A Detailed Study of Electronic and Dynamic Properties of Noble Gas–Oxygen Molecule Adducts
Abstract
:1. Introduction
2. Methodologies and Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Somayazulu, M.; Dera, P.; Goncharov, A.F.; Gramsch, S.A.; Liermann, P.; Yang, W.; Liu, Z.; Mao, H.-k.; Hemley, J.R. Pressure-induced bonding and compound formation in xenon-hydrogen solids. Nat. Chem. 2010, 2, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.N. The magnetism of oxygen and the molecule O4. J. Am. Chem. Soc. 1924, 46, 2027–2032. [Google Scholar] [CrossRef]
- Aquilanti, V.; Ascenzi, D.; Bartolomei, M.; Cappelletti, D.; Cavalli, S.; Vitores, M.C.; Pirani, F. Molecular Beam Scattering of Aligned Oxygen Molecules. The Nature of the Bond in the O2-O2 Dimer. J. Am. Chem. Soc. 1999, 121, 10794–10802. [Google Scholar] [CrossRef] [Green Version]
- Aita, C.R.; Tran, N.C. Rare gas-oxygen effects on the rf sputter deposition of platinum. J. Appl. Phys. 1983, 54, 6051–6052. [Google Scholar] [CrossRef]
- Weck, G.; Dewaele, A.; Loubeyre, P. Oxygen/noble gas binary phase diagrams at 296 K and high pressures. Phys. Rev. B 2010, 82, 014112. [Google Scholar] [CrossRef]
- Loubeyre, P.; Letoullec, R.; Pinceaux, J.P. Compression of Ar(H2)2 up to 175 GPa: A New Path for the dissociation of Molecular Hydrogen? Phys. Rev. Lett. 1994, 72, 1360–1365. [Google Scholar] [CrossRef]
- Vos, W.L.; Finger, L.W.; Hemley, R.J.; Hu, J.Z.; Mao, H.K.; Schouten, J.A. A high-pressure van der Waals compound in solid nitrogen-helium mixtures. Nature 1992, 358, 46–48. [Google Scholar] [CrossRef]
- Cappelletti, D.; Vilela, A.F.; Barreto, P.R.; Gargano, R.; Pirani, F.; Aquilanti, V. Intermolecular interactions of H2S with rare gases from molecular beam scattering in the glory regime and from ab initio calculations. J. Chem. Phys. 2006, 125, 133111. [Google Scholar] [CrossRef] [Green Version]
- Pirani, F.; Maciel, G.S.; Cappelletti, D.; Aquilanti, V. Experimental benchmarks and phenomenology of interatomic forces: Open-shell and electronic anisotropy effects. Int. Rev. Phys. Chem. 2006, 25, 165–199. [Google Scholar] [CrossRef]
- Pirani, F.; Cappelletti, D.; Falcinelli, S.; Cesario, D.; Nunzi, F.; Belpassi, L.; Tarantelli, F. Selective Emergence of the Halogen Bond in Ground and Excited States of Noble-Gas–Chlorine Systems. Angew. Chem. Int. Ed. 2019, 58, 4195–4199. [Google Scholar] [CrossRef]
- Henderson, G.; Ewing, G.E. Infrared spectrum, structure, and properties of the O2–Ar van der Waals molecule. J. Chem. Phys. 1973, 59, 2280–2293. [Google Scholar] [CrossRef]
- Beneventi, L.; Casavecchia, P.; Pirani, F.; Vecchiocattivi, F.; Volpi, G.G. The Ne–O2 potential energy surface from high-resolution diffraction and glory scattering experiments and from the Zeeman spectrum. J. Chem. Phys. 1991, 95, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Nunzi, F.; Pannacci, G.; Tarantelli, F.; Belpassi, L.; Cappelletti, D.; Falcinelli, S.; Pirani, F. Leading interaction components in the structure and reactivity of noble gases compounds. Molecules 2020, 25, 2367. [Google Scholar] [CrossRef] [PubMed]
- Pirani, F.; Brizi, S.; Roncaratti, L.; Casavecchia, P.; Cappelletti, D.; Vecchiocattivi, F. Beyond the Lennard-Jones model: A simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 2008, 10, 5489–5503. [Google Scholar] [CrossRef] [PubMed]
- Radzig, A.A.; Smirnov, B.M. Reference Data on Atoms, Molecules, and Ions; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Rittby, M.; Bartlett, R.J. An open-shell spin-restricted coupled cluster method: Application to ionization potentials in nitrogen. J. Phys. Chem. 1988, 92, 3033–3036. [Google Scholar] [CrossRef]
- Watts, J.D.; Gauss, J.; Bartlett, R.J. Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods: MBPT (4), CCSD+ T (CCSD), CCSD (T), and QCISD (T). Chem. Phys. Lett. 1992, 200, 1–7. [Google Scholar] [CrossRef]
- Peterson, K.A.; Woon, D.E.; Dunning, T.H., Jr. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H + H2→H2 + H reaction. J. Chem. Phys. 1994, 100, 7410–7415. [Google Scholar] [CrossRef]
- Kállay, M.; Surján, P.R. Higher excitations in coupled-cluster theory. J. Chem. Phys. 2001, 115, 2945–2954. [Google Scholar] [CrossRef]
- Simon, S.; Duran, M.; Dannenberg, J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 1996, 105, 11024–11031. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian09 Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Cambi, R.; Cappelletti, D.; Liuti, G.; Pirani, F. Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations. J. Chem. Phys. 1991, 95, 1852–1861. [Google Scholar] [CrossRef]
- Aquilanti, V.; Cornicchi, E.; Teixidor, M.M.; Saendig, N.; Pirani, F.; Cappellett, D. Glory-Scattering Measurement of Water-Noble-Gas Interactions: The Birth of the Hydrogen Bond. Angew. Chem. Int. Ed. 2005, 44, 4239–4243. [Google Scholar] [CrossRef] [PubMed]
- Dunham, J.L. The Energy Levels of a Rotating Vibrator. Phys. Rev. 1932, 41, 721–731. [Google Scholar] [CrossRef]
- da Cunha, W.F.; de Oliveira, R.M.; Roncaratti, L.F.; Martins, J.B.; e Silva, G.M.; Gargano, R. Rovibrational energies and spectroscopic constants for H2O-Ng complexes. J. Mol. Model. 2014, 20, 2498. [Google Scholar] [CrossRef] [PubMed]
- Prudente, F.; Costa, L.; Neto, J.S. Discrete variable representation and negative imaginary potential to study metastable states and photodissociation processes. Application to diatomic and triatomic molecules. J. Mol. Struct. THEOCHEM 1997, 394, 169–180. [Google Scholar] [CrossRef]
- Cappelletti, D.; Ronca, E.; Belpassi, L.; Tarantelli, F.; Pirani, F. Revealing Charge-Transfer Effects in Gas-Phase Water Chemistry. Acc. Chem. Res. 2012, 45, 1571–1580. [Google Scholar] [CrossRef]
- Belpassi, L.; Infante, I.; Tarantelli, F.; Visscher, L. The chemical bond between Au (I) and the noble gases. Comparative study of NgAuF and NgAu+ (Ng=Ar,Kr,Xe) by density functional and coupled cluster methods. J. Am. Chem. Soc. 2008, 130, 1048–1060. [Google Scholar] [CrossRef]
- Belpassi, L.; Tarantelli, F.; Pirani, F.; Candori, P.; Cappelletti, D. Experimental and theoretical evidence of charge transfer in weakly bound complexes of water. Phys. Chem. Chem. Phys. 2009, 11, 9970–9975. [Google Scholar] [CrossRef]
- Pirani, F.; Candori, P.; Mundim, M.P.; Belpassi, L.; Tarantelli, F.; Cappelletti, D. On the role of charge transfer in the stabilization of weakly bound complexes involving water and hydrogen sulphide molecules. Chem. Phys. 2012, 398, 176–185. [Google Scholar] [CrossRef]
- Belpassi, L.; Reca, M.L.; Tarantelli, F.; Roncaratti, L.F.; Pirani, F.; Cappelletti, D.; Faure, A.; Scribano, Y. Charge-Transfer Energy in the Water- Hydrogen Molecular Aggregate Revealed by Molecular-Beam Scattering Experiments, Charge Displacement Analysis, and ab Initio Calculations. J. Am. Chem. Soc. 2010, 132, 13046–13058. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev. 1994, 94, 1887–1930. [Google Scholar] [CrossRef]
- Turney, J.M.; Simmonett, A.C.; Parrish, R.M.; Hohenstein, E.G.; Evangelista, F.A.; Fermann, J.T.; Mintz, B.J.; Burns, L.A.; Wilke, J.J.; Abrams, M.L.; et al. Psi4: An open-source ab initio electronic structure program. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 556–565. [Google Scholar] [CrossRef]
- Smith, D.G.; Burns, L.A.; Simmonett, A.C.; Parrish, R.M.; Schieber, M.C.; Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A.; et al. PSI4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys. 2020, 152, 184108. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, F. Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives. J. Comput. Chem. 2012, 33, 2363–2379. [Google Scholar] [CrossRef] [PubMed]
- Slater, J.C. The Rates of Unimolecular Reactions in Gases; Cambridge University Press: Cambridge, UK, 1939; Volume 35, p. 56. [Google Scholar]
- Laidler, K.L. Theories of Chemical Reaction Rates; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Lee, T.J.; Taylor, P.R. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. 1989, 36, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.J. Comparison of the T1 and D1 diagnostics for electronic structure theory: A new definition for the open-shell D1 diagnostic. Chem. Phys. Lett. 2003, 372, 362–367. [Google Scholar] [CrossRef]
- Pirani, F.; Vecchiocattivi, F. The interaction potential energy surface of O2-Ar. Chem. Phys. 1981, 59, 387–396. [Google Scholar] [CrossRef]
- Wolfgang, R. Energy and chemical reaction. II. Intermediate complexes vs. direct mechanisms. Acc. Chem. Res. 1970, 3, 48–54. [Google Scholar] [CrossRef]
Complexes | Re (Å) | De (meV) | φ (°) | μ (a.u) |
---|---|---|---|---|
He–O2 | 3.17 (3.45) | 3.75 (2.91) | 89.9 | 6309.80486 |
Ne–O2 | 3.36 (3.52) | 5.11 (5.88) | 80.0 | 22,558.61103 |
Ar–O2 | 3.67 (3.79) | 10.84 (11.78) | 88.8 | 32,374.47312 |
Kr–O2 | 3.78 (3.91) | 14.56 (14.26) | 81.0 | 42,210.71200 |
Xe–O2 | 4.01 (4.09) | 16.04 (16.04) | 81.0 | 46,896.81884 |
Rn–O2 | 4.06 (4.19) | 16.84 (18.46) | 81.0 | 52,658.65576 |
v | j | He–O2 | Ne–O2 | Ar–O2 | Kr–O2 | Xe–O2 | Rn–O2 |
---|---|---|---|---|---|---|---|
0 | 0 | 21.3536 | 13.2550 | 14.7518 | 14.7332 | 13.9043 | 13.3169 |
1 | 0 | - | 30.9952 | 39.6642 | 40.8599 | 39.0358 | 37.6220 |
2 | 0 | - | 39.2232 | 58.7146 | 62.6703 | 60.6929 | 58.8989 |
3 | 0 | - | - | 72.2600 | 80.3115 | 78.9669 | 77.2163 |
4 | 0 | - | - | 80.8756 | 93.9888 | 93.9772 | 92.6617 |
5 | 0 | - | - | 85.4532 | 103.9947 | 105.8846 | 105.3487 |
6 | 0 | - | - | - | 110.7416 | 114.9070 | 115.4270 |
7 | 0 | - | - | - | 114.7757 | 121.3358 | 123.0943 |
8 | 0 | - | - | - | 116.8906 | 125.5402 | 128.6035 |
9 | 0 | - | - | - | - | 128.0208 | 132.2635 |
10 | 0 | - | - | - | - | - | 134.5124 |
0 | 1 | 22.0513 | 13.4736 | 14.8871 | 14.8320 | 13.9837 | 13.3861 |
1 | 1 | - | 31.1662 | 39.7873 | 40.9526 | 39.1111 | 37.6879 |
2 | 1 | - | 39.3342 | 58.8238 | 62.7560 | 60.7636 | 58.9612 |
3 | 1 | - | - | 72.3532 | 80.3898 | 79.0326 | 77.2748 |
4 | 1 | - | - | 80.9502 | 94.0586 | 94.0376 | 92.7161 |
5 | 1 | - | - | 85.5065 | 104.0551 | 105.9391 | 105.3986 |
6 | 1 | - | - | - | 110.7916 | 114.9551 | 115.4721 |
7 | 1 | - | - | - | 114.8142 | 121.3767 | 123.1341 |
8 | 1 | - | - | - | 116.9200 | 125.5735 | 128.6377 |
9 | 1 | - | - | - | - | 128.0470 | 132.2914 |
10 | 1 | - | - | - | - | - | 134.5351 |
ν | j | He–O2 | Ne–O2 | Ar–O2 | Kr–O2 | Xe–O2 | Rn–O2 |
---|---|---|---|---|---|---|---|
0 | 0 | 15.3999 | 13.1298 | 14.9448 | 14.1078 | 13.6404 | 13.5385 |
1 | 0 | - | 32.3170 | 40.5221 | 39.2010 | 38.3479 | 38.4275 |
2 | 0 | - | 42.9573 | 60.5738 | 60.2558 | 59.7129 | 60.4665 |
3 | 0 | - | 46.9871 | 75.3899 | 77.4049 | 77.8210 | 79.7135 |
4 | 0 | - | - | 85.4212 | 90.8305 | 92.7828 | 96.2402 |
5 | 0 | - | - | 91.3598 | 100.7913 | 104.7460 | 110.1375 |
6 | 0 | - | - | 94.2410 | 107.6498 | 113.9102 | 121.5227 |
7 | 0 | - | - | - | 111.8883 | 120.5411 | 130.5474 |
8 | 0 | - | - | - | 114.2040 | 124.9771 | 137.4060 |
9 | 0 | - | - | - | - | 127.6664 | 142.3384 |
10 | 0 | - | - | - | - | - | 145.6317 |
11 | 0 | - | - | - | - | - | 147.8315 |
0 | 1 | 16.0302 | 13.3341 | 15.0720 | 14.2003 | 13.7171 | 13.6037 |
1 | 1 | - | 32.4855 | 40.6387 | 39.2878 | 38.4204 | 38.4897 |
2 | 1 | - | 43.0807 | 60.6786 | 60.3364 | 59.7811 | 60.5256 |
3 | 1 | - | 47.0579 | 75.4811 | 77.4785 | 77.8846 | 79.7694 |
4 | 1 | - | - | 85.4970 | 90.8966 | 92.8413 | 96.2926 |
5 | 1 | - | - | 91.4178 | 100.8489 | 104.7990 | 110.1862 |
6 | 1 | - | - | 94.2820 | 107.6981 | 113.9572 | 121.5672 |
7 | 1 | - | - | - | 111.9263 | 120.5815 | 130.5876 |
8 | 1 | - | - | - | 114.2332 | 125.0104 | 137.4415 |
9 | 1 | - | - | - | - | 127.6928 | 142.3687 |
10 | 1 | - | - | - | - | - | 145.6567 |
11 | 1 | - | - | - | - | - | 147.8534 |
Constants | He–O2 | Ne–O2 | Ar–O2 | Kr–O2 | Xe–O2 | Rn–O2 |
---|---|---|---|---|---|---|
(Equation (2)) | - | - | 31.11 | 30.58 | 28.69 | 27.40 |
(Dunham) | 47.81 | 29.69 | 31.00 | 30.56 | 28.67 | 27.38 |
(Equation (2)) | - | - | 3.19 | 2.27 | 1.80 | 1.56 |
(Dunham) | 21.90 | 5.32 | 3.10 | 2.23 | 1.79 | 1.55 |
(Equation (2)) | - | - | ||||
(Dunham) | 0.84 | |||||
(Equation (2)) | - | - | ||||
(Dunham) | 0.16 | |||||
(Equation (2)) | - | - | ||||
(Dunham) |
Constants | He–O2 | Ne-O2 | Ar–O2 | Kr–O2 | Xe–O2 | Rn–O2 |
---|---|---|---|---|---|---|
(Equation (2)) | - | 29.59 | 31.38 | 29.26 | 28.13 | 27.79 |
(Dunham) | 38.70 | 28.52 | 31.29 | 29.23 | 28.11 | 27.78 |
(Equation (2)) | - | 5.72 | 2.98 | 2.12 | 1.73 | 1.47 |
(Dunham) | 18.54 | 4.84 | 2.90 | 2.09 | 1.72 | 1.46 |
(Equation (2)) | - | 0.32 | ||||
(Dunham) | 0.74 | 7.31 | ||||
(Equation (2)) | - | |||||
(Dunham) | 0.14 | |||||
(Equation (2)) | - | |||||
(Dunham) |
Terms | He–O2 | Ne–O2 | Ar–O2 | Kr–O2 | Xe–O2 | Rn–O2 |
---|---|---|---|---|---|---|
−0.0062 | −0.035 | −0.1141 | −0.1571 | −0.0776 | −0.1022 | |
0.0342 | 0.1449 | 0.3539 | 0.4578 | 0.2543 | 0.3224 | |
−0.0014 | −0.0024 | −0.015 | −0.0229 | −0.0176 | −0.0231 | |
−0.0900 | −0.2457 | −0.5407 | −0.6381 | −0.4416 | −0.4977 | |
13.8% | 13.7% | 17.0% | 19.2% | 13.6% | 16.4% | |
10.6% | 9.5% | 2.3% | 2.8% | 3.2% | 3.7% | |
75.6% | 76.8% | 80.7% | 78.0% | 82.2% | 79.9% |
Complexes | Donor | Receptor | E2(kcal/mol) |
---|---|---|---|
He–O2 | LP(2) O2 | RY*(1) He | 0.06 |
Ne–O2 | - | - | - |
Ar–O2 | BD(2) O1-O2 | RY*(1) Ar | 0.12 |
Kr-O2 | LP(2) O1 LP(2) O2 | RY*(1) Kr RY*(1) Kr | 0.05 0.06 |
Xe–O2 | LP(2) O1 LP(2) O2 | RY*(1) Xe RY*(1) Xe | 0.06 0.06 |
Rn–O2 | LP(2) O1 LP(2) O2 | RY*(2) Rn RY*(1) Rn | 0.06 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, C.V.S.; de Jesus, G.C.C.; de Macedo, L.G.M.; Pirani, F.; Gargano, R. A Detailed Study of Electronic and Dynamic Properties of Noble Gas–Oxygen Molecule Adducts. Molecules 2022, 27, 7409. https://doi.org/10.3390/molecules27217409
Costa CVS, de Jesus GCC, de Macedo LGM, Pirani F, Gargano R. A Detailed Study of Electronic and Dynamic Properties of Noble Gas–Oxygen Molecule Adducts. Molecules. 2022; 27(21):7409. https://doi.org/10.3390/molecules27217409
Chicago/Turabian StyleCosta, Caio Vinícius Sousa, Guilherme Carlos Carvalho de Jesus, Luiz Guilherme Machado de Macedo, Fernando Pirani, and Ricardo Gargano. 2022. "A Detailed Study of Electronic and Dynamic Properties of Noble Gas–Oxygen Molecule Adducts" Molecules 27, no. 21: 7409. https://doi.org/10.3390/molecules27217409
APA StyleCosta, C. V. S., de Jesus, G. C. C., de Macedo, L. G. M., Pirani, F., & Gargano, R. (2022). A Detailed Study of Electronic and Dynamic Properties of Noble Gas–Oxygen Molecule Adducts. Molecules, 27(21), 7409. https://doi.org/10.3390/molecules27217409