Phenylethanoid and Phenylmethanoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities
Abstract
:1. Introduction
2. Material and Methods
2.1. General Experimental Procedure
2.2. Plant Material
2.3. Extraction and Isolation
2.4. Acid Hydrolysis of Compounds 1–6
2.5. Enzymatic Hydrolysis of Compounds 2
2.6. Determination of Bioactivities
2.7. Statistical Analyses
3. Results and Discussion
3.1. Identification of Compounds 1–11
3.2. The Bioactivities of Compounds 1–11
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- He, Z.D.; Lau, K.M.; But, P.P.-H.; Jiang, R.W.; Dong, H.; Ma, S.C.; Fung, K.P.; Ye, W.C.; Sun, H.D. Antioxidative glycosides from the leaves of Ligustrum robustum. J. Nat. Prod. 2003, 66, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.M.; Liu, F.; He, Z.D.; Ji, M.; Chu, X.X.; Kang, Z.Y.; Cai, D.Y.; Gao, N.N. Anti-obesity effect of total phenylpropanoid glycosides from Ligustrum robustum Blume in fatty diet-fed mice via up-regulating leptin. J. Ethnopharmacol. 2015, 169, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Cai, Y.Z.; Sun, M.; Ke, J.X.; Lu, D.Y.; Corke, H. Comparison of major phenolic constituents and in vitro antioxidant activity of diverse kudingcha genotypes from Ilex kudingcha, Ilex cornuta, and Ligustrum robustum. J. Agric. Food Chem. 2009, 57, 6082–6089. [Google Scholar] [CrossRef]
- Lau, K.M.; He, Z.D.; Dong, H.; Fung, K.P.; But, P.P.-H. Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum. J. Ethnopharmacol. 2002, 83, 63–71. [Google Scholar] [CrossRef]
- Xie, Z.M.; Zhou, T.; Liao, H.Y.; Ye, Q.; Liu, S.; Qi, L.; Huang, J.; Zuo, H.J.; Pei, X.F. Effects of Ligustrum robustum on gut microbes and obesity in rats. World J. Gastroenterol. 2015, 21, 13042–13054. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Peng, Y.; Xu, L.J.; Wu-Lan, T.N.; Shi, R.B.; Xiao, P.G. Chemical constituents from Ligustrum robustum Bl. Biochem. Syst. Ecol. 2010, 38, 398–401. [Google Scholar] [CrossRef]
- Li, L.; Peng, Y.; Liu, Y.; Xu, L.J.; Guo, N.; Shi, R.B.; Xiao, P.G. Two new phenethanol glycosides from Ligustrum robustum. Chinese Chem. Lett. 2011, 22, 326–329. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, H.J.; Sun, H.D.; Pan, L.T.; Yao, P.; Chen, D.Y. Monoterpenoid glycosides from Ligustrum robustum. Phytochemistry 1998, 48, 1013–1018. [Google Scholar] [CrossRef]
- Tian, J.; Sun, H.D. New monoterpenoid glycosides from Ligustrum robustum. Chin. J. Appl. Envir. Biol. 1999, 5, 501–506. [Google Scholar]
- Yu, Z.L.; Zeng, W.C. Antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Roxb.) Blume extract. J. Food Sci. 2013, 78, 1354–1362. [Google Scholar] [CrossRef]
- Yu, Z.L.; Gao, H.X.; Zhang, Z.; He, Z.; He, Q.; Jia, L.R.; Zeng, W.C. Inhibitory effects of Ligustrum robustum (Roxb.) Blume extract on α-amylase and α-glucosidase. J. Funct. Foods 2015, 19, 204–213. [Google Scholar] [CrossRef]
- Lu, S.-H.; Zuo, H.-J.; Shi, J.-X.; Li, C.-R.; Li, Y.-H.; Wang, X.; Li, L.-R.; Huang, J. Two new glycosides from the leaves of Ligustrum robustum and their antioxidant activities and inhibitory effects on α-glucosidase and α-amylase. S. Afr. J. Bot. 2019, 125, 521–526. [Google Scholar] [CrossRef]
- Lu, S.-H.; Huang, J.; Zuo, H.-J.; Zhou, Z.-B.; Yang, C.-Y.; Huang, Z.-L. Monoterpenoid glycosides from the leaves of Ligustrum robustum and their bioactivities. Molecules 2022, 27, 3709. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Otsuki, A.; Mori, H.; Li, P.; Kinoshita, M.; Kawakami, Y.; Tsuji, H.; Fang, D.Z.; Takahashi, Y. Two new monoterpene glycosides from Qing Shan Lu Shui tea with inhibitory effects on leukocyte-type 12-lipoxygenase activity. Molecules 2013, 18, 4257–4266. [Google Scholar] [CrossRef]
- Kawakami, Y.; Otsuki, A.; Mori, Y.; Kanzaki, K.; Suzuki-Yamamoto, T.; Fang, D.Z.; Ito, H.; Takahashi, Y. Involvement of the hydroperoxy group in the irreversible inhibition of leukocyte-type 12-lipoxygenase by monoterpene glycosides contained in the Qing Shan Lu Shui tea. Molecules 2019, 24, 304. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yang, J.; Liu, X.J.; Zhang, Y.; Lei, A.L.; Yi, R.K.; Tan, F.; Zhao, X. Preventive effect of small-leaved Kuding tea (Ligustrum robustum) on high-diet-induced obesity in C57BL/6J mice. Food Sci. Nutr. 2020, 8, 4512–4522. [Google Scholar] [CrossRef]
- Fisher, A.J.; Kerrigan, F. A new convenient synthesis of 1-(3-hydroxy-4-methoxyphenyl)ethane-1,2-diol (iso-MHPG) and its enantiomers. Synth. Commun. 1998, 28, 2959–2968. [Google Scholar] [CrossRef]
- Fan, H.J.; Wu, D.; Tian, W.X.; Ma, X.F. Inhibitory effects of tannic acid on fatty acid synthase and 3T3-L1 preadipocyte. Biochim. Biophys. Acta 2013, 1831, 1260–1266. [Google Scholar] [CrossRef]
- Wu, D.; Ma, X.F.; Tian, W.X. Pomegranate husk extract, punicalagin and ellagic acid inhibit fatty acid synthase and adipogenesis of 3T3-L1 adipocyte. J. Func. Foods 2013, 5, 633–641. [Google Scholar] [CrossRef]
- Lei, L.; Jiang, Y.; Liu, X.M.; Tu, P.F.; Wu, L.J.; Chen, F.K. New glycosides from Cistanche salsa. Helv. Chim. Acta 2007, 90, 79–85. [Google Scholar] [CrossRef]
- He, Z.D.; Liu, Y.Q.; Yang, C.R. Glycosides from Ligustrum purpurascens. Acta Bot. Yunnanica 1992, 14, 328–336. [Google Scholar]
- Fan Wong, I.Y.; He, Z.-D.; Huang, Y.; Chen, Z.-Y. Antioxidative activities of phenylethanoid glycosides from Ligustrum purpurascens. J. Agric. Food Chem. 2001, 49, 3113–3119. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Kikuchi, M. Studies on the constituents of Osmanthus species. VI. Structures of phenylpropanoid glycosides from the leaves of Osmanthus asiaticus Nakai. Chem. Pharm. Bull. 1990, 38, 2953–2955. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Li, C.; Che, Y.Y.; Wu, J.R.; Wang, Z.J.; Cai, W.; Li, Y.; Ma, Z.G.; Tu, P.F. LTQ-Orbitrap-based strategy for traditional Chinese medicine targeted class discovery, identification and herbomics research: A case study on phenylethanoid glycosides in three different species of Herba Cistanches. RSC Adv. 2015, 5, 80816–80828. [Google Scholar] [CrossRef]
- Mudgil, P.; Kamal, H.; Yuen, G.C.; Maqsood, S. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem. 2018, 259, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Q.; Wang, Y.M.; Yang, Y.L.; Zeng, Y.; Wang, Q.L.; Shao, Y.; Mei, L.J.; Shi, Y.P.; Tao, Y.D. Isolation and identification of antioxidant and α-glucosidase inhibitory compounds from fruit juice of Nitraria tangutorum. Food Chem. 2017, 227, 93–101. [Google Scholar] [CrossRef]
No | 1b b | 2a b | 2b b | 3 c |
---|---|---|---|---|
2 | 7.01 d (8.0) | 6.72 d (2.0) | 6.72 d (2.0) | 7.46 br. s |
3 | 6.67 d (8.0) | |||
5 | 6.67 d (8.0) | 6.74 d (8.0) | 6.74 d (8.0) | 6.89 d (8.4) |
6 | 7.01 d (8.0) | 6.83 dd (8.0, 2.0) | 6.83 dd (8.0, 2.0) | 7.47 br. d (8.4) |
7 | 2.83 t (7.2) | 4.75 dd (9.6, 3.2) | 4.75 dd (9.6, 3.2) | |
8 | 3.72 m | 3.56–3.72 m | 3.56–3.72 m | 4.98 d (16.8) |
3.96 m | 3.90–3.98 m | 3.90–3.98 m | 5.26 d (16.8) | |
Glc or Man | ||||
1’ | 4.28 d (7.6) | 4.41 d (8.0) | 4.43 d (8.0) | 4.54 d (7.6) |
2’ | 3.31 m | 3.46 m | 3.45 m | 3.52 m |
3’ | 3.54 m | 3.83 m | 3.80 m | 3.87 m |
4’ | 3.38 m | 4.95 t (9.6) | 4.90 t (9.6) | 4.96 t (9.6) |
5’ | 3.53 m | 3.56 m | 3.51 m | 3.61 m |
6’ | 4.29 dd (11.6, 6.4) | 3.53 m | 3.53 m | 3.54 m |
4.46 dd (11.6, 2.0) | 3.61 m | 3.61 m | 3.61 m | |
Inner-Rha | ||||
1’’ | 5.17 d (2.0) | 5.22 d (2.0) | 5.21 d (2.0) | 5.22 br. s |
2’’ | 3.89 m | 3.88 dd (3.2, 2.0) | 3.82 dd (3.2, 2.0) | 3.87 m |
3’’ | 3.84 dd (9.6, 3.2) | 3.68 dd (9.2, 3.2) | 3.68 dd (9.2, 3.2) | 3.66 m |
4’’ | 3.53 m | 3.40 m | 3.40 m | 3.40 m |
5’’ | 4.10 m | 3.60 m | 3.60 m | 3.60 m |
6’’ | 1.28 d (6.0) | 1.09 d (6.0) | 1.08 d (6.0) | 1.10 d (6.0) |
Outer-Rha | ||||
1’’’ | 5.19 d (1.6) | 5.04 d (2.0) | 5.06 d (2.0) | 5.06 br. s |
2’’’ | 3.94 m | 3.90 dd (3.2, 2.0) | 3.90 dd (3.2, 2.0) | 3.88 m |
3’’’ | 3.60 dd (9.6, 3.2) | 3.51 m | 3.51 m | 3.49 m |
4’’’ | 3.39 m | 3.32 m | 3.32 m | 3.32 m |
5’’’ | 3.70 m | 3.46 m | 3.46 m | 3.46 m |
6’’’ | 1.25 d (6.4) | 1.04 d (6.0) | 1.04 d (6.0) | 1.06 d (6.0) |
Cou | ||||
2’’’’ | 7.62 d (8.4) | 7.49 d (8.8) | 7.72 d (8.8) | 7.54 d (8.4) |
3’’’’ | 6.75 d (8.4) | 6.82 d (8.8) | 6.77 d (8.8) | 6.87 d (8.4) |
5’’’’ | 6.75 d (8.4) | 6.82 d (8.8) | 6.77 d (8.8) | 6.87 d (8.4) |
6’’’’ | 7.62 d (8.4) | 7.49 d (8.8) | 7.72 d (8.8) | 7.54 d (8.4) |
7’’’’ | 6.86 d (12.8) | 7.67 d (16.0) | 6.99 d (12.8) | 7.68 d (16.0) |
8’’’’ | 5.79 d (12.8) | 6.33 d (16.0) | 5.76 d (12.8) | 6.37 d (16.0) |
No | 1b a | 2a b | 2b b | 3 c |
---|---|---|---|---|
1 | 130.6 | 133.6 | 133.6 | 127.9 |
2 | 130.9 | 119.0 | 119.0 | 115.8 |
3 | 116.1 | 146.3 | 146.3 | 146.7 |
4 | 156.7 | 146.1 | 146.1 | 152.9 |
5 | 116.1 | 116.2 | 116.2 | 117.0 |
6 | 130.9 | 114.6 | 114.6 | 122.9 |
7 | 36.4 | 74.2 | 74.2 | 196.4 |
8 | 72.3 | 76.7 | 76.7 | 72.2 |
Glc or Man | ||||
1’ | 104.2 | 104.6 | 104.4 | 103.9 |
2’ | 75.7 | 76.4 | 76.4 | 76.2 |
3’ | 83.6 | 81.2 | 81.1 | 81.1 |
4’ | 70.4 | 70.3 | 70.1 | 70.4 |
5’ | 75.2 | 76.1 | 75.9 | 76.2 |
6’ | 64.4 | 62.2 | 62.3 | 62.2 |
Inner-Rha | ||||
1’’ | 103.2 | 102.6 | 102.7 | 102.6 |
2’’ | 72.8 | 72.8 | 72.8 | 72.7 |
3’’ | 73.0 | 72.6 | 72.6 | 72.6 |
4’’ | 81.1 | 81.6 | 81.5 | 81.2 |
5’’ | 68.4 | 68.9 | 68.6 | 68.8 |
6’’ | 18.6 | 19.1 | 18.9 | 19.4 |
Outer-Rha | ||||
1’’’ | 102.4 | 103.5 | 103.4 | 103.3 |
2’’’ | 72.3 | 72.3 | 72.2 | 72.3 |
3’’’ | 72.3 | 72.3 | 72.2 | 72.3 |
4’’’ | 73.8 | 73.8 | 73.9 | 73.6 |
5’’’ | 70.4 | 70.3 | 70.1 | 70.3 |
6’’’ | 17.8 | 17.7 | 17.8 | 18.1 |
Cou | ||||
1’’’’ | 127.5 | 126.9 | 127.5 | 126.9 |
2’’’’ | 133.7 | 131.5 | 134.3 | 131.5 |
3’’’’ | 115.9 | 117.1 | 115.0 | 117.2 |
4’’’’ | 160.1 | 161.5 | 160.3 | 161.4 |
5’’’’ | 115.9 | 117.1 | 115.0 | 117.2 |
6’’’’ | 133.7 | 131.5 | 134.3 | 131.5 |
7’’’’ | 145.3 | 147.6 | 147.5 | 147.3 |
8’’’’ | 116.3 | 114.7 | 115.7 | 114.9 |
CO | 168.1 | 168.1 | 166.8 | 167.6 |
No | 4b b | 5 b | 6 c |
---|---|---|---|
2 | 7.43 br. d (7.2) | 7.39 br. d (7.2) | 7.36 br. d (7.8) |
3 | 7.35 br. t (7.2) | 7.30 br. t (7.2) | 7.29 br. t (7.8) |
4 | 7.28 br. d (7.2) | 7.26 br. d (7.2) | 7.25 br. d (7.8) |
5 | 7.35 br. t (7.2) | 7.30 br. t (7.2) | 7.29 br. t (7.8) |
6 | 7.43 br. d (7.2) | 7.39 br. d (7.2) | 7.36 br. d (7.8) |
7 | 4.68 d (11.6) | 4.65 d (12.0) | 4.59 d (12.0) |
4.96 d (11.6) | 4.87 d (12.0) | 4.80 d (12.0) | |
Glc or Man | |||
1’ | 4.42 d (8.0) | 4.38 d (8.0) | 4.33 d (7.8) |
2’ | 3.46 dd (9.2, 8.0) | 3.38 m | 3.37 m |
3’ | 3.76 t (9.2) | 3.52 t (8.8) | 3.49 t (9.0) |
4’ | 4.90 m | 3.43 m | 3.37 m |
5’ | 3.54 m | 3.52 m | 3.49 m |
6’ | 3.56 m | 4.38 dd (12.0, 3.6) | 4.30 dd (12.0, 6.0) |
3.64 m | 4.52 dd (12.0, 2.0) | 4.50 dd (12.0, 1.8) | |
Rha | |||
1’’ | 5.16 d (1.6) | 5.17 d (2.0) | 5.15 d (1.8) |
2’’ | 3.92 dd (3.2, 1.6) | 3.94 dd (3.6, 2.0) | 3.93 dd (3.0, 1.8) |
3’’ | 3.58 m | 3.70 dd (9.6, 3.6) | 3.70 dd (9.6, 3.0) |
4’’ | 3.29 t (9.6) | 3.39 m | 3.39 t (9.6) |
5’’ | 3.56 m | 4.00 dd (9.6, 6.4) | 3.99 dd (9.6, 6.0) |
6’’ | 1.16 d (6.0) | 1.24 d (6.4) | 1.24 d (6.0) |
Cou | |||
2’’’ | 7.73 d (8.8) | 7.46 d (8.4) | 7.66 d (8.4) |
3’’’ | 6.76 d (8.8) | 6.79 d (8.4) | 6.76 d (8.4) |
5’’’ | 6.76 d (8.8) | 6.79 d (8.4) | 6.76 d (8.4) |
6’’’ | 7.73 d (8.8) | 7.46 d (8.4) | 7.66 d (8.4) |
7’’’ | 6.95 d (12.8) | 7.66 d (16.0) | 6.90 d (13.2) |
8’’’ | 5.80 d (12.8) | 6.38 d (16.0) | 5.82 d (13.2) |
No | 4b a | 5 b | 6 a |
---|---|---|---|
1 | 139.0 | 138.8 | 138.8 |
2 | 129.3 | 129.3 | 129.4 |
3 | 129.1 | 129.2 | 129.3 |
4 | 128.7 | 128.8 | 128.8 |
5 | 129.1 | 129.2 | 129.3 |
6 | 129.3 | 129.3 | 129.4 |
7 | 72.0 | 72.0 | 72.0 |
Glc or Man | |||
1’ | 103.2 | 103.1 | 103.1 |
2’ | 76.2 | 75.7 | 75.6 |
3’ | 81.6 | 83.9 | 84.1 |
4’ | 70.6 | 70.4 | 70.5 |
5’ | 76.1 | 75.5 | 75.4 |
6’ | 62.4 | 64.6 | 64.5 |
Rha | |||
1’’ | 103.0 | 102.7 | 102.8 |
2’’ | 72.3 | 72.3 | 72.4 |
3’’ | 72.0 | 72.2 | 72.3 |
4’’ | 73.8 | 74.0 | 74.0 |
5’’ | 70.4 | 70.0 | 70.0 |
6’’ | 18.2 | 17.9 | 17.9 |
Cou | |||
1’’’ | 127.5 | 126.7 | 127.4 |
2’’’ | 134.2 | 131.3 | 133.8 |
3’’’ | 115.8 | 117.1 | 116.1 |
4’’’ | 160.4 | 162.2 | 160.6 |
5’’’ | 115.8 | 117.1 | 116.1 |
6’’’ | 134.2 | 131.3 | 133.8 |
7’’’ | 147.3 | 147.0 | 145.3 |
8’’’ | 115.8 | 114.5 | 116.1 |
CO | 166.9 | 169.2 | 168.2 |
Compounds | FAS IC50 (μM) b | α-Glucosidase Inhibition at 0.1 mM (%) | α-Amylase Inhibition at 0.1 mM (%) | DPPH IC50 (μM) b | ABTS•+ IC50 (μM) b |
---|---|---|---|---|---|
1 | NA c | — d | — | — | — |
2 | NA | NA | 10.6 ± 2.3 f | 43.17 ± 1.06 d | 10.62 ± 0.48 f |
3 | NA | 42.3 ± 8.7 bc | NA | 23.83 ± 0.89 b | 4.13 ± 0.06 c |
4 | 6.49 ± 0.27 c | — | — | — | — |
5 | NA | 45.1 ± 2.5 b | NA | >250 | 4.86 ± 0.06 d |
6 | NA | 36.5 ± 1.5 c | NA | NA | 20.73 ± 0.22 g |
7 | NA | NA | 19.9 ± 1.8 d | >250 | 2.75 ± 0.09 a |
8 | NA | NA | NA | >250 | 4.17 ± 0.06 c |
9 | 5.61 ± 0.44 b | 25.4 ± 4.1 d | 15.9 ± 3.1 e | 29.21 ± 0.37 c | 2.68 ± 0.05 a |
10 | NA | 19.3 ± 5.6 e | 26.1 ± 1.9 c | >250 | 3.34 ± 0.02 b |
11 | 4.55 ± 0.35 a | NA | 23.5 ± 1.7 c | >250 | 3.83 ± 0.05 c |
Orlistat e | 4.46 ± 0.13 a | ||||
Acarbose e | 93.2 ± 0.1 a | 51.8 ± 2.5 a | |||
L-(+)-ascorbic acid e | 13.66 ± 0.13 a | 10.06 ± 0.19 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.-H.; Zuo, H.-J.; Huang, J.; Chen, R.; Pan, J.-P.; Li, X.-X. Phenylethanoid and Phenylmethanoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities. Molecules 2022, 27, 7390. https://doi.org/10.3390/molecules27217390
Lu S-H, Zuo H-J, Huang J, Chen R, Pan J-P, Li X-X. Phenylethanoid and Phenylmethanoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities. Molecules. 2022; 27(21):7390. https://doi.org/10.3390/molecules27217390
Chicago/Turabian StyleLu, Shi-Hui, Hao-Jiang Zuo, Jing Huang, Ran Chen, Jia-Ping Pan, and Xiu-Xia Li. 2022. "Phenylethanoid and Phenylmethanoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities" Molecules 27, no. 21: 7390. https://doi.org/10.3390/molecules27217390
APA StyleLu, S. -H., Zuo, H. -J., Huang, J., Chen, R., Pan, J. -P., & Li, X. -X. (2022). Phenylethanoid and Phenylmethanoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities. Molecules, 27(21), 7390. https://doi.org/10.3390/molecules27217390