Chemical Composition and Antioxidant, Antimicrobial, and Anti-Inflammatory Properties of Origanum compactum Benth Essential Oils from Two Regions: In Vitro and In Vivo Evidence and In Silico Molecular Investigations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yeild and Chemical Composition of O. compactum Essential Oil
2.2. Antioxidant Activity
2.3. In Vitro Dermatoprotective and Anti-Inflammatory Effects
Lipoxygenase Inhibition Assay
2.4. In Vivo Anti-Inflammatory Activity
2.5. Antimicrobial Activity
2.6. Molecular Docking
3. Materials and Methods
3.1. Plant Samples and Extraction
3.2. Chemical Composition Analysis of O. compactum Essential Oils
3.3. Antioxidant Activity Assays
3.3.1. Free Radical Scavenging Ability (DPPH Method)
3.3.2. Ferric-Reducing Antioxidant Power (FRAP) Assay
3.3.3. Inhibition of Lipid Peroxidation
3.4. In Vitro Anti-Inflammatory and Dermatoprotective Assays
3.5. In Vivo Anti-Inflammatory Assay
3.6. Antibacterial Activity
3.6.1. Bacterial Strains
3.6.2. Growth Conditions
3.6.3. Disk-Diffusion Assay
3.6.4. Determination of MIC
3.6.5. Determination of MBC
3.7. Molecular Docking Studies
3.8. Statistical Analysis
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mahady, G.B. Medicinal Plants for the Prevention and Treatment of Bacterial Infections. Curr. Pharm. Des. 2005, 11, 2405–2427. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus Synthetic Drugs; Beliefs and Facts. J. Nephropharmacol. 2015, 4, 27. [Google Scholar] [PubMed]
- Abdallah, E.M. Plants: An Alternative Source for Antimicrobials. J. Appl. Pharm. Sci. 2011, 1, 16–20. [Google Scholar]
- Johnston, C.W.; Badran, A.H. Natural and Engineered Precision Antibiotics in the Context of Resistance. Curr. Opin. Chem. Biol. 2022, 69, 102160. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.; Assaggaf, H.; Qasem, A.; El-Shemi, A.G.; Abdallah, E.M.; Mrabti, H.N.; Bouyahya, A. Antioxidant, Antidiabetic, and Antibacterial Potentials and Chemical Composition of Salvia officinalis and Mentha Suaveolens Grown Wild in Morocco. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 2844880. [Google Scholar] [CrossRef]
- Hamad Al-Mijalli, S.; ELsharkawy, E.R.; Abdallah, E.M.; Hamed, M.; El Omari, N.; Mahmud, S.; Alshahrani, M.M.; Mrabti, H.N.; Bouyahya, A. Determination of Volatile Compounds of Mentha piperita and Lavandula multifida and Investigation of Their Antibacterial, Antioxidant, and Antidiabetic Properties. Evid.-Based Complement. Altern. Med. 2022, 2022, 9306251. [Google Scholar] [CrossRef]
- Abdelaali, B.; El Menyiy, N.; El Omari, N.; Benali, T.; Guaouguaou, F.-E.; Salhi, N.; Naceiri Mrabti, H.; Bouyahya, A. Phytochemistry, Toxicology, and Pharmacological Properties of Origanum elongatum. Evid.-Based Complement. Altern. Med. 2021, 2021, 6658593. [Google Scholar] [CrossRef]
- Bouyahya, A.; Chamkhi, I.; Benali, T.; Guaouguaou, F.-E.; Balahbib, A.; El Omari, N.; Taha, D.; Belmehdi, O.; Ghokhan, Z.; El Menyiy, N. Traditional Use, Phytochemistry, Toxicology, and Pharmacology of Origanum majorana L. J. Ethnopharmacol. 2021, 265, 113318. [Google Scholar] [CrossRef]
- Farzaneh, V.; Carvalho, I.S. A Review of the Health Benefit Potentials of Herbal Plant Infusions and Their Mechanism of Actions. Ind. Crops Prod. 2015, 65, 247–258. [Google Scholar] [CrossRef]
- Khouchlaa, A.; Talbaoui, A.; El Idrissi, A.E.Y.; Bouyahya, A.; Ait Lahsen, S.; Kahouadji, A.; Tijane, M. Determination of Phenol Content and Evaluation of In Vitro Litholytic Effects on Urolithiasis of Moroccan Zizyphus lotus L. Extract. Phytothérapie 2017, 16, 14–19. [Google Scholar]
- Ramawat, K.G.; Dass, S.; Mathur, M. The Chemical Diversity of Bioactive Molecules and Therapeutic Potential of Medicinal Plants. In Herbal Drugs: Ethnomedicine to Modern Medicine; Springer: Berlin/Heidelberg, Germany, 2009; pp. 7–32. [Google Scholar]
- Velu, G.; Palanichamy, V.; Rajan, A.P. Phytochemical and Pharmacological Importance of Plant Secondary Metabolites in Modern Medicine. In Bioorganic Phase in Natural Food: An Overview; Springer: Berlin/Heidelberg, Germany, 2018; pp. 135–156. [Google Scholar]
- Scioli, G.; Della Valle, A.; Zengin, G.; Locatelli, M.; Tartaglia, A.; Cichelli, A.; Stefanucci, A.; Mollica, A. Artisanal Fortified Beers: Brewing, Enrichment, HPLC-DAD Analysis and Preliminary Screening of Antioxidant and Enzymatic Inhibitory Activities. Food Biosci. 2022, 48, 101721. [Google Scholar] [CrossRef]
- Stefanucci, A.; Scioli, G.; Marinaccio, L.; Zengin, G.; Locatelli, M.; Tartaglia, A.; Della Valle, A.; Cichelli, A.; Novellino, E.; Pieretti, S. A Comparative Study on Phytochemical Fingerprint of Two Diverse Phaseolus vulgarisvar. Tondino Del Tavo and Cannellino Bio Extracts. Antioxidants 2022, 11, 1474. [Google Scholar]
- Vilas-Boas, A.A.; Pintado, M.; Oliveira, A.L. Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods 2021, 10, 1564. [Google Scholar]
- Balahbib, A.; El Omari, N.; Sadak, A.; Bakri, Y.; Bouyahya, A. Antileishmanial Properties of Moroccan Medicinal Plants and Mechanism Insights of Their Main Compounds. Biointerface Res. Appl. Chem. 2020, 10, 7162–7176. [Google Scholar]
- Balahbib, A.; El Omari, N.; Hakkour, M.; Sadak, A.; Bouyahya, A. Insecticide effects of moroccan medicinal plants. Pharmacologyonline 2019, 3, 94–102. [Google Scholar]
- Bouyahya, A.; El Omari, N.; Belmehdi, O.; Lagrouh, F.; El Jemli, M.; Marmouzi, I.; Faouzi, M.E.A.; Taha, D.; Bourais, I.; Zengin, G. Pharmacological Investigation of Ajuga iva Essential Oils Collected at Three Phenological Stages. Flavour Fragr. J. 2021, 36, 75–83. [Google Scholar] [CrossRef]
- Bouyahya, A.; Lagrouh, F.; El Omari, N.; Bourais, I.; El Jemli, M.; Marmouzi, I.; Salhi, N.; Faouzi, M.E.A.; Belmehdi, O.; Dakka, N. Essential Oils of Mentha viridis Rich Phenolic Compounds Show Important Antioxidant, Antidiabetic, Dermatoprotective, Antidermatophyte and Antibacterial Properties. Biocatal. Agric. Biotechnol. 2020, 23, 101471. [Google Scholar] [CrossRef]
- Bouyahya, A.; Assemian, I.C.C.; Mouzount, H.; Bourais, I.; Et-Touys, A.; Fellah, H.; Benjouad, A.; Dakka, N.; Bakri, Y. Could Volatile Compounds from Leaves and Fruits of Pistacia lentiscus Constitute a Novel Source of Anticancer, Antioxidant, Antiparasitic and Antibacterial Drugs? Ind. Crops Prod. 2019, 128, 62–69. [Google Scholar]
- Bouyahya, A.; Belmehdi, O.; El Jemli, M.; Marmouzi, I.; Bourais, I.; Abrini, J.; Faouzi, M.E.A.; Dakka, N.; Bakri, Y. Chemical Variability of Centaurium erythraea Essential Oils at Three Developmental Stages and Investigation of Their In Vitro Antioxidant, Antidiabetic, Dermatoprotective and Antibacterial Activities. Ind. Crops Prod. 2019, 132, 111–117. [Google Scholar] [CrossRef]
- El Baaboua, A.; El Maadoudi, M.; Bouyahya, A.; Belmehdi, O.; Kounnoun, A.; Zahli, R.; Abrini, J. Evaluation of Antimicrobial Activity of Four Organic Acids Used in Chicks Feed to Control Salmonella typhimurium: Suggestion of Amendment in the Search Standard. Int. J. Microbiol. 2018, 2018, 7352593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Menyiy, N.; Mrabti, H.N.; El Omari, N.; Bakili, A.E.; Bakrim, S.; Mekkaoui, M.; Balahbib, A.; Amiri-Ardekani, E.; Ullah, R.; Alqahtani, A.S. Medicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Mentha spicata. Evid.-Based Complement. Altern. Med. 2022, 2022, 7990508. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Dey, A.; Koirala, N.; Shaheen, S.; El Omari, N.; Salehi, B.; Goloshvili, T.; Cirone Silva, N.C.; Bouyahya, A.; Vitalini, S. Cinnamomum Species: Bridging Phytochemistry Knowledge, Pharmacological Properties and Toxicological Safety for Health Benefits. Front. Pharmacol. 2021, 12, 600139. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Zengin, G.; Belmehdi, O.; Bourais, I.; Chamkhi, I.; Taha, D.; Benali, T.; Dakka, N.; Bakri, Y. Origanum Compactum Benth., from Traditional Use to Biotechnological Applications. J. Food Biochem. 2020, 44, e13251. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Jamal, A.; Edaoudi, F.; Et-Touys, A.; Bakri, Y.; Dakka, N. Origanum compactum Benth: A Review on Phytochemistry and Pharmacological Properties. Med. Aromat Plants 2016, 5, 2167-0412. [Google Scholar] [CrossRef]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health Beneficial and Pharmacological Properties of p-Cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef]
- Bouyahya, A.; Mechchate, H.; Benali, T.; Ghchime, R.; Charfi, S.; Balahbib, A.; Burkov, P.; Shariati, M.A.; Lorenzo, J.M.; Omari, N.E. Health Benefits and Pharmacological Properties of Carvone. Biomolecules 2021, 11, 1803. [Google Scholar] [CrossRef]
- Bouyahya, A.; Dakka, N.; Talbaoui, A.; Et-touys, A.; El-boury, H.; Abrini, J.; Bakri, Y. Industrial Crops & Products Correlation between Phenological Changes, Chemical Composition and Biological Activities of the Essential Oil from Moroccan Endemic Oregano (Origanum compactum Benth). Ind. Crops Prod. 2017, 108, 729–737. [Google Scholar] [CrossRef]
- Chahbi, A.; El Amri, H.; Douaik, A.; Haj, E.; Maadoudi, E.; Boukharta, M.; Mestafa, E.; Hadrami, E. Chemical Composition and Antimicrobial Activity of the Essential Oils of Two Aromatic Plants Cultivated in Morocco (Cinnamomum cassia and Origanum compactum). J. Chem. 2020, 2020, 1628710. [Google Scholar] [CrossRef]
- Jeldi, L.; Taarabt, K.O.; Mazri, M.A.; Ouahmane, L.; Alfeddy, M.N. Chemical Composition, Antifungal and Antioxidant Activities of Wild and Cultivated Origanum compactum Essential Oils from the Municipality of Chaoun, Morocco. S. Afr. J. Bot. 2022, 147, 852–858. [Google Scholar] [CrossRef]
- Sbayou, H.; Oubrim, N.; Bouchrif, B.; Ababou, B.; Boukachabine, K.; Amghar, S. Chemical Composition and Antibacterial Activity of Essential Oil of Origanum compactum Against Foodborne Bacteria. IJERT 2014, 3, 3562–3567. [Google Scholar]
- Fliou, J.; Riffi, O.; Amechrouq, A.; Elhourri, M.; Ghouati, Y.; Mohammed, E. Comparative study of the chemical composition of the essential oil of Origanum compactum from the seven regions of morocco and their antimicrobial activity. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 42–48. [Google Scholar] [CrossRef]
- Aboukhalid, K.; Lamiri, A.; Agacka-Mo\ldoch, M.; Doroszewska, T.; Douaik, A.; Bakha, M.; Casanova, J.; Tomi, F.; Machon, N.; Faiz, C.A. Chemical Polymorphism of Origanum compactum Grown in All Natural Habitats in Morocco. Chem. Biodivers. 2016, 13, 1126–1139. [Google Scholar] [CrossRef]
- Laghmouchi, Y.; Belmehdi, O.; Senhaji, N.S.; Abrini, J. Chemical Composition and Antibacterial Activity of Origanum compactum Benth. Essential Oils from Different Areas at Northern Morocco. S. Afr. J. Bot. 2018, 115, 120–125. [Google Scholar] [CrossRef]
- Aboukhalid, K.; Al Faiz, C.; Douaik, A.; Bakha, M.; Kursa, K.; Agacka-Mo\ldoch, M.; Machon, N.; Tomi, F.; Lamiri, A. Influence of Environmental Factors on Essential Oil Variability in Origanum compactum Benth. Growing Wild in Morocco. Chem. Biodivers. 2017, 14, e1700158. [Google Scholar] [CrossRef]
- Bakhy, K.; Benlhabib, O.; Bighelli, A.; Casanova, J.; Tomi, F.; Al Faiz, C. Yield and Chemical Variability of the Essential Oil Isolated from Aerial Parts of Wild Origanum compactum Benth. from Moroccan Western Rif. Am. J. Essent. Oil Nat. Prod. 2014, 1, 9–17. [Google Scholar]
- Bouhdid, S.; Skali, S.N.; Idaomar, M.; Zhiri, A.; Baudoux, D.; Amensour, M.; Abrini, J. Antibacterial and Antioxidant Activities of Origanum compactum Essential Oil. Afr. J. Biotechnol. 2008, 7, 1563–1570. [Google Scholar]
- Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant Activity and Mechanism of Action of Thymol and Carvacrol in Two Lipid Systems. Food Chem. 1999, 64, 59–66. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, Antioxidant, Antimicrobial and Enzyme Inhibition Activities of Two Origanum vulgare Subspecies (Subsp. vulgare and Subsp. hirtum) Essential Oils. Ind. Crops Prod. 2015, 70, 178–184. [Google Scholar] [CrossRef]
- Foti, M.C.; Ingold, K.U. Mechanism of Inhibition of Lipid Peroxidation by γ-Terpinene, an Unusual and Potentially Useful Hydrocarbon Antioxidant. J. Agric. Food Chem. 2003, 51, 2758–2765. [Google Scholar] [CrossRef]
- Sindhu, R.K.; Kaur, P.; Kaur, P.; Singh, H.; Batiha, G.E.-S.; Verma, I. Exploring Multifunctional Antioxidants as Potential Agents for Management of Neurological Disorders. Environ. Sci. Pollut. Res. 2022, 29, 24458–24477. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ye, C.; Zhu, Y.; Zhang, T.; Gu, J.; Pan, J.; Wang, F.; Wu, F.; Huang, K.; Xu, K. Oxidative Injury in Ischemic Stroke: A Focus on NADPH Oxidase 4. Oxidative Med. Cell. Longev. 2022, 2022, 1148874. [Google Scholar] [CrossRef] [PubMed]
- Begum, R.; Thota, S.; Abdulkadir, A.; Kaur, G.; Bagam, P.; Batra, S. NADPH Oxidase Family Proteins: Signaling Dynamics to Disease Management. Cell. Mol. Immunol. 2022, 19, 660–686. [Google Scholar] [CrossRef] [PubMed]
- Deri, B.; Kanteev, M.; Goldfeder, M.; Lecina, D.; Guallar, V.; Adir, N.; Fishman, A. The Unravelling of the Complex Pattern of Tyrosinase Inhibition. Sci. Rep. 2016, 6, 34993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolbe, L.; Mann, T.; Gerwat, W.; Batzer, J.; Ahlheit, S.; Scherner, C.; Wenck, H.; Stäb, F. 4-n-Butylresorcinol, a Highly Effective Tyrosinase Inhibitor for the Topical Treatment of Hyperpigmentation. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Pintus, F.; Floris, S.; Fais, A.; Era, B.; Porcedda, C.; Tuberoso, C.I.G.; Caddeo, C. Euphorbia Characias Extract: Inhibition of Skin Aging-Related Enzymes and Nanoformulation. Plants 2022, 11, 1849. [Google Scholar] [CrossRef]
- Hong, Y.K.; An, S.; Lee, Y.H.; Yang, S.A.; Yoon, Y.K.; Lee, J.; Lee, G.; Chung, M.J.; Bae, S. Potential Anti-Aging Effects of Probiotic-Derived Conditioned Media on Human Skin Cells. Acta Pharm. 2022, 72, 359–374. [Google Scholar] [CrossRef]
- Merchant, N.; Bhaskar, L.V.; Momin, S.; Sujatha, P.; Reddy, A.B.; Nagaraju, G.P. 5-Lipoxygenase: Its Involvement in Gastrointestinal Malignancies. Crit. Rev. Oncol./Hematol. 2018, 127, 50–55. [Google Scholar] [CrossRef]
- Wisastra, R.; Dekker, F.J. Inflammation, Cancer and Oxidative Lipoxygenase Activity Are Intimately Linked. Cancers 2014, 6, 1500–1521. [Google Scholar] [CrossRef] [Green Version]
- Lončarić, M.; Strelec, I.; Moslavac, T.; Šubarić, D.; Pavić, V.; Molnar, M. Lipoxygenase Inhibition by Plant Extracts. Biomolecules 2021, 11, 152. [Google Scholar] [CrossRef]
- El-Kharraf, S.; El-Guendouz, S.; Abdellah, F.; El Hadrami, E.M.; Machado, A.M.; Tavares, C.S.; Figueiredo, A.C.; Miguel, M.G. Unassisted and Carbon Dioxide-Assisted Hydro- and Steam-Distillation: Modelling Kinetics, Energy Consumption and Chemical and Biological Activities of Volatile Oils. Pharmaceuticals 2022, 15, 567. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Ge, J.; Liu, Z.; Zhong, Z.; Wang, L.; Zhuo, X.; Li, J.; Jiang, X.; Ye, X.Y.; Xie, T.; Bai, R. Natural Terpenoids with Anti-Inflammatory Activities: Potential Leads for Anti-Inflammatory Drug Discovery. Bioorg. Chem. 2022, 124, 105817. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C.; Mira, L.; Corvo, M.L. Molecular Mechanisms of Anti-Inflammatory Activity Mediated by Flavonoids. Curr. Med. Chem. 2008, 15, 1586–1605. [Google Scholar] [CrossRef]
- D’Aquila, P.; Paparazzo, E.; Crudo, M.; Bonacci, S.; Procopio, A.; Passarino, G.; Bellizzi, D. Antibacterial Activity and Epigenetic Remodeling of Essential Oils from Calabrian Aromatic Plants. Nutrients 2022, 14, 391. [Google Scholar] [CrossRef]
- El Kharraf, S.; El-Guendouz, S.; Farah, A.; Bennani, B.; Mateus, M.C.; Miguel, M.G. Hydrodistillation and Simultaneous Hydrodistillation-Steam Distillation of Rosmarinus Officinalis and Origanum Compactum: Antioxidant, Anti-Inflammatory, and Antibacterial Effect of the Essential Oils. Ind. Crops Prod. 2021, 168, 113591. [Google Scholar] [CrossRef]
- Charai, M.; Mosaddak, M.; Faid, M. Chemical Composition and Antimicrobial Activities of Two Aromatic Plants: Origanum majorana L. and O. compactum Benth. J. Essent. Oil Res. 1996, 8, 657–664. [Google Scholar] [CrossRef]
- Abdallah, E.M. Antibacterial Activity of Hibiscus sabdariffa L. Calyces against Hospital Isolates of Multidrug Resistant Acinetobacter Baumannii. J. Acute Dis. 2016, 5, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Ben Abdallah, F.; Lagha, R.; Gaber, A. Biofilm Inhibition and Eradication Properties of Medicinal Plant Essential Oils against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Pharmaceuticals 2020, 13, 369. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.; Burt, S.A. Synergy between Essential Oil Components and Antibiotics: A Review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
- Bouyahya, A.; Abrini, J.; Dakka, N.; Bakri, Y. Essential Oils of Origanum compactum Increase Membrane Permeability, Disturb Cell Membrane Integrity, and Suppress Quorum-Sensing Phenotype in Bacteria. J. Pharm. Anal. 2019, 9, 301–311. [Google Scholar] [CrossRef] [PubMed]
- González-Tejero, M.R.; Casares-Porcel, M.; Sánchez-Rojas, C.P.; Ramiro-Gutiérrez, J.M.; Molero-Mesa, J.; Pieroni, A.; Giusti, M.E.; Censorii, E.; De Pasquale, C.; Della, A. Medicinal Plants in the Mediterranean Area: Synthesis of the Results of the Project Rubia. J. Ethnopharmacol. 2008, 116, 341–357. [Google Scholar] [CrossRef] [PubMed]
- Udayaprakash, N.K.; Ranjithkumar, M.; Deepa, S.; Sripriya, N.; Al-Arfaj, A.A.; Bhuvaneswari, S. Antioxidant, Free Radical Scavenging and GC–MS Composition of Cinnamomum Iners Reinw. Ex Blume. Ind. Crops Prod. 2015, 69, 175–179. [Google Scholar] [CrossRef]
- Singh, H.P.; Kaur, S.; Negi, K.; Kumari, S.; Saini, V.; Batish, D.R.; Kohli, R.K. Assessment of in Vitro Antioxidant Activity of Essential Oil of Eucalyptus citriodora (Lemon-Scented Eucalypt; Myrtaceae) and Its Major Constituents. LWT—Food Sci. Technol. 2012, 48, 237–241. [Google Scholar] [CrossRef]
- Tepe, B.; Akpulat, H.A.; Sokmen, M.; Daferera, D.; Yumrutas, O.; Aydin, E.; Polissiou, M.; Sokmen, A. Screening of the Antioxidative and Antimicrobial Properties of the Essential Oils of Pimpinella anisetum and Pimpinella flabellifolia from Turkey. Food Chem. 2006, 97, 719–724. [Google Scholar] [CrossRef]
- Rege, M.G.; Ayanwuyi, L.O.; Zezi, A.U.; Odoma, S. Anti-Nociceptive, Anti-Inflammatory and Possible Mechanism of Anti-Nociceptive Action of Methanol Leaf Extract of Nymphaea lotus Linn (Nymphaeceae). J. Tradit. Complement. Med. 2021, 11, 123–129. [Google Scholar] [CrossRef]
- Alaoui, K.; Lagorce, J.F.; Cherrah, Y.; Hassar, M.; Amarouch, H.; Roquebert, J. Activité Analgésique et Anti-Inflammatoire Des Saponines d’Argania spinosa [Analgesic and Anti-Inflammatory Activity of Saponins of Argania Spinoza]. Ann. Pharm. Fr. 1998, 56, 220–228. [Google Scholar]
- Doudach, L.; Al-Mijalli, S.H.; Abdallah, E.M.; Mrabti, H.N.; Chibani, F.; Faouzi, M.E.A. Antibacterial Evaluation of The Roots of Moroccan Aristolochia Longa Against Referenced Gram-Positive and Gram-Negative Bacteria. Adv. Life Sci. 2022, 9, 116–121. [Google Scholar]
- El Baaboua, A.; El Maadoudi, M.; Bouyahya, A.; Belmehdi, O.; Kounnoun, A.; Cheyadmi, S.; Abrini, J. Evaluation of the combined effect of antibiotics and essential oils against Campylobacter multidrug resistant strains and their biofilm formation. S. Afr. J. Bot. 2022, 150, 451–465. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Filali, F.R.; Presti, V.L.; Zekkori, B.; Nalbone, L.; Bouymajane, A.; Trabelsi, N.; Lamberta, F.; Bentayeb, A.; Giuffrida, A. Chemical Composition, Antioxidant Capacity and Antibacterial Action of Five Moroccan Essential Oils against Listeria monocytogenes and Different Serotypes of Salmonella enterica. Microb. Pathog. 2020, 149, 104510. [Google Scholar] [CrossRef]
- Abdellatif, A.A.; Alhathloul, S.S.; Aljohani, A.S.; Maswadeh, H.; Abdallah, E.M.; Hamid Musa, K.; El Hamd, M.A. Green Synthesis of Silver Nanoparticles Incorporated Aromatherapies Utilized for Their Antioxidant and Antimicrobial Activities against Some Clinical Bacterial Isolates. Bioinorg. Chem. Appl. 2022, 2022, 2432758. [Google Scholar] [CrossRef]
- Bansal, S.; Kumar, S.; Joseph, A. Design, Synthesis, Docking Study & Antibacterial Evaluation of 1,3-Ddiarylpyrazolyl Substituted Indolin-2-Ones. Indo Glob. J. Pharm. Sci. 2014, 4, 1–7. [Google Scholar]
- HyperChem HyperChem (Version Gratuite) Télécharger Pour PC. Available online: https://fr.freedownloadmanager.org/Windows-PC/HyperChem.html (accessed on 6 August 2022).
- Mansourian, M.; Fassihi, A.; Saghaie, L.; Madadkar-Sobhani, A.; Mahnam, K.; Abbasi, M. QSAR and Docking Analysis of A2B Adenosine Receptor Antagonists Based on Non-Xanthine Scaffold. Med. Chem. Res. 2015, 24, 394–407. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
EO1 Boulemane | EO2 Taounate | |||||
---|---|---|---|---|---|---|
Number | RT | Compounds | % | RT | Compounds | % |
1 | 2.014 | α-Thujene | 0.30 | 4.218 | α-Thujene | 1.43 |
2 | 2.081 | α-Pinene | 0.79 | 4.353 | α-Pinene | 0.93 |
3 | 3.219 | ß-Myrcene | 1.85 | 4.624 | Camphene | 0.14 |
4 | 3.298 | α–Phellandrene | 0.30 | 5.187 | β-Pinene | 0.39 |
5 | 3.591 | (+)-4-Carene | 2.28 | 5.503 | β-Myrcene | 0.39 |
6 | 3.873 | p-Cymene | 7.99 | 5.773 | α-Phellandrene | 0.41 |
7 | 4.729 | β-Pinene | 13.43 | 6.089 | (+)-4-Carene | 3.27 |
8 | 5.710 | Linalool | 1.77 | 6.359 | o-Cymene | 11.16 |
9 | 11.896 | Carvacrol | 45.80 | 6.416 | β-Phellandrene | 0.6 |
10 | 12.155 | Thymol | 18.86 | 7.261 | 3-Carene | 19.56 |
11 | 13.834 | Caryophyllene | 3.08 | 7.824 | ρ-Cymene | 0.33 |
12 | 8.151 | Linalool | 1.79 | |||
13 | 13.335 | Thymol | 12.98 | |||
14 | 16.445 | Caryophyllene | 1.8 | |||
Total identifiedcompounds % | 96.45 | Total identifiedcompounds % | 58.15 | |||
Monoterpene hydrocarbons % | 26.94 | Monoterpene hydrocarbons % | 40.49 | |||
Oxygenated monoterpenes % | 66.43 | Oxygenated monoterpenes % | 15.86 | |||
Sesquiterpene hydrocarbons % | 3.08 | Sesquiterpene hydrocarbons % | 1.8 | |||
Oxygenated sesquiterpenes % | --- | Oxygenated sesquiterpenes % | --- |
IC50(mg/mL) | |||
---|---|---|---|
EO1 Boulemane | EO2 Taounate | BHA | |
DPPH | 0.27 ± 0.01 | 0.37 ± 0.03 | 0.2 ± 0.01 |
Ferric-Reducing (RP) | 0.19 ± 0.03 | 0.25 ± 0.04 | 0.04 ± 0.05 |
Lipid peroxidation (LP) | 0.11 ± 0.01 | 0.19 ± 0.03 | 0.03 ± 0.01 |
Assay (IC50 μg/mL) | EO1 Boulemane | EO2 Taounate | Quercetin |
---|---|---|---|
5-Lipoxygenase | 0.68 ± 0.02 | 1.33 ± 0.01 | 0.29 ± 0.03 |
Tyrosinase | 27.51 ± 0.03 | 41.83 ± 0.01 | 39.62 ± 0.05 |
Treatment Group | Mean Edema Volume (Left-Right Paw) mL | ||
---|---|---|---|
1 h 30 min | 3 h | 6 h | |
Control | 0.543 ± 0.01 | 0.659 ± 0.04 | 0.534 ± 0.02 |
Indomethacin | 0.161 ± 0.04 * | 0.195 ± 0.06 * | 0.202 ± 0.03 * |
EO1 Boulmane | 0.236 ± 0.03 * | 0.231 ± 0.01 * | 0.210 ± 0.01 * |
EO2 Taounate | 0.332 ± 0.02 * | 0.402 ± 0.01 * | 0.363 ± 0.03 * |
Treatment Group | Percentage Inhibition of Edema (%) | ||
---|---|---|---|
1 h 30 min | 3 h | 6 h | |
Indomethacin | 70.34 | 70.40 | 62.17 |
EO1 Boulemane | 56.53 * | 64.95 * | 60.67 * |
EO2 Taounate | 38.86 * | 39.00 * | 32.02 * |
Gram-Positive Bacteria | Gram-Negative Bacteria | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B. subtilis | S. aureus | L. innocua | E. coli | |||||||||
MIC | MBC | MBC/ MIC | MIC | MBC | MBC/ MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | |
EO1 from Boulemane (%) v/v | 0.21 | 0.21 | 1 | 0.12 | 0.12 | 1 | 0.06 | 0.06 | 1 | 0.25 | 0.25 | 1 |
EO2 from Taounate (%) v/v | 0.15 | 0.15 | 1 | 0.15 | 0.15 | 1 | 0.13 | 0.13 | 1 | 0.21 | 0.21 | 1 |
Chloramphenicol (30 μg) | 0.25 | 0.5 | 2 | 4.0 | 8.0 | 2 | ND | ND | ND | 8.0 | 8.0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mijalli, S.H.; Mrabti, N.N.; Ouassou, H.; Sheikh, R.A.; Assaggaf, H.; Bakrim, S.; Abdallah, E.M.; Alshahrani, M.M.; Al Awadh, A.A.; Lee, L.-H.; et al. Chemical Composition and Antioxidant, Antimicrobial, and Anti-Inflammatory Properties of Origanum compactum Benth Essential Oils from Two Regions: In Vitro and In Vivo Evidence and In Silico Molecular Investigations. Molecules 2022, 27, 7329. https://doi.org/10.3390/molecules27217329
Al-Mijalli SH, Mrabti NN, Ouassou H, Sheikh RA, Assaggaf H, Bakrim S, Abdallah EM, Alshahrani MM, Al Awadh AA, Lee L-H, et al. Chemical Composition and Antioxidant, Antimicrobial, and Anti-Inflammatory Properties of Origanum compactum Benth Essential Oils from Two Regions: In Vitro and In Vivo Evidence and In Silico Molecular Investigations. Molecules. 2022; 27(21):7329. https://doi.org/10.3390/molecules27217329
Chicago/Turabian StyleAl-Mijalli, Samiah Hamad, Nidal Naceiri Mrabti, Hayat Ouassou, Ryan A. Sheikh, Hamza Assaggaf, Saad Bakrim, Emad M. Abdallah, Mohammed Merae Alshahrani, Ahmed Abdullah Al Awadh, Learn-Han Lee, and et al. 2022. "Chemical Composition and Antioxidant, Antimicrobial, and Anti-Inflammatory Properties of Origanum compactum Benth Essential Oils from Two Regions: In Vitro and In Vivo Evidence and In Silico Molecular Investigations" Molecules 27, no. 21: 7329. https://doi.org/10.3390/molecules27217329