The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil
Abstract
:1. Introduction
2. Electrokinetic Remediation
The Fundamental Theory of the Electrokinetic Phenomenon
3. The Role of pH Distribution and Its Effect on Electrokinetic Remediation
3.1. Use of Ion Exchange Membranes
3.2. Electrode Conditioning for pH Control
3.3. Use of Chelants and Complexing Agents
3.4. Use of Reducing/Oxidising Agents
4. Effects of Electrodes and Electrolytes in Contaminant Removal
5. Electroosmosis and Its Effects on the Remediation Process
6. Electromigration and Its Effects on the Remediation Process
7. Demulsification of Emulsions by Application of an Electric Current
8. Combination of Electrokinetic Remediation with Other Technologies
8.1. Surfactants in Electrokinetic Remediation
8.2. Combination of Electrokinetic Remediation with Bioremediation or Pytoremediation
9. Future Prospects: Insights into Electrokinetic Remediation
9.1. Combination of Electrokinetic Remediation with Bioremediation Andbiosurfactants
9.2. Energy Saving and Alternative Energy Sources in Electrokinetic Remediation
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, M.; Ma, D.; Wang, Q.; Wang, Y.; Sun, X. Electrokinetic remediation of Cd-contaminated soil using low voltage gradients coupled with array adsorption zone and polarity exchange. Process Saf. Environ. Prot. 2022, 157, 81–91. [Google Scholar] [CrossRef]
- Wen, D.; Fu, R.; Li, Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review. J. Hazard. Mater. 2021, 401, 123345. [Google Scholar] [CrossRef] [PubMed]
- Paramitadevi, Y.; Ratnawati, B.; Effendi, A.; Hidayat, S.; Budihardjo, M.; Ramadan, B. Environmental Footprint Analysis Tools of Electrokinetic Remediation (EKR): A Bibliometric View of the Literature; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; p. 012049. [Google Scholar]
- Xu, H.; Bai, J.; Yang, X.; Zhang, C.; Yao, M.; Zhao, Y. Lab scale-study on the efficiency and distribution of energy consumption in chromium contaminated aquifer electrokinetic remediation. Environ. Technol. Innov. 2022, 25, 102194. [Google Scholar] [CrossRef]
- Gidudu, B.; Chirwa, E.M.N. The combined application of a high voltage, low electrode spacing, and biosurfactants enhances the bio-electrokinetic remediation of petroleum contaminated soil. J. Clean. Prod. 2020, 276, 122745. [Google Scholar] [CrossRef]
- Huang, Q.; Zhou, M.; Zhou, J.; Chu, L.; Cang, L. Roles of oxidant, activator, and surfactant on enhanced electrokinetic remediation of PAHs historically contaminated soil. Environ. Sci. Pollut. Res. 2022, 1–13. [Google Scholar] [CrossRef]
- Effendi, A.J.; Ramadan, B.S.; Helmy, Q. Enhanced remediation of hydrocarbons contaminated soil using electrokinetic soil flushing—Landfarming processes. Bioresour. Technol. Rep. 2022, 17, 100959. [Google Scholar] [CrossRef]
- Kim, B.-K.; Baek, K.; Ko, S.-H.; Yang, J.-W. Research and field experiences on electrokinetic remediation in South Korea. Sep. Purif. Technol. 2011, 79, 116–123. [Google Scholar] [CrossRef]
- Masi, M.; Ceccarini, A.; Iannelli, R. Multispecies reactive transport modelling of electrokinetic remediation of harbour sediments. J. Hazard. Mater. 2017, 326, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Karthick, A.; Roy, B.; Chattopadhyay, P. A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil. J. Environ. Manag. 2019, 243, 187–205. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Zhong, S.; Zhang, L. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere 2019, 246, 125726. [Google Scholar] [CrossRef] [PubMed]
- Pourfadakari, S.; Ahmadi, M.; Jaafarzadeh, N.; Takdastan, A.; Neisi, A.A.; Ghafari, S.; Jorfi, S. Remediation of PAHs contaminated soil using a sequence of soil washing with biosurfactant produced by Pseudomonas aeruginosa strain PF2 and electrokinetic oxidation of desorbed solution, effect of electrode modification with Fe3O4 nanoparticles. J. Hazard. Mater. 2019, 379, 120839. [Google Scholar] [CrossRef] [PubMed]
- Dewangan, S.; Bhatia, A.K.; Singh, A.K.; Carabineiro, S.A.C. Removal of Hydrophobic Contaminants from the Soil by Adsorption onto Carbon Materials and Microbial Degradation. C 2021, 7, 83. [Google Scholar] [CrossRef]
- Maroušek, J.; Strunecký, O.; Stehel, V. Biochar farming: Defining economically perspective applications. Clean Technol. Environ. Policy 2019, 21, 1389–1395. [Google Scholar] [CrossRef]
- Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Nunez-Delgado, A.; Chhajro, M.A.; Kubar, K.A.; Ali, U.; Rana, M.S.; Mehmood, M.A.; et al. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manag. 2018, 228, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Niarchos, G.; Sörengård, M.; Fagerlund, F.; Ahrens, L. Electrokinetic remediation for removal of per- and polyfluoroalkyl substances (PFASs) from contaminated soil. Chemosphere 2022, 291, 133041. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, Q.; Jiang, S.; Du, Z.; Zhang, X.; Chen, H.; Cao, W.; Nghiem, L.D.; Ngo, H.H. Enhancement of lead removal from soil by in-situ release of dissolved organic matters from biochar in electrokinetic remediation. J. Clean. Prod. 2022, 361, 132294. [Google Scholar] [CrossRef]
- Boulakradeche, M.O.; Akretche, D.E.; Cameselle, C.; Hamidi, N. Enhanced Electrokinetic Remediation of Hydrophobic Organics Contaminated Soils by the Combination of Non-Ionic and Ionic Surfactants. Electrochim. Acta 2015, 174, 1057–1066. [Google Scholar] [CrossRef]
- Electorowicz, M.; Hatim, J. Application of Surfactant Enhanced Electrokinetics for Hydrocarbon Contaminated Soils. In Proceedings of the 53rd Canadian Geotechnical Conference, Montreal, QC, Canada, 15–18 October 2000; pp. 15–18. [Google Scholar]
- Vocciante, M.; Dovì, V.G.; Ferro, S. Sustainability in electroKinetic remediation processes: A critical analysis. Sustainability 2021, 13, 770. [Google Scholar] [CrossRef]
- Virkutytea, J.; Sillanpaa, M.; Latostenmaa, P. Electrokinetic soil remediation—Critical overview. Sci. Total Environ. 2002, 289, 97–121. [Google Scholar] [CrossRef]
- Gregolec, G.; Roehl, K.E.; Czurda, K. Chapter 8—Electrokinetic techniques. In Trace Metals and Other Contaminants in the Environment; Roehl, K.E., Meggyes, T., Simon, F.G., Stewart, D.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 7, pp. 183–209. [Google Scholar]
- Altin, A.; Degirmenci, M. Lead (II) removal from natural soils by enhanced electrokinetic remediation. Sci. Total Environ. 2005, 337, 1–10. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Resource guide for electrokinetics laboratory and field processes applicable to radioactive and hazardous mixed wastes in soil and groundwater from 1992 to 1997. In Air and Radiation; United States Environmental Protection Agency, Ed.; United States Environmental Protection Agency: Washington, DC, USA, 1997; Volume EPA 402-R-97-006. [Google Scholar]
- Yang, L.; Nakhla, G.; Bassi, A. Electro-kinetic dewatering of oily sludges. J. Hazard. Mater. 2005, 125, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Guo, S.; Wu, B.; Li, F.; Li, T. An assessment of the effectiveness and impact of electrokinetic remediation of pyrene contaminated soil. J. Environ. Sci. 2014, 26, 2290–2297. [Google Scholar] [CrossRef] [PubMed]
- Acar, Y.B.; Galeb, R.J.; Alshawabkeh, A.N.; Marks, R.E.; Puppala, W.; Bricka, M.; Parkere, R. Electrokinetic remediation Basics and technology status. J. Hazard. Mater. 1995, 40, 117–137. [Google Scholar] [CrossRef]
- Fernández Rodríguez, M.D.; García Gómez, M.C.; Alonso Blazquez, N.; Tarazona, J.V. Soil Pollution Remediation. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 344–355. [Google Scholar]
- Kim, D.H.; Yoo, J.C.; Hwang, B.R.; Yang, J.S.; Baek, K. Environmental assessment on electrokinetic remediation of multimetal-contaminated site: A case study. Environ. Sci. Pollut. Res. Int. 2014, 21, 6751–6758. [Google Scholar] [CrossRef]
- Elektorowicz, M.; Habibi, S.; Chifrina, R. Effect of electrical potential on the electro-demulsification of oily sludge. J. Colloid. Interface Sci. 2006, 295, 535–541. [Google Scholar] [CrossRef]
- Ali, M.F.; Alqam, M.H. The role of asphaltenes, resins and other solids in the stabilization of water in oil emulsions and its effects on oil production in Saudi oil fields. Fuel 2000, 79, 1309–1316. [Google Scholar] [CrossRef]
- Saichek, R.E.; Reddy, K.R. Surfactant-enhanced electrokinetic remediation of polycyclic aromatic hydrocarbons in heterogeneous subsurface environments. J. Environ. Eng. 2005, 4, 327–339. [Google Scholar] [CrossRef] [Green Version]
- de Melo Henrique, J.M.; de Andrade, D.C.; Barros Neto, E.L.; da Silva, D.R.; dos Santos, E.V. Solar-powered BDD-electrolysis remediation of soil washing fluid spiked with diesel. J. Chem. Technol. Biotechnol. 2019, 94, 2999–3006. [Google Scholar] [CrossRef]
- Liu, F.; Oturan, N.; Zhang, H.; Oturan, M.A. Soil washing in combination with electrochemical advanced oxidation for the remediation of synthetic soil heavily contaminated with diesel. Chemosphere 2020, 249, 126176. [Google Scholar] [CrossRef]
- Mousset, E.; Oturan, N.; van Hullebusch, E.D.; Guibaud, G.; Esposito, G.; Oturan, M.A. Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process—Study of soil washing recycling possibilities and environmental impact. Water Res. 2014, 48, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Huguenot, D.; Mousset, E.; van Hullebusch, E.D.; Oturan, M.A. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J. Environ. Manag. 2015, 153, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, L. Comparison of the crude oil removal effects of different surfactants in electrokinetic remediation of low-permeability soil. J. Environ. Chem. Eng. 2021, 9, 105190. [Google Scholar] [CrossRef]
- Karagunduz, A.; Gezer, A.; Karasuloglu, G. Surfactant enhanced electrokinetic remediation of DDT from soils. Sci. Total Environ. 2007, 385, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jiradecha, C.; Urgun-Demirtas, M.; Pagilla, K. Enhanced electrokinetic dissolution of naphthalene and 2,4-DNT from contaminated soils. J. Hazard. Mater. 2006, 136, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Weng, C.-H. Remediating ethylbenzene-contaminated clayey soil by a surfactant-aided electrokinetic (SAEK) process. Chemosphere 2004, 57, 225–232. [Google Scholar] [CrossRef]
- Gonzini, O.; Plaza, A.; Di Palma, L.; Lobo, M.C. Electrokinetic remediation of gasoil contaminated soil enhanced by rhamnolipid. J. Appl. Electrochem. 2010, 40, 1239–1248. [Google Scholar] [CrossRef]
- Kolosov, A.Y.; Popov, K.I.; Shabanova, N.A.; Artem’eva, A.A.; Kogut, B.M.; Frid, A.S.; Zel’venskii, V.Y.; Urinovich, E.M. Electrokinetic Removal of Hydrophobic Organic Compounds from Soil. Russ. J. Appl. Chem. 2001, 74, 631–635. [Google Scholar] [CrossRef]
- Chang, J.-H.; Qiang, Z.; Huang, C.-P.; Ellis, A.V. Phenanthrene removal in unsaturated soils treated by electrokinetics with different surfactants—Triton X-100 and rhamnolipid. Colloids Surf. A Physicochem. Eng. 2009, 348, 157–163. [Google Scholar] [CrossRef]
- Park, S.-W.; Lee, J.-Y.; Yang, J.-S.; Kim, K.-J.; Baek, K. Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. J. Hazard. Mater. 2009, 169, 1168–1172. [Google Scholar] [CrossRef]
- Alcántara, M.T.; Gómez, J.; Pazos, M.; Sanromán, M.A. Electrokinetic remediation of PAH mixtures from kaolin. J. Hazard. Mater. 2010, 179, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Cameselle, C.; Gouveia, S.; Eddine, D.; Belhadj, B. Advances in Electrokinetic Remediation for the Removal of Organic Contaminants in Soils. In Organic Pollutants—Monitoring, Risk and Treatment; Aswan University: Aswan, Egypt, 2013. [Google Scholar]
- Guedes, P.; Mateus, E.P.; Couto, N.; Rodriguez, Y.; Ribeiro, A.B. Electrokinetic remediation of six emerging organic contaminants from soil. Chemosphere 2014, 117, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Rutigliano, L.; Fino, D.; Saracco, G.; Specchia, V.; Spinelli, P. Electrokinetic remediation of soils contaminated with heavy metals. J. Appl. Electrochem. 2008, 38, 1035–1041. [Google Scholar] [CrossRef]
- Lu, P.; Feng, Q.; Meng, Q.; Yuan, T. Electrokinetic remediation of chromium- and cadmium-contaminated soil from abandoned industrial site. Sep. Purif. Technol. 2012, 98, 216–220. [Google Scholar] [CrossRef]
- López-Vizcaíno, R.; Yustres, A.; León, M.J.; Saez, C.; Cañizares, P.; Rodrigo, M.A.; Navarro, V. Multiphysics Implementation of Electrokinetic Remediation Models for Natural Soils and Porewaters. Electrochim. Acta 2017, 225, 93–104. [Google Scholar] [CrossRef]
- Jeon, E.K.; Jung, J.M.; Kim, W.S.; Ko, S.H.; Baek, K. In situ electrokinetic remediation of As-, Cu-, and Pb-contaminated paddy soil using hexagonal electrode configuration: A full-scale study. Environ. Sci. Pollut. Res. Int. 2015, 22, 711–720. [Google Scholar] [CrossRef]
- Shu, J.; Liu, R.; Liu, Z.; Du, J.; Tao, C. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue. Environ. Sci. Pollut. Res. Int. 2015, 22, 16004–16013. [Google Scholar] [CrossRef]
- García-Rubio, A.; Rodríguez-Maroto, J.M.; Gómez-Lahoz, C.; García-Herruzo, F.; Vereda-Alonso, C. Electrokinetic remediation: The use of mercury speciation for feasibility studies applied to a contaminated soil from Almadén. Electrochim. Acta 2011, 56, 9303–9310. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, X.; Jia, J.; Qu, L.; Wang, W. Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environ. Pollut. 2007, 150, 193–199. [Google Scholar] [CrossRef]
- Giannis, A.; Pentari, D.; Wang, J.Y.; Gidarakos, E. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils. J. Hazard. Mater. 2010, 184, 547–554. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.; Zhao, M.; Rong, H.; Zhang, K.; Chen, Q. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge. Chemosphere 2017, 168, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- De Battisti, A.; Ferro, S. Electrokinetic remediation. Electrochim. Acta 2007, 52, 3345–3348. [Google Scholar] [CrossRef]
- Li, G.; Guo, S.; Li, S.; Zhang, L.; Wang, S. Comparison of approaching and fixed anodes for avoiding the ‘focusing’ effect during electrokinetic remediation of chromium-contaminated soil. Chem. Eng. J. 2012, 203, 231–238. [Google Scholar] [CrossRef]
- Yuan, C.; Chiang, T.-S. Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents. J. Hazard. Mater. 2008, 152, 309–315. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Yin, L.; Ji, Y.; Niu, J.; Yu, Y. Electrochemical removal of nitrate in industrial wastewater. Front. Environ. Sci. Eng. 2018, 12, 9. [Google Scholar] [CrossRef]
- Chartrand, M.M.G.; Bunce, N.J. Electrochemical remediation of acid mine drainage. J. Appl. Electrochem. 2003, 33, 259–264. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, L.; Tse, L.K.; Dong, H.; Yu, S.; Hoffmann, M.R. Membrane-separated electrochemical latrine wastewater treatment. Environ. Sci. Water Res. Technol. 2019, 5, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Tsang, D.C.; Lo, I.M.; Surampalli, R.Y. Chelating Agents for Land Decontamination Technologies; American Society of Civil Engineers: Reston, VA, USA, 2012. [Google Scholar]
- Gu, Y.; Yeung, A.T.; Li, H. Enhanced electrokinetic remediation of cadmium-contaminated natural clay using organophosphonates in comparison with EDTA. Chin. J. Chem. Eng. 2018, 26, 1152–1159. [Google Scholar] [CrossRef]
- Reddy, K.R.; Karri, M.R. Effect of oxidant dosage on integrated electrochemical remediation of contaminant mixtures in soils. J. Environ. Sci. Health Part A 2008, 43, 881–893. [Google Scholar] [CrossRef]
- Leštan, D.; Luo, C.-l.; Li, X.-d. The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ. Pollut. 2008, 153, 3–13. [Google Scholar] [CrossRef]
- Yeung, A.T.; Gu, Y.Y. A review on techniques to enhance electrochemical remediation of contaminated soils. J. Hazard. Mater. 2011, 195, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Surfactant-enhanced remediation of contaminated soil a review. Can. J. Civ. Eng. 2001, 60, 371–380. [Google Scholar] [CrossRef]
- Zhang, T.; Zou, H.; Ji, M.; Li, X.; Li, L.; Tang, T. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environ. Sci. Pollut. Res. Int. 2014, 21, 3126–3133. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Tan, X.-Y.; Wu, X.-D.; Pan, C.; Xu, P. Effects of electrolyte characteristics on soil conductivity and current in electrokinetic remediation of lead-contaminated soil. Sep. Purif. Technol. 2014, 135, 14–21. [Google Scholar] [CrossRef]
- Kim, W.S.; Jeon, E.K.; Jung, J.M.; Jung, H.B.; Ko, S.H.; Seo, C.I.; Baek, K. Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration. Environ. Sci. Pollut. Res. Int. 2014, 21, 4482–4491. [Google Scholar] [CrossRef]
- Yuan, L.; Xu, X.; Li, H.; Wang, N.; Guo, N.; Yu, H. Development of novel assisting agents for the electrokinetic remediation of heavy metal-contaminated kaolin. Electrochim. Acta 2016, 218, 140–148. [Google Scholar] [CrossRef]
- Reddy, K.R.; Saichek, R.E. Enhanced Electrokinetic Removal of Phenanthrene from Clay Soil by Periodic Electric Potential Application. J. Environ. Sci. Health A 2004, 39, 1189–1212. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, M.; Zhang, S. Enhanced electrokinetic remediation of fluorine-contaminated soil by applying an ammonia continuous circulation system. Korean J. Chem. Eng. 2015, 33, 547–552. [Google Scholar] [CrossRef]
- Rivera, M.; Pazos, M.; Sanromán, M.Á. Development of an electrochemical cell for the removal of Reactive Black 5. Desalination 2011, 274, 39–43. [Google Scholar] [CrossRef]
- Rozas, F.; Castellote, M. Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes. Electrochim. Acta 2012, 86, 102–109. [Google Scholar] [CrossRef]
- Mena, E.; Villaseñor, J.; Rodrigo, M.A.; Cañizares, P. Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: Effect of periodic polarity reversal and voltage gradient. Chem. Eng. J. 2016, 299, 30–36. [Google Scholar] [CrossRef]
- Kim, D.H.; Ryu, B.G.; Park, S.W.; Seo, C.I.; Baek, K. Electrokinetic remediation of Zn and Ni-contaminated soil. J. Hazard. Mater. 2009, 165, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Baek, K.; Kim, D.H.; Park, S.W.; Ryu, B.G.; Bajargal, T.; Yang, J.S. Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. J. Hazard. Mater. 2009, 161, 457–462. [Google Scholar] [CrossRef]
- Ouhadi, V.R.; Yong, R.N.; Shariatmadari, N.; Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. J. Hazard. Mater. 2010, 173, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Jeon, C.S.; Baek, K.; Ko, S.H.; Yang, J.S. Electrokinetic remediation of fluorine-contaminated soil: Conditioning of anolyte. J. Hazard. Mater. 2009, 161, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Agnew, K.; Cundy, A.B.; Hopkinson, L.; Croudace, I.W.; Warwick, P.E.; Purdie, P. Electrokinetic remediation of plutonium-contaminated nuclear site wastes: Results from a pilot-scale on-site trial. J. Hazard. Mater. 2011, 186, 1405–1414. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Shirani, A.B. Electrokinetic remediation of metal contaminated glacial tills. Geotech. Geol. Eng. 1996, 15, 3–29. [Google Scholar] [CrossRef]
- Cang, L.; Fan, G.P.; Zhou, D.M.; Wang, Q.Y. Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control. Chemosphere 2013, 90, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
- Gidudu, B.; Chirwa, E.M.N. Biosurfactants as demulsification enhancers in bio-electrokinetic remediation of petroleum contaminated soil. Process Saf. Environ. Prot. 2020, 143, 332–339. [Google Scholar] [CrossRef]
- Maturi, K.; Reddy, K.R. Cosolvent-enhanced_Desorption and Transport of Heavy Metals and Organic Contaminants in Soils during Electrokinetic Remediation. Water Air Soil Pollut. 2008, 189, 199–211. [Google Scholar] [CrossRef]
- Pham, T.D.; Shrestha, R.A.; Virkutyte, J.; Sillanpää, M. Combined ultrasonication and electrokinetic remediation for persistent organic removal from contaminated kaolin. Electrochim. Acta 2009, 54, 1403–1407. [Google Scholar] [CrossRef]
- Rocha, E.S.F.C.P.; Roque, B.A.C.; Rocha, E.S.N.M.P.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Banat, I.M.; Sarubbo, L.A. Yeasts and bacterial biosurfactants as demulsifiers for petroleum derivative in seawater emulsions. AMB Express 2017, 7, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elektorowicz, M.; Habibi, S. Sustainable waste management recovery of fuels from petroleum sludge. Can. J. Civ. Eng. 2005, 32, 164–169. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, X.; Hou, H.; Zhang, J.; Zhang, D.; Qian, G. Moisture content-affected electrokinetic remediation of Cr(VI)-contaminated clay by a hydrocalumite barrier. Environ. Sci. Pollut. Res. Int. 2016, 23, 6517–6523. [Google Scholar] [CrossRef]
- Kimura, T.; Takase, K.; Terui, N.; Tanaka, S. Ferritization treatment of copper in soil by electrokinetic remediation. J. Hazard. Mater. 2007, 143, 662–667. [Google Scholar] [CrossRef]
- Roulier, M.; Kemper, M.; Al-Abed, S.; Murdoch, L.; Cluxton, P.; Chen, J.-L.; Davis-Hoover, W. Feasibility of electrokinetic soil remediation in horizontal Lasagna cells. J. Hazard. Mater. 2000, 77, 161–176. [Google Scholar] [CrossRef]
- Kornilovich, B.; Mishchuk, N.; Abbruzzese, K.; Pshinko, G.; Klishchenko, R. Enhanced electrokinetic remediation of metals-contaminated clay. Colloids Surf. A Physicochem. Eng. Asp. 2005, 265, 114–123. [Google Scholar] [CrossRef]
- Popov, K.; Glazkova, I.; Yachmenev, V.; Nikolayev, A. Electrokinetic remediation of concrete: Effect of chelating agents. Environ. Pollut. 2008, 153, 22–28. [Google Scholar] [CrossRef]
- Pazos, M.; Sanroman, M.A.; Cameselle, C. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere 2006, 62, 817–822. [Google Scholar] [CrossRef]
- Gomes, H.I.; Dias-Ferreira, C.; Ribeiro, A.B. Electrokinetic remediation of organochlorines in soil: Enhancement techniques and integration with other remediation technologies. Chemosphere 2012, 87, 1077–1090. [Google Scholar] [CrossRef]
- Gudina, E.J.; Rodrigues, A.I.; Alves, E.; Domingues, M.R.; Teixeira, J.A.; Rodrigues, L.R. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour. Technol. 2015, 177, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, T.M.; Procopio, L.C.; Brandao, F.D.; Leao, B.A.; Totola, M.R.; Borges, A.C. Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresour. Technol. 2011, 102, 2957–2964. [Google Scholar] [CrossRef] [PubMed]
- Desai, J.D.; Banat, I.M. Microbial Production of Surfactants and Their Commercial Potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64. [Google Scholar]
- Wang, Q.; Fang, X.; Bai, B.; Liang, X.; Shuler, P.J.; Goddard, W.A., 3rd; Tang, Y. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol. Bioeng. 2007, 98, 842–853. [Google Scholar] [CrossRef]
- Abalos, A.; Viñas, M.; Sabaté, J.; Manresa, M.A.; Solanas, A.M. Enhanced Biodegradation of Casablanca Crude Oil by A Microbial Consortium in Presence of a Rhamnolipid Produced by Pseudomonas Aeruginosa AT10. Biodegradation 2004, 15, 249–260. [Google Scholar] [CrossRef]
- Bezza, F.A.; Chirwa, E.M.N. Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Saf. Environ. Prot. 2015, 98, 354–364. [Google Scholar] [CrossRef]
- Cameotra, S.S.; Singh, P. Bioremediation of oil sludge using crude biosurfactants. Int. Biodeterior. Biodegrad. 2008, 62, 274–280. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Zhou, D.M.; Cang, L.; Li, L.Z.; Wang, P. Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities. Environ. Pollut. 2009, 157, 2203–2208. [Google Scholar] [CrossRef] [PubMed]
- Lear, G.; Harbottle, M.J.; Sills, G.; Knowles, C.J.; Semple, K.T.; Thompson, I.P. Impact of electrokinetic remediation on microbial communities within PCP contaminated soil. Environ. Pollut. 2007, 146, 139–146. [Google Scholar] [CrossRef]
- Kim, J.Y.; Oh, S.; Park, Y.K. Overview of biochar production from preservative-treated wood with detailed analysis of biochar characteristics, heavy metals behaviors, and their ecotoxicity. J. Hazard. Mater. 2020, 384, 121356. [Google Scholar] [CrossRef]
- Schmidt, C.A.; Barbosa, M.C.; de Almeida Mde, S. A laboratory feasibility study on electrokinetic injection of nutrients on an organic, tropical, clayey soil. J. Hazard. Mater. 2007, 143, 655–661. [Google Scholar] [CrossRef]
- Kim, S.H.; Han, H.Y.; Lee, Y.J.; Kim, C.W.; Yang, J.W. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. Sci. Total Environ. 2010, 408, 3162–3168. [Google Scholar] [CrossRef] [PubMed]
- Epelde, L.; Hernandez-Allica, J.; Becerril, J.M.; Blanco, F.; Garbisu, C. Effects of chelates on plants and soil microbial community: Comparison of EDTA and EDDS for lead phytoextraction. Sci. Total Environ. 2008, 401, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Tian, G.; Liu, J.; Bao, Q.; Zang, L. Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology. Desalination 2011, 271, 100–104. [Google Scholar] [CrossRef]
- Atlas, R.M. Microbial Degradation of Petroleum Hydrocarbons: An Environmental Perspective. Microbiol. Rev. 1981, 45, 180–209. [Google Scholar] [CrossRef]
- Yuan, L.; Li, H.; Xu, X.; Zhang, J.; Wang, N.; Yu, H. Electrokinetic remediation of heavy metals contaminated kaolin by a CNT-covered polyethylene terephthalate yarn cathode. Electrochim. Acta 2016, 213, 140–147. [Google Scholar] [CrossRef]
- Ifon, B.E.; Togbé, A.C.F.; Tometin, L.A.S.; Suanon, F.; Yessoufou, A. Metal-contaminated soil remediation: Phytoremediation, chemical leaching and electrochemical remediation. In Metals in Soil-Contamination and Remediation; IntechOpen: London, UK, 2019; pp. 534–554. [Google Scholar]
- Rada, E.C.; Andreottola, G.; Istrate, I.A.; Viotti, P.; Conti, F.; Magaril, E.R. Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT. Int. J. Environ. Res. Public Health 2019, 16, 3179. [Google Scholar] [CrossRef] [Green Version]
- Chirakkara, R.A.; Reddy, K.R.; Cameselle, C. Electrokinetic Amendment in Phytoremediation of Mixed Contaminated Soil. Electrochim. Acta 2015, 181, 179–191. [Google Scholar] [CrossRef]
- Rocha, I.M.V.; Silva, K.N.O.; Silva, D.R.; Martínez-Huitle, C.A.; Santos, E.V. Coupling electrokinetic remediation with phytoremediation for depolluting soil with petroleum and the use of electrochemical technologies for treating the effluent generated. Sep. Purif. Technol. 2019, 208, 194–200. [Google Scholar] [CrossRef]
- Rodríguez, L.; Sánchez, V.; López-Bellido, F.J. Chapter 14—Electrokinetic-assisted Phytoremediation. In Assisted Phytoremediation; Pandey, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 371–398. [Google Scholar]
- Tyagi, M.; da Fonseca, M.M.R.; de Carvalho, C.C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 2011, 22, 231–241. [Google Scholar] [CrossRef]
- Thompson, I.P.; Van Der Gast, C.J.; Ciric, L.; Singer, A.C. Bioaugmentation for bioremediation: The challenge of strain selection. Environ. Microbiol. 2005, 7, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Ángeles, M.-T.; Refugio, R.-V. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil. Braz. J. Microbiol. 2013, 44, 595–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, N.; Simpson, D.; Duncan, K.; McInerney, M.; Folmsbee, M.; Fincher, T.; Knapp, R. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl. Environ. Microbiol. 2007, 73, 1239–1247. [Google Scholar] [CrossRef] [Green Version]
- Youssef, N.; Simpson, D.R.; McInerney, M.J.; Duncan, K.E. In-situ lipopeptide biosurfactant production by Bacillus strains correlates with improved oil recovery in two oil wells approaching their economic limit of production. Int. Biodeterior. Biodegrad. 2013, 81, 127–132. [Google Scholar] [CrossRef]
- Zhao, F.; Shi, R.; Cui, Q.; Han, S.; Dong, H.; Zhang, Y. Biosurfactant production under diverse conditions by two kinds of biosurfactant-producing bacteria for microbial enhanced oil recovery. J. Pet. Sci. Eng 2017, 157, 124–130. [Google Scholar] [CrossRef]
- Gidudu, B.; Chirwa, E.M.N. Production of a bacterial biosurfactant in an electrochemical environment as a prelude for in situ biosurfactant enhanced bio-electrokinetic remediation. Process Saf. Environ. Prot. 2021, 148, 676–685. [Google Scholar] [CrossRef]
- Chung, H.I. Field Applications on Electrokinetic Reactive Pile Technology for Removal of Cu from In-situ and Excavated Soils. Sep. Sci. Technol. 2009, 44, 2341–2353. [Google Scholar] [CrossRef]
- Alshawabkeh, A.N.; Gale, R.J.; Ozsu-Acar, E.; Bricka, R.M. Optimization of 2-D Electrode Configuration for Electrokinetic Remediation. J. Soil Contam. 1999, 8, 617–635. [Google Scholar] [CrossRef]
- Masi, M.; Ceccarini, A.; Iannelli, R. Model-based optimization of field-scale electrokinetic treatment of dredged sediments. Chem. Eng. J. 2017, 328, 87–97. [Google Scholar] [CrossRef]
- Hu, G.; Li, J.; Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef]
- Alshawabkeh, A.N. Electrokinetic Soil Remediation: Challenges and Opportunities. Sep. Sci. Technol. 2009, 44, 2171–2187. [Google Scholar] [CrossRef]
- Vocciante, M.; Caretta, A.; Bua, L.; Bagatin, R.; Ferro, S. Enhancements in ElectroKinetic Remediation Technology: Environmental assessment in comparison with other configurations and consolidated solutions. Chem. Eng. J. 2016, 289, 123–134. [Google Scholar] [CrossRef]
- Fu, R.; Wen, D.; Xia, X.; Zhang, W.; Gu, Y. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes. Chem. Eng. J. 2017, 316, 601–608. [Google Scholar] [CrossRef]
- Gidudu, B.; Chirwa, E.M.N. Application of Biosurfactants and Pulsating Electrode Configurations as Potential Enhancers for Electrokinetic Remediation of Petrochemical Contaminated Soil. Sustainability 2020, 12, 5613. [Google Scholar] [CrossRef]
Pollutant | Cathode-Anode | Electrolyte | Voltage /Current | Mass of Soil Treated (kg) | Surfactant type | Biosurfactant Concentration (g/L) | %Removal Efficiency | Reference |
---|---|---|---|---|---|---|---|---|
TPHs | Graphite-Graphite | Deionized water | 30 V | 2 | Rhamnolipid | 28.00 | 68.92 | Gidudu and Chirwa [5] |
TPHs | Graphite-Graphite | Deionized water | 30 V | 2 | Rhamnolipid | 28.00 | 74.77 | Gidudu and Chirwa [5] |
TPHs | Graphite-Graphite | Deionized water | 10 V | 2 | Rhamnolipid | 28.00 | 73.34 | Gidudu and Chirwa [5] |
TPHs | Graphite-Graphite | Deionized water | 10 V | 2 | Rhamnolipid | 28.00 | 66.45 | Gidudu and Chirwa [5] |
Diesel | BDD, Ti | Deionized water | 30 mA cm−2 | 0.135 | SDS | 0.55–2.50 | 59–89 | Saichek and Reddy [33] |
PAH | BDD, DSA, stainless steel | Na2SO4 | 30 mA cm−2 | 0.1 | cationic surfactant | 2.50 | 100 | de Melo Henrique, et al. [34] |
Petroleum | BDD | Na2SO4 | 30 mA cm−2 | 0.01 | SDS | 0.10–50 | 92 | Liu, et al. [35] |
Diesel | BDD-carbon-felt | Na2SO4 | 30 mA cm−2 | 0.01 | Tween 80 | 6.30–8.25 | 73–83 | Liu, Oturan, Zhang and Oturan [35] |
Phenanthrene | BDD- DSA (carbon felt) | Na2SO4 | 0.5–2 A | 0.003 | Hydroxypropyl-beta-cyclodextrin | 1.60 | 58–99 | Mousset, et al. [36] |
TPH | BDD-carbon felt | Na2SO4 | 10–100 mA cm−2 | 15 | Tween 80 | 11.00 | 100 | Huguenot, et al. [37] |
Crude oil | Graphite-Graphite | Na2SO4 | 1 V/cm | 1 | SDS | 1.07 | 9.35 | Li and Jiang [38] |
Crude oil | Graphite-Graphite | Na2SO4 | 1 V/cm | 1 | rhamnolipid | 1.07 | 14.06 | Li and Jiang [38] |
Crude oil | Graphite-Graphite | Na2SO4 | 1 V/cm | 1 | Tween 80 | 1.07 | 18.05 | Li and Jiang [38] |
DDT | Titanium-Titanium | Deionized water/CaCl2 | 20 V | 0.5 | Sodium dodecyl benzenesulfonate (SDBS) | 7.50 | 13 | Karagunduz, et al. [39] |
Naphthalene | Graphite-Graphite | NaNO3 | 40 V | 0.026 | carboxymethyl-g-cyclodextrin | 2.00 | 83 | Jiradecha, et al. [40] |
2,4-dinitrotoluene | Graphite-Graphite | NaNO3 | 40 V | 0.026 | carboxymethyl-g-cyclodextrin | 2.00 | 89 | Jiradecha et al. [40] |
Ethylbenzene | Graphite-Graphite | processing fluid | 2 V/cm | 0.25 | SDS and Pannox 10 | 5.03 | 98 | Yuan and Weng [41] |
Gasoil | Graphite-Graphite | Citric acid | 30 V | 4.3–4.5 | Pannox 10, Citric acid | 2.00 | 87 | Gonzini, et al. [42] |
Chlorobenzene and trichloroethylene | Graphite-Graphite | 1-hydroxyethylidenediphosphonic | 2 V/cm | 4.3–4.5 | Triton X-100, OS-20ALM | 0.96 | 85 | Kolosov, et al. [43] |
Phenanthrene | Unspecified | Deionized water | 12 V | 0.33 | Triton X-100 rhamnolipid | 0.36 | 30 | Chang, et al. [44] |
Phenanthrene | Graphite-Graphite | Deionized water | 2.0 V/cm | 4 | Igepal CA-720 | 23.50 | 90 | Saichek and Reddy [33] |
Lubricant oil | Carbon plate -Pt-coated titanium | HNO3 | 2 V/cm | Not specified | Tergitol | 4.00 | 45 | Park, et al. [45] |
PAHs | Stainless steel- Stainless steel | NaCl | 4.3 V/m | 0.02 | Tween 80 | 0.004 | 30 | Park, Lee, Yang, Kim and Baek [45] |
PAHs | Graphite-Graphite | Na2SO4 | 30 V | 0.2 | Tween 80 | 3.00 | 40 | Alcántara, et al. [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gidudu, B.; Chirwa, E.M.N. The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules 2022, 27, 7381. https://doi.org/10.3390/molecules27217381
Gidudu B, Chirwa EMN. The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules. 2022; 27(21):7381. https://doi.org/10.3390/molecules27217381
Chicago/Turabian StyleGidudu, Brian, and Evans M. N. Chirwa. 2022. "The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil" Molecules 27, no. 21: 7381. https://doi.org/10.3390/molecules27217381
APA StyleGidudu, B., & Chirwa, E. M. N. (2022). The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules, 27(21), 7381. https://doi.org/10.3390/molecules27217381