Recent Progress in Biosensors for Detection of Tumor Biomarkers
Abstract
:1. Introduction
2. Tumor Biomarkers
3. Classification of Biosensors
3.1. Electrochemical Biosensors
3.1.1. Principles of Electrochemical Biosensors
3.1.2. Electrochemical Biosensors Based on Nanomaterials
3.2. Optical Biosensors
3.2.1. Principles of Optical Biosensors
3.2.2. Surface-Enhanced Raman Scattering (SERS)
3.3. Photoelectrochemical Biosensors
Principle of Photoelectrochemical Biosensors
3.4. Piezoelectric Biosensors
3.4.1. Principles of Piezoelectric Biosensors
3.4.2. Quartz Crystal Microbalance (QCM)
3.5. Aptasensors
Principles of Aptasensors
4. Application of Biosensor in Detection of Tumor Biomarkers
4.1. NSE Detection
4.1.1. NSE Detection Based on Electrochemical Biosensors
4.1.2. NSE Detection Based on Optical Biosensors
4.1.3. NSE Detection Based on Photoelectrochemical Biosensors
4.1.4. NSE Detection Based on Piezoelectric Biosensors
4.1.5. NSE Detection Based on Aptasensors
4.2. CEA Detection
4.2.1. CEA Detection Based on Electrochemical Biosensors
4.2.2. CEA Detection Based on Optical Biosensors
4.2.3. CEA Detection Based on Photoelectrochemical Biosensors
4.2.4. CEA Detection Based on Piezoelectric Biosensors
4.2.5. CEA Detection Based on Aptasensors
4.3. PSA Detection
4.3.1. PSA Detection Based on Electrochemical Biosensors
4.3.2. PSA Detection Based on Optical Biosensors
4.3.3. PSA Detection Based on Photoelectrochemical Biosensors
4.3.4. PSA Detection Based on Piezoelectric Biosensors
4.3.5. PSA Detection Based on Aptasensors
4.4. SCCA Detection
4.4.1. SCCA Detection Based on Electrochemical Biosensors
4.4.2. SCCA Detection Based on Optical Biosensors
4.4.3. SCCA Detection Based on Photoelectrochemical Sensors
4.5. CA19-9 Detection
4.5.1. CA19-9 Detection Based on Electrochemical Biosensors
4.5.2. CA19-9 Detection Based on Optical Biosensors
4.5.3. CA19-9 Detection Based on Photoelectrochemical Sensors
4.5.4. CA19-9 Detection Based on Piezoelectric Biosensors
4.6. TP53 Detection
4.6.1. TP53 Detection Based on Electrochemical Biosensors
4.6.2. TP53 Detection Based on Optical Biosensors
4.6.3. TP53 Detection Based on Photoelectrochemical Biosensors
4.6.4. TP53 Detection Based on Piezoelectric Biosensors
4.7. Other Tumor Biomarkers Detection
4.7.1. ATP6AP1 Detection Based on Piezoelectric Biosensors
4.7.2. CA15-3 Detection Based on Electrochemical Biosensor
4.7.3. HER2 Detection Based on Photoelectrochemical Sensor
5. Conclusions and Future Perspectives
Target | Method Type | Linear Range | Detection Limit | Reference |
---|---|---|---|---|
NSE | Electrochemical biosensor | 10–500 ng·mL−1 | 0.133 ng·mL−1 | [38] |
NSE | Electrochemical biosensor | 0.1–0.2 ng·mL−1 | 0.05 ng·mL−1 | [37] |
NSE | Optical biosensor | 0.1–1000 ng·mL−1 | 0.05 ng·mL−1 | [31] |
NSE | Optical biosensor | - | 1.0 pg·mL−1 | [32] |
NSE | photoelectrochemical biosensors | 0.1 ng·mL−1–1000 ng·mL−1 | 0.05 ng·mL−1 | [31] |
NSE | photoelectrochemical biosensors | 0.1 pg·mL−1–50 ng·mL−1 | 0.07 pg·mL−1 | [33] |
NSE | aptasensor | 1–100 ng·mL−1 | 0.1 ng·mL−1 | [36] |
CEA | Electrochemical biosensor | 0.001–100 ng·mL−1 | 0.27 pg·mL−1 | [39] |
CEA | Optical biosensor | 10−1–103 ng·mL−1 | 0.1 ng·mL−1 | [40] |
CEA | Optical biosensor | - | <100 fM | [42] |
CEA | SERS | 0.0001–100.0 ng·mL−1 | 0.033 pg·mL−1 | [91] |
CEA | Fluorescence | 0.1 to 100 ng·mL−1 | 0.055 ng·mL−1 | [44] |
CEA | Photoelectrochemical sensors | 0.14 pg·mL−1 | [46] | |
CEA | Piezoelectric biosensor | 1.5μg·ml−1–30 ug·ml−1 | 1.5 μg·ml−1 | [48] |
CEA | Aptasensors | 0.25–1.5 nM | 0.5 nM | [49] |
CEA | Aptasensors | 2–45 ng·mL−1 | 0.24 ng·mL−1 | [50] |
PSA | Electrochemical biosensor | 5 pg·mL−1–20 ng·mL−1 | 0.33 pg·mL−1 | [52] |
PSA | Optical biosensor | 1–50 ng·mL−1 | 0.5 ng·mL−1 | [54] |
PSA | Optical biosensor | 50 fg·mL−1–10 ng·mL−1 | 21 fg·mL−1 | [53] |
PSA | Optical biosensor | 1.0–250 ng·mL−1 | 0.72 ng·mL−1 | [55] |
PSA | Fluorescence | 1 pg·mL−1–20 ng·mL−1 | 0.3 pg·mL−1 | [56] |
PSA | Fluorescence | 1 × 10−12–1 × 10−9 g·mL−1 | 3 × 10−13 g·mL−1 | [57] |
PSA | Photoelectrochemical sensors | 0.001 to 50 ng·mL−1 | 0.25 pg·mL−1 | [58] |
PSA | Photoelectrochemical sensors | 0.005 to 20 ng·mL−1 | 0.0015 ng·mL−1 | [59] |
PSA | QCM | - | 48 pg·mL−1 | [60] |
PSA | QCM | - | 112 pg·mL−1 | [61] |
PSA | Aptasensors | 0.005–100 ng·mL−1 | 1.75 pg·mL−1, 0.39 pg·mL−1 | [62] |
PSA | Aptasensors | 0.01 to 50 ng·mL−1 | 0.01 ng·mL−1 | [63] |
SCCA | Electrochemical biosensor | 0.0001–1 ng·mL−1 1–30 ng·mL−1 | 25 fg·mL−1 | [64] |
SCCA | Electrochemical biosensor | 5.0 p·mL−1–15.0 ng·mL−1 | 2.34 pg·mL−1 | [65] |
SCCA | Optical biosensor | 0.001–75 ng·mL−1 | 0.22 pg·mL−1 | [67] |
SCCA | Photoelectrochemical sensors | 0.001–75 ng·mL−1 | 0.3 pg·mL−1 | [68] |
CA19-9 | Electrochemical biosensor | 6.5–520 U·mL−1 | 0.26 U·mL−1 | [69] |
CA19-9 | Electrochemical biosensor | 0.0001–10 U·mL−1 | 31 μU·mL−1 | [70] |
CA19-9 | SERS | - | 1.3 × 10−3 U·mL−1 | [71] |
CA19-9 | Photoelectrochemical sensors | 0.1–1000 U·mL−1 | 0.01 U·mL−1 | [72] |
CA19-9 | Piezoelectric biosensor | 12.5–270.0 U·mL−1 | - | [73] |
TP53 | Electrochemical biosensor | 0.01–2 pg·mL−1 | 3 fg·mL−1 | [75] |
TP53 | Electrochemical biosensor | 20–1000 fg·mL−1 | 4 fg·mL−1 | [76] |
TP53 | Fluorescence | 50 pM–2 nM | 8 pM | [78] |
TP53 | Photoelectrochemical biosensors | 25 aM–2.5 pM | - | [80] |
TP53 | Piezoelectric biosensor | - | 0.12 M | [81] |
ATP6 AP1 | QCM | - | 1.73 × 10−2 mg | [84] |
CA15-3 | Electrochemical biosensor(cyclic voltammetry) | 2.0~240 U·mL−1 | 0.64 U·mL−1 | [86] |
CA15-3 | Electrochemical biosensor(PEDOT) | 0.01~1000 U·mL−1 | 3.34 U·mL−1 | [86] |
HER2 | photoelectrochemical sensor | 1 pg·mL−1–1 ng·mL−1 | 0.026 pg·mL−1 | [90] |
AMF | electrochemical biosensor | 43 fM | [92] | |
CYFRA-21 | electrochemical biosensor | 10−2 pM | [92] |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, G.; Xiao, Z.; Tang, C.; Deng, Y.; Huang, H.; He, Z. Recent advances in biosensor for detection of lung cancer biomarkers. Biosens. Bioelectron. 2019, 141, 111416. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Fu, Z.; Yan, F.; Ju, H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC Trends Anal. Chem. 2007, 26, 679–688. [Google Scholar] [CrossRef]
- Schiffman, J.D.; Fisher, P.G.; Gibbs, P. Early detection of cancer: Past, present, and future. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayanthi, V.; Das, A.B.; Saxena, U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 2017, 91, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Chen, S.; Feng, S.; Li, Y.; Zou, J.; Ling, H.; Zeng, Y.; Zeng, X. Function and mechanisms of microRNA-20a in colorectal cancer. Exp. Ther. Med. 2020, 19, 1605–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, V.; Kalita, J.; Pal, M. Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Biomed. Pharmacother. 2017, 87, 8–19. [Google Scholar] [CrossRef]
- Kohaar, I.; Petrovics, G.; Srivastava, S. A Rich Array of Prostate Cancer Molecular Biomarkers: Opportunities and Challenges. Int. J. Mol. Sci. 2019, 20, 1813. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Li, W.; Zhang, F.; Hu, K. The value of squamous cell carcinoma antigen (SCCa) to determine the lymph nodal metastasis in cervical cancer: A meta-analysis and literature review. PLoS ONE 2017, 12, e0186165. [Google Scholar] [CrossRef] [Green Version]
- Azizian, A.; Ruhlmann, F.; Krause, T.; Bernhardt, M.; Jo, P.; Konig, A.; Kleiss, M.; Leha, A.; Ghadimi, M.; Gaedcke, J. CA19-9 for detecting recurrence of pancreatic cancer. Sci. Rep. 2020, 10, 1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blagih, J.; Buck, M.D.; Vousden, K.H. p53, cancer and the immune response. J. Cell Sci. 2020, 133, jcs237453. [Google Scholar] [CrossRef]
- Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016, 60, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinchia, J.; Echeverri, D.; Cruz-Pacheco, A.F.; Maldonado, M.E.; Orozco, J. Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. Micromachines 2020, 11, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, I.-H.; Kim, D.H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater. Res. 2020, 24, 6. [Google Scholar] [CrossRef] [Green Version]
- Walker, N.L.; Roshkolaeva, A.B.; Chapoval, A.I.; Dick, J.E. Recent advances in potentiometric biosensing. Curr. Opin. Electrochem. 2021, 28, 100735. [Google Scholar] [CrossRef]
- Vogt, S.; Su, Q.; Gutierrez-Sanchez, C.; Noell, G. Critical View on Electrochemical Impedance Spectroscopy Using the Ferri/Ferrocyanide Redox Couple at Gold Electrodes. Anal. Chem. 2016, 88, 4383–4390. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wang, E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 2007, 598, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.; Willner, I. Biomolecule-Functionalized Carbon Nanotubes: Applications in Nanobioelectronics. ChemPhysChem 2004, 5, 1084–1104. [Google Scholar] [CrossRef] [PubMed]
- Koyappayil, A.; Lee, M.-H. Ultrasensitive Materials for Electrochemical Biosensor Labels. Sensors 2020, 21, 89. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Wang, B.; Akiba, U.; Anzai, J.-I. Recent Progress in Nanomaterial-Based Electrochemical Biosensors for Cancer Biomarkers: A Review. Molecules 2017, 22, 1048. [Google Scholar] [CrossRef]
- Jonoush, Z.A.; Shayeh, J.S.; Yazdian, F.; Yadegari, A.; Hashemi, M.; Omidi, M. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide-gold nanostructures. Eng. Life Sci. 2019, 19, 206–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damborsky, P.; Svitel, J.; Katrlik, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moisoiu, V.; Iancu, S.D.; Stefancu, A.; Moisoiu, T.; Pardini, B.; Dragomir, M.P.; Crisan, N.; Avram, L.; Crisan, D.; Andras, I.; et al. SERS liquid biopsy: An emerging tool for medical diagnosis. Colloids Surfaces B Biointerfaces 2021, 208, 112064. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, A.; Cervo, S.; Sergo, V. Label-free surface-enhanced Raman spectroscopy of biofluids: Fundamental aspects and diagnostic applications. Anal. Bioanal. Chem. 2015, 407, 8265–8277. [Google Scholar] [CrossRef] [PubMed]
- Verdin, A.; Malherbe, C.; Muller, W.H.; Bertrand, V.; Eppe, G. Multiplex micro-SERS imaging of cancer-related markers in cells and tissues using poly(allylamine)-coated Au@Ag nanoprobes. Anal. Bioanal. Chem. 2020, 412, 7739–7755. [Google Scholar] [CrossRef]
- Pohanka, M. Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials 2018, 11, 448. [Google Scholar] [CrossRef] [Green Version]
- Narita, F.; Wang, Z.; Kurita, H.; Li, Z.; Shi, Y.; Jia, Y.; Soutis, C. A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVID-19 and Other Viruses. Adv. Mater. 2020, 33, e2005448. [Google Scholar] [CrossRef]
- Tang, D.-Q.; Zhang, D.-J.; Tang, D.Y.; Ai, H. Amplification of the antigen–antibody interaction from quartz crystal microbalance immunosensors via back-filling immobilization of nanogold on biorecognition surface. J. Immunol. Methods 2006, 316, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, A.; Aghaie, A.; Vahedi, E.; Qazvini, A.; Ghanei, M.; Afkhami, A.; Hajian, A.; Bagheri, H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2019, 206, 120251. [Google Scholar] [CrossRef]
- Mo, T.; Liu, X.; Luo, Y.; Zhong, L.; Zhang, Z.; Li, T.; Gan, L.; Liu, X.; Li, L.; Wang, H.; et al. Aptamer-based biosensors and application in tumor theranostics. Cancer Sci. 2021, 113, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiao, Q.; Lv, J.; Lei, Q.; Huang, Y. Dopamine modified hyperbranched TiO 2 arrays based ultrasensitive photoelectrochemical immunosensor for detecting neuron specific enolase. Anal. Biochem. 2017, 531, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, C.; Sun, Z.; Mao, H.; Zhang, L.; Yu, X.; Zhao, J.; Chen, X. Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis. Biosens. Bioelectron. 2019, 137, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, T.; Liu, D.; Xu, R.; Ma, H.; Wei, Q.; Zhang, Y. Photoelectrochemical immunosensor for the sensitive detection of neuron-specific enolase based on the effect of Z-scheme WO3/NiCo2O4 nanoarrays p-n heterojunction. Biosens. Bioelectron. 2022, 213, 114452. [Google Scholar] [CrossRef] [PubMed]
- Isgro, M.A.; Bottoni, P.; Scatena, R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015, 867, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Paus, E.; Hirzel, K.; Lidqvist, M.; Hoyhtya, M.; Warren, D.J. TD-12 workshop report: Characterization of monoclonal antibodies to neuron-specific enolase. Tumor Biol. 2011, 32, 819–829. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Y.; Di, Y.; He, L.; Liao, S.; Li, D.; Liu, X. In vitro selection of DNA aptamers for the development of chemiluminescence aptasensor for neuron-specific enolase (NSE) detection. RSC Adv. 2019, 9, 15513–15520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Zhang, J.; Zhang, A.; Wang, Y.; Cai, X. Electrochemical Detecting Lung Cancer-Associated Antigen Based on Graphene-Gold Nanocomposite. Molecules 2017, 22, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Cai, X.; Zhang, J.; Fan, J.; Xu, J.; Xu, L. High Sensitive Immunoelectrochemical Measurement of Lung Cancer Tumor Marker ProGRP Based on TiO(2)-Au Nanocomposite. Molecules 2019, 24, 656. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Liu, L.; Li, Y.; Wei, Q.; Cao, W. Ultrasensitive sandwich-type electrochemical immunosensor based on trimetallic nanocomposite signal amplification strategy for the ultrasensitive detection of CEA. Sci. Rep. 2016, 6, 30849. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Wang, J.; Fu, W.; Yao, C. A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers. Sci. Rep. 2016, 6, 33140. [Google Scholar] [CrossRef]
- Liu, J.L.; Raghu, D.; Anderson, G.P.; Goldman, E.R.; Christodoulides, J.A.; Raphael, M.P. Improving biosensing activity to carcinoembryonic antigen with orientated single domain antibodies. Heliyon 2017, 3, e00478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Enezi, E.; Vakurov, A.; Eades, A.; Ding, M.; Jose, G.; Saha, S.; Millner, P. Affimer-Based Europium Chelates Allow Sensitive Optical Biosensing in a Range of Human Disease Biomarkers. Sensors 2021, 21, 831. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shi, L.; Sun, D.-E.; Li, P.; Liu, Z. Fluorescence resonance energy transfer biosensor between upconverting nanoparticles and palladium nanoparticles for ultrasensitive CEA detection. Biosens. Bioelectron. 2016, 86, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zha, Z.; Tang, S.; Qiu, Y.; Liu, D. Modification-Free Fluorescent Biosensor for CEA Based on Polydopamine-Coated Upconversion Nanoparticles. J. Fluoresc. 2022, 32, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Y.; Zhang, Y.; Wang, Q.; Ren, X.; Wu, D.; Wei, Q. Photoelectrochemical Immunosensor for Detection of Carcinoembryonic Antigen Based on 2D TiO2 Nanosheets and Carboxylated Graphitic Carbon Nitride. Sci. Rep. 2016, 6, 27385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, G.; Tang, Y.; Zhang, B.; Wang, Y.; Guo, Q. Label-free photoelectrochemical immunosensing platform for detection of carcinoembryonic antigen through photoactive conducting poly(5-formylindole) nanocomposite. Biosens. Bioelectron. 2018, 116, 60–66. [Google Scholar] [CrossRef]
- Laraib, U.; Sargazi, S.; Rahdar, A.; Khatami, M.; Pandey, S. Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int. J. Biol. Macromol. 2021, 195, 356–383. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X.; Yan, H.-H.; Xu, S.-J.; Tang, D.-H.; Fu, W.-L. A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor. Biosens. Bioelectron. 2007, 23, 19–25. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, H.; Zhao, L.; Wang, Y.; Chen, X.; Zhai, H.; Tian, M.; Zhao, R.; Wang, T.; Xu, H.; et al. A novel aptasensor based on HCR and G-quadruplex DNAzyme for fluorescence detection of Carcinoembryonic Antigen. Talanta 2020, 221, 121451. [Google Scholar] [CrossRef]
- Zhai, X.-J.; Wang, Q.-L.; Cui, H.-F.; Song, X.; Lv, Q.-Y.; Guo, Y. A DNAzyme-catalyzed label-free aptasensor based on multifunctional dendrimer-like DNA assembly for sensitive detection of carcinoembryonic antigen. Biosens. Bioelectron. 2021, 194, 113618. [Google Scholar] [CrossRef]
- Hatakeyama, S.; Yoneyama, T.; Tobisawa, Y.; Yamamoto, H.; Ohyama, C. Narrative review of urinary glycan biomarkers in prostate cancer. Transl. Androl. Urol. 2021, 10, 1850–1864. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Sun, H.; Huang, Y.; Tang, Y.; Chen, Q.; Miao, P. Peptide cleavage-based electrochemical biosensor coupling graphene oxide and silver nanoparticles. Anal. Chim. Acta 2018, 1047, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Li, R.; Khan, M.S.; Gao, P.; Zhang, Y.; Wei, Q. Visible-light driven Photoelectrochemical Immunosensor Based on SnS2@mpg-C3N4 for Detection of Prostate Specific Antigen. Sci. Rep. 2017, 7, 4629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, R.-M.; Zhang, X.; Ding, L.; Yang, D.; Qu, F. Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission–silica nanospheres. Anal. Bioanal. Chem. 2017, 409, 5757–5765. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Zhang, S.; Yang, L.; Zhang, Z.; He, L.; Wang, M. Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen. Anal. Chim. Acta 2018, 1036, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.; Zhu, S.; Yang, M.; Kong, R.; Zheng, Y.; Qu, F. Graphene oxide quantum dots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron. 2015, 74, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, N.; Wang, K.; Hai, X.; Liu, J.; Dang, F. A novel peptide/Fe3O4@SiO2-Au nanocomposite-based fluorescence biosensor for the highly selective and sensitive detection of prostate-specific antigen. Talanta 2018, 179, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, C.; Chang, H.; Jiang, M.; Sun, X.; Jing, W.; Huang, H.; Huang, D.; Kong, L.; Chen, Z.; et al. A label-free photoelectrochemical immunosensor for prostate specific antigen detection based on Ag2S sensitized Ag/AgBr/BiOBr heterojunction by in-situ growth method. Bioelectrochemistry 2021, 142, 107928. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, S.; Zhang, S.; Zhao, P.; Wang, J.; Yan, M.; Ge, S.; Yu, J. Peptide cleavage-mediated photoelectrochemical signal on-off via CuS electronic extinguisher for PSA detection. Biosens. Bioelectron. 2020, 150, 111958. [Google Scholar] [CrossRef]
- Kwak, J.; Lee, S.S. Highly sensitive piezoelectric immunosensors employing signal amplification with gold nanoparticles. Nanotechnology 2019, 30, 445502. [Google Scholar] [CrossRef]
- Kwak, J.; Lee, S.S. Sensitivity and reproducibility improvements in a human plasma immunoassay with removal of clotting factors. Anal. Biochem. 2019, 585, 113410. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Lu, C.; Xu, X.; Ding, Z.; Li, H.; Zhang, H.; Wang, Y.; Li, C. A visible and near-infrared light dual responsive “signal-off” and “signal-on” photoelectrochemical aptasensor for prostate-specific antigen. Biosens. Bioelectron. 2021, 202, 113905. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Cao, X.; Liu, M.; Zhang, F.; Sun, C.; Xia, J.; Wang, Z. Aptamer and bifunctional enzyme co-functionalized MOF-derived porous carbon for low-background electrochemical aptasensing. Anal. Bioanal. Chem. 2021, 413, 6303–6312. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, H.; Gao, J.; Wu, D.; Ren, X.; Yan, T.; Pang, X.; Wei, Q. Ultrasensitive electrochemical immunosensor for SCCA detection based on ternary Pt/PdCu nanocube anchored on three-dimensional graphene framework for signal amplification. Biosens. Bioelectron. 2016, 79, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Wang, C.; Zhou, X.; Wu, T.; Wang, Y.; Li, C.; Yang, N. Ionic liquid and spatially confined gold nanoparticles enhanced photoelectrochemical response of zinc-metal organic frameworks and immunosensing squamous cell carcinoma antigen. Biosens. Bioelectron. 2019, 142, 111540. [Google Scholar] [CrossRef] [PubMed]
- Xi, M.; Zhao, Q.; Duan, R.; Yuan, J.; Quan, Y.; Yang, H. A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array. Int. J. Nanomed. 2014, 9, 1097–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, D.; Wu, D.; Cui, J.; Chen, Y.; Ma, H.; Liu, Y.; Wei, Q.; Du, B. An ultrasensitive label-free immunosensor based on CdS sensitized Fe–TiO2 with high visible-light photoelectrochemical activity. Biosens. Bioelectron. 2015, 74, 843–848. [Google Scholar] [CrossRef]
- Fan, D.; Bao, C.; Liu, X.; Feng, J.; Wu, D.; Ma, H.; Wang, H.; Wei, Q.; Du, B. Facile fabrication of visible light photoelectrochemical immunosensor for SCCA detection based on BiOBr/Bi2S3 heterostructures via self-sacrificial synthesis method. Talanta 2019, 198, 417–423. [Google Scholar] [CrossRef]
- Huang, Z.; Jiang, Z.; Zhao, C.; Han, W.; Lin, L.; Liu, A.; Weng, S.; Lin, X. Simple and effective label-free electrochemical immunoassay for carbohydrate antigen 19-9 based on polythionine-Au composites as enhanced sensing signals for detecting different clinical samples. Int. J. Nanomedicine. 2017, 12, 3049–3058. [Google Scholar] [CrossRef] [Green Version]
- Mo, G.; He, X.; Qin, D.; Meng, S.; Wu, Y.; Deng, B. Spatially-resolved dual-potential sandwich electrochemiluminescence immunosensor for the simultaneous determination of carbohydrate antigen 19–9 and carbohydrate antigen 24-2. Biosens. Bioelectron. 2021, 178, 113024. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, J.; Feng, Z.; Wang, F.; Xie, S.; Bu, S. Immunoassay for tumor markers in human serum based on Si nanoparticles and SiC@Ag SERS-active substrate. Analyst 2016, 141, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Long, J.; Liu, Z.; Wu, W.; Hu, C. Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor. Biosens. Bioelectron. 2017, 91, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, J.; Jin, X.; Lu, H.; Shen, G.; Yu, R. Poly-l-lysine/hydroxyapatite/carbon nanotube hybrid nanocomposite applied for piezoelectric immunoassay of carbohydrateantigen 19-9. Analyst 2007, 133, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Ibanez-Redin, G.; Joshi, N.; Nascimento, G.F.D.; Wilson, D.; Melendez, M.E.; Carvalho, A.L.; Reis, R.M.; Gonçalves, D.; Oliveira, O.N., Jr. Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe2O4 nanoparticles. Mikrochim. Acta 2020, 187, 619. [Google Scholar] [CrossRef] [PubMed]
- Aydin, E.B.; Aydin, M.; Sezginturk, M.K. Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection. Biosens. Bioelectron. 2018, 121, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Heidari, R.; Rashidiani, J.; Abkar, M.; Taheri, R.A.; Moghaddam, M.M.; Mirhosseini, S.A.; Seidmoradi, R.; Nourani, M.R.; Mahboobi, M.; Keihan, A.H.; et al. CdS nanocrystals/graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker: p53. Biosens. Bioelectron. 2019, 126, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Liang, O.; Wang, P.; Xia, M.; Augello, C.; Yang, F.; Niu, G.; Liu, H.; Xie, Y.-H. Label-free distinction between p53+/+ and p53−/− colon cancer cells using a graphene based SERS platform. Biosens. Bioelectron. 2018, 118, 108–114. [Google Scholar] [CrossRef]
- Xu, Q.; Liang, K.; Liu, R.-Y.; Deng, L.; Zhang, M.; Shen, L.; Liu, Y.-N. Highly sensitive fluorescent detection of p53 protein based on DNA functionalized Fe3O4 nanoparticles. Talanta 2018, 187, 142–147. [Google Scholar] [CrossRef]
- Zubair, M.; Wang, S.; Ali, N. Advanced Approaches to Breast Cancer Classification and Diagnosis. Front. Pharmacol. 2020, 11, 632079. [Google Scholar] [CrossRef]
- Zheng, Y.; Liang, W.; Yuan, Y.; Xiong, C.; Xie, S.; Wang, H.; Chai, Y.; Yuan, R. Wavelength-resolved simultaneous photoelectrochemical bifunctional sensor on single interface: A newly in vitro approach for multiplexed DNA monitoring in cancer cells. Biosens. Bioelectron. 2016, 81, 423–430. [Google Scholar] [CrossRef]
- Dell’Atti, D.; Tombelli, S.; Minunni, M.; Mascini, M. Detection of clinically relevant point mutations by a novel piezoelectric biosensor. Biosens. Bioelectron. 2006, 21, 1876–1879. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Zhang, S. Prognostic and immunological value of ATP6AP1 in breast cancer: Implications for SARS-CoV-2. Aging 2021, 13, 16904–16921. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, C.; Xue, L.; Zhang, Q.; Luh, F.; Wang, J.; Lin, T.G.; Yen, Y.; Liu, X. Human Mitotic Centromere-Associated Kinesin Is Targeted by MicroRNA 485-5p/181c and Prognosticates Poor Survivability of Breast Cancer. J. Oncol. 2019, 2019, 2316237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arif, S.; Qudsia, S.; Urooj, S.; Chaudry, N.; Arshad, A.; Andleeb, S. Blueprint of quartz crystal microbalance biosensor for early detection of breast cancer through salivary autoantibodies against ATP6AP1. Biosens. Bioelectron. 2015, 65, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Oktaviyanti, I.K.; Ali, D.S.; Awadh, S.A.; Opulencia, M.J.C.; Yusupov, S.; Dias, R.; Alsaikhan, F.; Mohammed, M.M.; Sharma, H.; Mustafa, Y.F.; et al. Recent advances on applications of immunosensing systems based on nanomaterials for CA15-3 breast cancer biomarker detection. Anal. Bioanal. Chem. 2022. [Google Scholar] [CrossRef]
- Hong, R.; Sun, H.; Li, D.; Yang, W.; Fan, K.; Liu, C.; Dong, L.; Wang, G. A Review of Biosensors for Detecting Tumor Markers in Breast Cancer. Life 2022, 12, 342. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Q.; Han, X.; Qin, S.; Zhao, W.; Li, A.; Wu, K. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment. Exp. Hematol. Oncol. 2017, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Anderson, W.F.; Rosenberg, P.; Katki, H.A. Tracking and Evaluating Molecular Tumor Markers With Cancer Registry Data: HER2 and Breast Cancer. JNCI J. Natl. Cancer Inst. 2014, 106, dju093. [Google Scholar] [CrossRef] [Green Version]
- Harbeck, N.; Gnant, M. Breast cancer. Lancet 2017, 389, 1134–1150. [Google Scholar] [CrossRef]
- Luo, J.; Liang, D.; Li, X.; Liu, S.; Deng, L.; Ma, F.; Wang, Z.; Yang, M.; Chen, X. Photoelectrochemical detection of human epidermal growth factor receptor 2 (HER2) based on Co3O4-ascorbic acid oxidase as multiple signal amplifier. Mikrochim. Acta 2021, 188, 166. [Google Scholar] [CrossRef]
- Medetalibeyoglu, H.; Kotan, G.; Atar, N.; Yola, M.L. A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection. Anal. Chim. Acta 2020, 1139, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Valles, E.G.; Rodriguez-Pulido, A.; Barraza-Salas, M.; Martínez-Velis, I.; Meneses-Morales, I.; Ayala-García, V.M.; Alba-Fierro, C.A. A Quest for New Cancer Diagnosis, Prognosis and Prediction Biomarkers and Their Use in Biosensors Development. Technol. Cancer Res. Treat. 2020, 19, 1533033820957033. [Google Scholar] [CrossRef] [PubMed]
Cancer | Relevant Tumor Markers |
---|---|
Neuroendocrine tumors | NSE |
Gastrointestinal tumors | CEA, CA19-9 |
Prostate cancer | PSA, TP53 |
Cervical cancer | SCCA |
Breast cancer | CA19-9, TP53 |
Epithelial ovarian tumors | CEA |
Liver cancer | CEA, SCCA |
Colorectal and pancreatic cancer | CA19-9 |
Lung cancer | CEA, CA19-9, NSE, SCCA |
Tumor Markers | Thresholds |
---|---|
NSE | 12.5 mg/L |
PSA | 4 ug/L |
SCCA | 1.5 ug/L |
CEA | 3 ug/L |
CA19-9 | 37 U/L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Jiang, F.; Xue, L.; Peng, C.; Shi, Z.; Zhang, Z.; Li, J.; Pan, Y.; Wang, X.; Feng, C.; et al. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022, 27, 7327. https://doi.org/10.3390/molecules27217327
Li M, Jiang F, Xue L, Peng C, Shi Z, Zhang Z, Li J, Pan Y, Wang X, Feng C, et al. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules. 2022; 27(21):7327. https://doi.org/10.3390/molecules27217327
Chicago/Turabian StyleLi, Mantong, Feng Jiang, Liangyi Xue, Cheng Peng, Zhengzheng Shi, Zheng Zhang, Jia Li, Yupeng Pan, Xinya Wang, Chunqiong Feng, and et al. 2022. "Recent Progress in Biosensors for Detection of Tumor Biomarkers" Molecules 27, no. 21: 7327. https://doi.org/10.3390/molecules27217327