HT7 Affinity and Its Antidepressant-like Activity. Molecules. 2022; 27(21):7270. https://doi.org/10.3390/molecules27217270
Chicago/Turabian StyleZaręba, Przemysław, Anna Partyka, Gniewomir Latacz, Grzegorz Satała, Paweł Zajdel, and Jolanta Jaśkowska. 2022. "New, Eco-Friendly Method for Synthesis of 3-Chlorophenyl and 1,1′-Biphenyl Piperazinylhexyl Trazodone Analogues with Dual 5-HT1A/5-HT7 Affinity and Its Antidepressant-like Activity" Molecules 27, no. 21: 7270. https://doi.org/10.3390/molecules27217270
APA StyleZaręba, P., Partyka, A., Latacz, G., Satała, G., Zajdel, P., & Jaśkowska, J. (2022). New, Eco-Friendly Method for Synthesis of 3-Chlorophenyl and 1,1′-Biphenyl Piperazinylhexyl Trazodone Analogues with Dual 5-HT1A/5-HT7 Affinity and Its Antidepressant-like Activity. Molecules, 27(21), 7270. https://doi.org/10.3390/molecules27217270