Effect of Traditional Cooking and Sous Vide Heat Treatment, Cold Storage Time and Muscle on Physicochemical and Sensory Properties of Beef Meat
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Heating and Storage
4.2. Meat Color
- 0 < ΔE < 1—does not notice the difference,
- 1 < ΔE < 2—only an experienced observer notices the difference,
- 2 < ΔE < 3.5—an inexperienced observer also notices the difference,
- 3.5 < ΔE < 5—notices a distinct color difference,
- 5 < ΔE—an observer gets the impression of two different colors
4.3. Instrumental Texture Evaluation
4.4. Sensory Evaluation
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Trevisan, A.J.; Lima, D.A.; Sampaio, G.R.; Soares, R.A.; Bastos, D.H. Influence of home cooking conditions on Maillard reaction products in beef. Food Chem. 2016, 196, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Markowicz Bastos, D.H.; Gugliucci, A. Contemporary and controversial aspects of the Maillard reaction products. Curr. Opin. Food Sci. 2015, 1, 13–20. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Pietrzak-Fiećko, R.; Tkacz, K.; Draszanowska, A.; Więk, A. Influence of sous vide and steam cooking on mineral contents, fatty acid composition and tenderness of semimembranosus muscle from Holstein-Friesian bulls. Meat Sci. 2019, 157, 107877. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.P.; Hunt, M.C.; Nair, M.N.; Rentfrow, G. Improving beef color stability: Practical strategies and underlying mechanisms. Meat Sci. 2014, 98, 490–504. [Google Scholar] [CrossRef] [PubMed]
- King, N.J.; Whyte, R. Does it look cooked? A review of factors that influence cooked meat color. J. Food Sci. 2006, 71, R31–R40. [Google Scholar] [CrossRef]
- Alfaia, C.; Lopes, A.; Prates, J. Cooking and diet quality: A focus on meat. In Diet Quality. An Evidence-Based Approach; Preedy, V., Hunter, A., Patel, V., Eds.; Humana Press: New York, NY, USA, 2013; Volume 1, pp. 257–284. [Google Scholar] [CrossRef]
- Tornberg, E. Effects of heat on meat proteins—Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Tkacz, K.; Modzelewska-Kapituła, M.; Petracci, M.; Zduńczyk, W. Improving the quality of sous-vide beef from Holstein-Friesian bulls by different marinades. Meat Sci. 2021, 182, 108639. [Google Scholar] [CrossRef]
- Guzek, D.; Głąbska, D.; Gutkowska, K.; Wierzbicki, J.; Wozniak, A.; Wierzbicka, A. Influence of cut and thermal treatment on consumer perception of beef in Polish trials. Pak. J. Agric. Sci. 2015, 52, 533–538. [Google Scholar]
- Liu, J.; Ellies-Oury, M.-P.; Chriki, S.; Legrand, I.; Pogorzelski, G.; Wierzbicki, J.; Farmer, L.; Troy, D.; Polkinghorne, R.; Hocquette, J.-F. Contributions of tenderness, juiciness and flavor liking to overall liking of beef in Europe. Meat Sci. 2020, 168, 108190. [Google Scholar] [CrossRef]
- Macharáčková, B.; Bogdanovičová, K.; Ježek, F.B.; Haruštiaková, D.; Kameník, J. Cooking loss in retail beef cuts: The effect of muscle type, sex, ageing, pH, salt and cooking method. Meat Sci. 2021, 171, 108270. [Google Scholar] [CrossRef]
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Quinn, T.G.; Legako, J.F.; Brooks, J.C.; Miller, M.F. Evaluation of the contribution of tenderness, juiciness, and flavor to the overall consumer beef eating experience. Transl. Anim. Sci. 2018, 2, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogorzelski, G.; Woźniak, K.; Polkinghorne, R.; Półtorak, A.; Wierzbicka, A. Polish consumer categorisation of grilled beef at 6 mm and 25 mm thickness into quality grades, based on meat standards Australia methodology. Meat Sci. 2020, 161, 107953. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, Z.B.; Thomson, P.C.; Ha, M.; Campbell, M.A.; McGill, D.M.; Friend, M.A.; Warner, R.D. Effect of sous vide cooking and ageing on tenderness and water-holding capacity of low-value beef muscles from young and older animals. Meat Sci. 2021, 175, 108435. [Google Scholar] [CrossRef]
- Warner, R.D. Understanding genetic and environmental effects for assurance of meat quality. In Control of Meat Quality; Research Signpost: Kerala, India, 2011; pp. 117–145. [Google Scholar]
- Marino, R.A. Proteolytic pattern of myofibrillar protein and meat tenderness as affected by breed and aging time. Meat Sci. 2013, 95, 281–287. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Holman, B.W.; Liang, R.; Chen, X.; Luo, X.; Zhu, L.; Hopkins, D.L.; Zhang, Y. Investigation of the physicochemical, bacteriological, and sensory quality of beef steaks held under modified atmosphere packaging and representative of different ultimate pH values. Meat Sci. 2021, 174, 108416. [Google Scholar] [CrossRef]
- Oz, F.; Aksu, M.; Turan, M. The effects of different cooking methods on some quality criteria and mineral composition of beef steaks. J. Food Process. Preserv. 2017, 41, e13008. [Google Scholar] [CrossRef]
- Warner, R.D.; McDonnell, C.K.; Bekhit, A.E.; Claus, J.; Vaskoska, R.; Sikes, A.; Dunshea, F.R.; Ha, M. Systematic review of emerging and innovative technologies for meat tenderisation. Meat Sci. 2017, 132, 72–89. [Google Scholar] [CrossRef]
- Baldwin, D.E. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Hernandez, E.; Salaseviciene, A.; Ertbjerg, P. Low-temperature longtime cooking of meat: Eating quality and underlying mechanisms. Meat Sci. 2018, 143, 104–113. [Google Scholar] [CrossRef]
- Supaphon, P.; Kerdpiboon, S.; Vénien, A.; Loison, O.; Sicard, J.; Rouel, J.; Astruc, T. Structural changes in local Thai beef during sous-vide cooking. Meat Sci. 2021, 175, 108442. [Google Scholar] [CrossRef] [PubMed]
- Uttaro, B.; Zawadski, S.; McLeod, B. Efficacy of multi-stage sous-vide cooking on tenderness of low value beef muscles. Meat Sci. 2019, 149, 40–46. [Google Scholar] [CrossRef]
- Botinestean, C.; Keenan, D.F.; Kerry, J.P.; Hamill, R.M. The effect of thermal treatments including sous-vide, blast freezing and their combinations on beef tenderness of M. semitendinosus steaks targeted at elderly consumers. LWT—Food Sci. Technol. 2016, 74, 154–159. [Google Scholar] [CrossRef]
- Roldan, M.; Antequera, T.; Martin, A.; Mayoral, A.I.; Ruiz, J. Effect of different temperature-time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins. Meat Sci. 2013, 93, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.; Ertbjerg, P.; Aaslyng, M.D.; Christensen, M. Effect of prolonged heat treatment from 48 °C to 63 °C on toughness, cooking loss and color of pork. Meat Sci. 2011, 88, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Sanchez del Pulgar, J.; Gazquez, A.; Ruiz-Carrascal, J. Physico-chemical, textural and structural characteristics of sous-vide cooked pork cheeks as affected by vacuum, cooking temperature, and cooking time. Meat Sci. 2012, 90, 828–835. [Google Scholar] [CrossRef]
- Kaur, L.; Hui, S.X.; Boland, M. Changes in Cathepsin Activity during Low-Temperature Storage and Sous Vide Processing of Beef Brisket. Food Sci. Anim. Resour. 2020, 40, 415–425. [Google Scholar] [CrossRef]
- Kathuria, D.; Dhiman, A.K.; Attri, S. Sous vide, a culinary technique for improving quality of food products: A review. Trends Food Sci. Technol. 2022, 119, 57–68. [Google Scholar] [CrossRef]
- Jiang, S.; Xue, D.; Zhang, Z.; Shan, K.; Ke, W.; Zhang, M.; Zhao, D.; Nian, Y.; Xu, X.; Zhou, G.; et al. Effect of Sous-vide cooking on the quality and digestion characteristics of braised pork. Food Chem. 2022, 375, 131683. [Google Scholar] [CrossRef]
- Isleroglu, H.; Kemerli, T.; Kaymak-Ertekin, F. Effect of steam-assisted hybrid cooking on textural quality characteristics, cooking loss, and free moisture content of beef. Int. J. Food Prop. 2015, 18, 403–414. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Dąbrowska, E.; Jankowska, B.; Kwiatkowska, A.; Cierach, M. The effect of muscle, cooking method and final internal temperature on quality parameters of beef roast. Meat Sci. 2012, 91, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Oz, F.; Zikirov, E. The effects of sous-vide cooking method on the formation ofheterocyclic aromatic amines in beef chops. LWT—Food Sci. Technol. 2015, 64, 120–125. [Google Scholar] [CrossRef]
- Naqvi, Z.B.; Campbell, M.A.; Latif, S.; Thomson, P.C.; McGill, D.M.; Warner, R.D.; Friend, M.A. Improving tenderness and quality of M. biceps femoris from older cows through concentrate feeding, zingibain protease and sous vide cooking. Meat Sci. 2021, 180, 108563. [Google Scholar] [CrossRef]
- Diaz, P.; Nieto, G.; Garrido, M.; Banon, S. Microbial, physical-chemical and sensory spoilage during the refrigerated storage of cooked pork loin processed by the sous vide method. Meat Sci. 2008, 80, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Ayub, H.; Ahmad, A. Physiochemical changes in sous-vide and conventionally. Int. J. Gastron. Food Sci. 2019, 17, 100145. [Google Scholar] [CrossRef]
- Vaudagna, S.R.; Sánchez, G.; Neira, M.S.; Insani, E.M.; Picallo, A.B.; Gallinger, M.M.; Lasta, J.A. Sous vide cooked beef muscles: Effects of low temperature-long time (LT–LT) treatments on their quality characteristics and storage stability. Int. J. Food Sci. Technol. 2002, 37, 425–441. [Google Scholar] [CrossRef]
- Naqvi, Z.B.; Campbell, M.A.; Latif, S.; Thomson, P.C.; Astruc, T.; Friend, M.A.; Vaskoska, R.; Warner, R.D. The effect of extended refrigerated storage on the physicochemical, structural, and microbial quality of sous vide cooked biceps femoris treated with ginger powder (zingibain). Meat Sci. 2022, 186, 108729. [Google Scholar] [CrossRef]
- Sun, S.; Sullivan, G.; Stratton, J.; Bower, C.; Cavender, G. Effect of HPP treatment on the safety and quality of beef steak intended for sous vide cooking. LWT—Food Sci. Technol. 2017, 86, 185–192. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Cittadini, A.; Munekata, P.E.; Domínguez, R. Physicochemical properties of foal meat as affected by cooking methods. Meat Sci. 2015, 108, 50–54. [Google Scholar] [CrossRef]
- Wyrwisz, J.; Moczkowska, M.; Kurek, M.; Stelmasiak, A.; Półtorak, A.; Wierzbicka, A. Influence of 21 days of vacuum-aging on color, bloom development, and WBSF of beef semimembranosus. Meat Sci. 2016, 122, 48–54. [Google Scholar] [CrossRef]
- Wu, G.; Farouk, M.; Clerens, S.; Rosenvold, K. Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Sci. 2014, 98, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Onopiuk, A.; Szpicer, A.; Pogorzelski, G.; Wierzbicka, A.; Półtorak, A. Analysis of the impact of exogenous preparations of cysteine proteases on tenderness of beef muscles Semimembranosus and Longissimus thoracis et lumborum. Livest. Sci. 2022, 258, 104866. [Google Scholar] [CrossRef]
- Botinestean, C.; Hossain, M.; Mullen, A.M.; Kerry, J.P.; Hamill, R.M. The influence of the interaction of sous-vide cooking time and papain concentration on tenderness and technological characteristics of meat products. Meat Sci. 2021, 177, 108491. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Gagaoua, M.; Normand, J.; Gruffat, D.; Andueza, D.; Mairesse, G.; Mourot, B.-P.; Chesneau, G.; Gobert, C.; Picard, B. Contribution of connective tissue components, muscle fibres and marbling to beef tenderness variability in longissimus thoracis, rectus abdominis, semimembranosus and semitendinosus muscles. J. Sci. Food Agric. 2020, 100, 2502–2511. [Google Scholar] [CrossRef] [PubMed]
- Żakowska-Biemans, S.; Pieniak, Z.; Gutkowska, K.; Wierzbicki, J.; Cieszyńska, K.; Sajdakowska, M.K.-G. Beef consumer segment profiles based on information source usage in Poland. Meat Sci. 2017, 124, 105–111. [Google Scholar] [CrossRef]
- Garcia-Segovia, P.; Andrés-Bello, A.; Martínez-Monzo, J. Effect of cooking method on mechanical properties, color and structure of beef muscle (M. pectoralis). J. Food Eng. 2007, 80, 813–821. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.-H.; Bakhsh, A.; Lee, S.-J.; Lee, E.-Y.; Kim, C.-J.; Joo, S.-T. Control of sous-vide physicochemical, sensory, and microbial properties through the manipulation of cooking temperatures and times. Meat Sci. 2022, 188, 108787. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.-H.; Joo, S.-T. Effect of different temperature and time combinations on quality characteristics of sous-vide cooked goat gluteus medius and biceps femoris. Food Bioprocess Technol. 2019, 12, 1000–1009. [Google Scholar] [CrossRef]
- Kondjoyan, A.; Kohler, A.; Realini, C.E.; Portanguen, S.; Kowalski, R.; Clerjon, S.; Gatellier, P.; Chevolleau, S.; Bonny, J.-M.; Debrauwer, L. Towards models for the prediction of beef meat quality during cooking. Meat Sci. 2014, 97, 323–331. [Google Scholar] [CrossRef]
- CIE. Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms; Suppl. No. 2 to CIE Publication No. 15 (E-1.3.1), 1971/(TC-1-3); Commission Internationale de l’Éclairage: Paris, France, 1978. [Google Scholar]
- ISO 8586-2; Sensory Analysis. General Guidance for the Selection, Training and Monitoring of Assessors. International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 8587; Sensory Analysis. Methodology, International Organization for Standardization (ISO). International Organization for Standardization: Geneva, Switzerland, 2006.
- PN-EN ISO 8589; General Guidelines for the Design of a Sensory Analysis Laboratory. Polish Committee for Standardization: Warsaw, Poland, 2010.
Specification | Unit of Measure | Muscle | Storage Time (Days) | ANOVA | p | |||
---|---|---|---|---|---|---|---|---|
2 | 21 | |||||||
se | se | |||||||
Hardness Cycle 1 | N | MS | 151.71 | 8.41 | 140.80 | 9.18 | - | - |
MLT | 146.33 | 4.71 | 136.33 | 8.93 | ||||
Adhesiveness | mJ | MS | 2.24 a | 0.38 | 3.63 | 0.35 | S | 0.003 |
MLT | 2.52 | 0.63 | 4.04 b | 0.49 | ||||
Resilience | MS | 0.20 a | 0.02 | 0.22 ac | 0.02 | M | 0.0001 | |
MLT | 0.14 ab | 0.01 | 0.12 b | 0.01 | ||||
Hardness Cycle 2 | N | MS | 37.51 | 13.71 | 76.27 | 14.51 | - | - |
MLT | 48.27 | 11.22 | 40.66 | 10.00 | ||||
Cohesiveness | MS | 0.34 a | 0.03 | 0.41 a | 0.02 | M | 0.0001 | |
MLT | 0.22 b | 0.02 | 0.22 b | 0.02 | ||||
Springiness | mm | MS | 4.13 a | 0.43 | 4.94 ab | 0.23 | M | 0.0001 |
MLT | 3.00 ac | 0.27 | 2.83 b | 0.24 | ||||
Gumminess | N | MS | 53.53 | 6.64 | 56.01 | 3.82 | M | 0.020 |
MLT | 31.99 | 3.46 | 43.37 | 11.59 | ||||
Chewiness | mJ | MS | 262.09 a | 48.41 | 284.03 a | 27.19 | M | 0.0001 |
MLT | 105.42 b | 17.02 | 98.74 b | 11.79 | ||||
Shear force | N/cm2 | MS | 123.61 a | 5.78 | 157.94 b | 8.76 | M S M × S | 0.001 0.002 0.022 |
MLT | 88.98 c | 3.21 | 94.37 c | 5.75 | ||||
Cooking loss | [%] | MS | 32.37 a | 0.11 | 24.50 b | 0.22 | S | 0.0001 |
MLT | 32.64 a | 0.1 | 24.42 b | 0.12 | ||||
Drip loss | cm2 | MS | 6.07 | 0.41 | 4.18 | 0.39 | S | 0.0001 |
MLT | 6.89 | 0.31 | 4.03 | 0.25 |
Specification | Muscle | Storage Time (Days) | ANOVA | p | |||
---|---|---|---|---|---|---|---|
2 | 21 | ||||||
se | se | ||||||
L* | MS | 41.19 a | 0.45 | 38.42 ab | 1.00 | M | 0.0001 |
MLT | 34.99 c | 0.89 | 35.36 bc | 1.14 | |||
a* | MS | 22.81 a | 0.71 | 23.50 a | 0.78 | M S | 0.009 0.012 |
MLT | 19.94 b | 0.44 | 22.74 a | 0.44 | |||
b* | MS | 9.74 a | 0.50 | 9.23 a | 0.73 | M M × S | 0.0001 0.009 |
MLT | 6.93 b | 0.29 | 8.79 a | 0.44 | |||
ΔE (MS-MLT) | 8.68 ± 0.85 | 5.89 ± 0.55 | S | 0.010 | |||
ΔE (2 D–21 D) | MS | 5.97 ± 0.74 | - | - | |||
MLT | 7.14 ± 0.78 |
Specification | Muscle | GT | SV | ANOVA | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Storage Time (Days) | ||||||||||||
2 | 21 | 2 | 21 | |||||||||
se | se | se | se | |||||||||
Hardness Cycle 1 | N | MS | 120.86 a | 10.73 | 108.48 a | 7.47 | 92.67 | 9.47 | 102.76 a | 14.41 | M × T × S | 0.005 |
MLT | 90.65 | 10.86 | 108.56 a | 8.25 | 100.28 | 12.51 | 57.76 b | 5.93 | ||||
Adhesiveness | mJ | MS | 0.16 a | 0.04 | 0.13 a | 0.04 | 0.62 | 0.18 | 0.70 | 0.2 | - | - |
MLT | 0.46 | 0.27 | 0.18 a | 0.07 | 0.92 b | 0.22 | 0.37 | 0.12 | ||||
Resilience | MS | 0.21 | 0.01 | 0.21 | 0.01 | 0.23 a | 0.00 | 0.18 b | 0.01 | M × T × S | 0.009 | |
MLT | 0.23 ac | 0.01 | 0.20 | 0.01 | 0.20 bc | 0.01 | 0.19 b | 0.01 | ||||
Hardness Cycle 2 | N | MS | 87.12 | 13.58 | 96.94 a | 6.63 | 80.10 | 8.49 | 90.70 a | 12.98 | - | - |
MLT | 82.68 | 11.19 | 92.53 a | 7.01 | 82.19 | 9.41 | 48.38 b | 4.89 | ||||
Cohesiveness | MS | 0.55 a | 0.01 | 0.53 a | 0.01 | 0.56 a | 0.00 | 0.48 b | 0.01 | T × S | 0.001 | |
MLT | 0.55 a | 0.02 | 0.53 ac | 0.01 | 0.53 ac | 0.01 | 0.47 b | 0.01 | ||||
Springiness | mm | MS | 6.02 a | 0.13 | 6.26 a | 0.11 | 5.90 ab | 0.09 | 5.41 b | 0.11 | T × S M × S M × C | 0.004 0.043 0.031 |
MLT | 6.12 a | 0.24 | 5.80 ab | 0.15 | 5.41 b | 0.13 | 4.67 c | 0.11 | ||||
Gumminess | N | MS | 66.90 a | 6.64 | 57.69 a | 4.15 | 52.46 a | 5.47 | 50.56 | 7.94 | M × T × S | 0.018 |
MLT | 50.23 | 6.33 | 57.27 a | 4.32 | 50.96 | 5.20 | 27.49 b | 3.20 | ||||
Chewiness | mJ | MS | 404.36 a | 41.78 | 359.10 a | 25.06 | 309.43 a | 33.50 | 273.65 a | 44.22 | - | - |
MLT | 313.09 a | 42.64 | 336.98 a | 28.44 | 270.51 a | 24.54 | 126.49 b | 15.22 | ||||
Shear force | N/cm2 | MS | 134.09 a | 3.37 | 116.02 b | 4.09 | 108.43 b | 4.07 | 99.43 bc | 2.38 | T × S | 0.049 |
MLT | 101.78 c | 2.97 | 87.06 cd | 3.45 | 74.87 cd | 2.95 | 69.77 cd | 3.05 |
Specification | Muscle | GT | SV | ANOVA | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Storage Time (Days) | ||||||||||||
2 | 21 | 2 | 21 | |||||||||
se | se | se | se | |||||||||
L* | MS | 53.24 a | 0.91 | 57.74 b | 0.42 | 58.49 bc | 1.16 | 62.08 c | 0.73 | M × S | 0.008 | |
MLT | 50.98 a | 0.88 | 52.10 a | 0.84 | 56.51 ab | 1.1 | 56.68 ab | 0.9 | ||||
a* | MS | 9.56 a | 0.16 | 10.03 a | 0.27 | 19.93 b | 0.54 | 15.91 c | 0.51 | M × T × S T × S | 0.026 0.0001 | |
MLT | 10.67 a | 0.32 | 10.84 a | 0.32 | 20.22 b | 0.58 | 18.78 bd | 0.67 | ||||
b* | MS | 12.21 a | 0.14 | 11.61 ac | 0.16 | 13.09 b | 0.22 | 11.36 c | 0.14 | M × S T × S | 0.046 0.0001 | |
MLT | 12.14 ac | 0.16 | 12.09 ac | 0.13 | 13.06 b | 0.26 | 11.83 a | 0.22 | ||||
ΔE (2 D–21 D) | MS | 4.80 ± 0.67 a | 6.66 ± 0.68 | M T | 0.024 0.026 | |||||||
MLT | 3.61 ± 0.42 | 4.78 ± 0.83 b | ||||||||||
ΔE (GT-SV) | MS | 2 D | 12.9 ± 0.46 a | S S × M | 0.0001 0.010 | |||||||
21 D | 7.76 ± 0.44 b | |||||||||||
MLT | 2 D | 11.8 ± 0.61 ab | ||||||||||
21 D | 9.83 ± 0.82 b | |||||||||||
ΔE (MS-MLT) | 2 D | 6.04 ± 0.77 | 8.16 ± 1.05 | - | - | |||||||
21 D | 6.57 ± 0.87 | 7.54 ± 1.14 |
Specification | Muscle | GT | SV | ||||||
---|---|---|---|---|---|---|---|---|---|
Storage Time (Days) | |||||||||
2 | 21 | 2 | 21 | ||||||
se | se | se | se | ||||||
Aroma-intensity | MS | 2.94 | 0.11 | 3.19 | 0.12 | 3.42 | 0.16 | 3.36 | 0.11 |
MLT | 2.94 | 0.17 | 3.28 | 0.15 | 3.31 | 0.16 | 3.44 | 0.11 | |
Aroma-desirability | MS | 3.11 | 0.14 | 3.25 | 0.09 | 3.53 | 0.14 | 3.58 | 0.12 |
MLT | 3.08 | 0.19 | 3.36 | 0.13 | 3.39 | 0.15 | 3.44 | 0.18 | |
Juiciness | MS | 2.86 a | 0.13 | 3.00 | 0.19 | 3.47 | 0.14 | 3.50 | 0.16 |
MLT | 3.08 | 0.19 | 3.17 | 0.16 | 3.39 | 0.14 | 3.56 b | 0.17 | |
Tenderness | MS | 3.06 a | 0.17 | 3.47 abc | 0.13 | 3.53 abc | 0.16 | 3.92 b | 0.18 |
MLT | 2.61 a | 0.24 | 3.47 ab | 0.19 | 3.08 a | 0.17 | 3.72 b | 0.21 | |
Tastiness-intensity | MS | 3.39 | 0.13 | 3.36 | 0.15 | 3.69 a | 0.10 | 3.94 a | 0.14 |
MLT | 2.94 b | 0.19 | 3.44 | 0.21 | 3.36 | 0.14 | 3.92 a | 0.11 | |
Tastiness-desirability | MS | 3.47 | 0.15 | 3.42 | 0.16 | 3.69 | 0.10 | 3.86 | 0.15 |
MLT | 3.14 | 0.20 | 3.44 | 0.22 | 3.31 | 0.13 | 3.64 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, M.; Rudy, M.; Stanisławczyk, R.; Duma-Kocan, P. Effect of Traditional Cooking and Sous Vide Heat Treatment, Cold Storage Time and Muscle on Physicochemical and Sensory Properties of Beef Meat. Molecules 2022, 27, 7307. https://doi.org/10.3390/molecules27217307
Gil M, Rudy M, Stanisławczyk R, Duma-Kocan P. Effect of Traditional Cooking and Sous Vide Heat Treatment, Cold Storage Time and Muscle on Physicochemical and Sensory Properties of Beef Meat. Molecules. 2022; 27(21):7307. https://doi.org/10.3390/molecules27217307
Chicago/Turabian StyleGil, Marian, Mariusz Rudy, Renata Stanisławczyk, and Paulina Duma-Kocan. 2022. "Effect of Traditional Cooking and Sous Vide Heat Treatment, Cold Storage Time and Muscle on Physicochemical and Sensory Properties of Beef Meat" Molecules 27, no. 21: 7307. https://doi.org/10.3390/molecules27217307
APA StyleGil, M., Rudy, M., Stanisławczyk, R., & Duma-Kocan, P. (2022). Effect of Traditional Cooking and Sous Vide Heat Treatment, Cold Storage Time and Muscle on Physicochemical and Sensory Properties of Beef Meat. Molecules, 27(21), 7307. https://doi.org/10.3390/molecules27217307