Effect of Sonication on Microwave Inactivation Kinetics of Enterococcus faecalis in Dairy Effluent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ultrasound Effect
2.2. Modeling and Kinetic Parameter Estimation
2.3. Microwave Effect
2.4. Combination Effect
2.5. Protein Assays
3. Materials and Methods
3.1. Preparation of Model Effluent
3.2. Bacterial Strain and Culture Conditions
3.3. Microwave and Ultrasound Treatment Procedure
3.4. Enumeration of Survival Cells
3.5. Modeling Inactivation Kinetics and Statistical Methods
3.6. Protein Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ayeche, R. Treatment by coagulation-flocculation of dairy wastewater with the residual lime of National Algerian Industrial Gases Company (NIGC-Annaba). Energy procedia 2012, 18, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.C. Wastewater Effluent Transport and Contamination: A Model for Groundwater Contamination in the Central West Bank; Drexel University: Philadelphia, PA, USA, 2019. [Google Scholar]
- Hu, H.; Li, X.; Wu, S.; Yang, C. Sustainable livestock wastewater treatment via phytoremediation: Current status and future perspectives. Bioresource Technology 2020, 315, 123809. [Google Scholar] [CrossRef]
- Chapman, P.M. Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environ. Toxicol. Chem. Int. J. 2000, 19, 3–13. [Google Scholar] [CrossRef]
- Di, H.; Cameron, K.; Silva, R.; Russell, J.; Barnett, J. A lysimeter study of the fate of 15N-labelled nitrogen in cow urine with or without farm dairy effluent in a grazed dairy pasture soil under flood irrigation. New Zealand J. Agric. Res. 2002, 45, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Ibekwe, A.; Grieve, C. Detection and quantification of Escherichia coli O157: H7 in environmental samples by real-time PCR. J. Appl. Microbiol. 2003, 94, 421–431. [Google Scholar] [CrossRef]
- Chapman, P.M. Determining when contamination is pollution—weight of evidence determinations for sediments and effluents. Environ. Int. 2007, 33, 492–501. [Google Scholar] [CrossRef]
- Dungan, R.S.; Leytem, A.B. The characterization of microorganisms in dairy wastewater storage ponds. J. Environ. Qual. 2013, 42, 1583–1588. [Google Scholar] [CrossRef] [Green Version]
- Pinto, B.; Pierotti, R.; Canale, G.; Reali, D. Characterization of ‘faecal streptococci’ as indicators of faecal pollution and distribution in the environment. Lett. Appl. Microbiol. 1999, 29, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Dennehy, C.; Lawlor, P.G.; Hu, Z.; Zhan, X.; Gardiner, G.E. Inactivation of enteric indicator bacteria and system stability during dry co-digestion of food waste and pig manure. Sci. Total Environ. 2018, 612, 293–302. [Google Scholar] [CrossRef]
- Demirel, B.; Yenigun, O.; Onay, T.T. Anaerobic treatment of dairy wastewaters: A review. Process Biochem. 2005, 40, 2583–2595. [Google Scholar] [CrossRef]
- Patel, S.K.; Das, D.; Kim, S.C.; Cho, B.-K.; Kalia, V.C.; Lee, J.-K. Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew. Sustain. Energy Rev. 2021, 150, 111491. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y. Fermentative hydrogen production using various biomass-based materials as feedstock. Renew. Sustain. Energy Rev. 2018, 92, 284–306. [Google Scholar] [CrossRef]
- Patange, A.; Boehm, D.; Giltrap, M.; Lu, P.; Cullen, P.; Bourke, P. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Sci. Total Environ. 2018, 631, 298–307. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Dai, Y.; Su, X.; Xiao, Y.; Wu, D.; Sun, F.; Mei, R.; Chen, J.; Lin, H. Effective partial denitrification of biological effluent of landfill leachate for Anammox process: Start-up, influencing factors and stable operation. Sci. Total Environ. 2022, 807, 150975. [Google Scholar] [CrossRef]
- Ghernaout, D. Disinfection via Electrocoagulation Process: Implied Mechanisms and Future Tendencies. Microbiology 2019, 15, 79–90. [Google Scholar]
- Kebbi, Y.; Muhammad, A.I.; Sant’Ana, A.S.; do Prado-Silva, L.; Liu, D.; Ding, T. Recent advances on the application of UV-LED technology for microbial inactivation: Progress and mechanism. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3501–3527. [Google Scholar] [CrossRef]
- Lazra, Y.; Dubrovin, I.; Multanen, V.; Bormashenko, E.; Bormashenko, Y.; Cahan, R. Effects of atmospheric plasma corona discharges on soil bacteria viability. Microorganisms 2020, 8, 704. [Google Scholar] [CrossRef]
- Tonuci, L.; Paschoalatto, C.; Pisani Jr, R. Microwave inactivation of Escherichia coli in healthcare waste. Waste Manag. 2008, 28, 840–848. [Google Scholar] [CrossRef]
- Vialkova, E.; Zemlyanova, M.; Danilov, O. Energy efficiency in municipal waste treatment. Proc. MATEC Web Conf. 2018, 170, 04020. [Google Scholar] [CrossRef] [Green Version]
- Rao, B.; Su, X.; Lu, X.; Wan, Y.; Huang, G.; Zhang, Y.; Xu, P.; Qiu, S.; Zhang, J. Ultrahigh pressure filtration dewatering of municipal sludge based on microwave pretreatment. J. Environ. Manag. 2019, 247, 588–595. [Google Scholar] [CrossRef]
- Kuglarz, M.; Karakashev, D.; Angelidaki, I. Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants. Bioresour. Technol. 2013, 134, 290–297. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Lo, S.-L. Microwave irradiation: A sustainable way for sludge treatment and resource recovery. Renew. Sustain. Energy Rev. 2013, 18, 288–305. [Google Scholar] [CrossRef]
- Najdovski, L.; Dragaš, A.Z.; Kotnik, V. The killing activity of microwaves on some non-sporogenic and sporogenic medically important bacterial strains. J. Hosp. Infect. 1991, 19, 239–247. [Google Scholar] [CrossRef]
- Joyce, E.; Phull, S.; Lorimer, J.; Mason, T. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrason. Sonochemistry 2003, 10, 315–318. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Vukušić, T.; Stulić, V.; Mrvčić, J.; Milošević, S.; Šimunek, M.; Herceg, Z. The effect of high power ultrasound and cold gas-phase plasma treatments on selected yeast in pure culture. Food Bioprocess Technol. 2015, 8, 791–800. [Google Scholar] [CrossRef]
- Drakopoulou, S.; Terzakis, S.; Fountoulakis, M.; Mantzavinos, D.; Manios, T. Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrason. Sonochemistry 2009, 16, 629–634. [Google Scholar] [CrossRef]
- Amabilis-Sosa, L.E.; Vázquez-López, M.; Rojas, J.L.G.; Roé-Sosa, A.; Moeller-Chávez, G.E. Efficient bacteria inactivation by ultrasound in municipal wastewater. Environments 2018, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Leonelli, C.; Mason, T.J. Microwave and ultrasonic processing: Now a realistic option for industry. Chem. Eng. Process. Process Intensif. 2010, 49, 885–900. [Google Scholar] [CrossRef]
- Rostami, S.; Behruzian, M.; Samani, B.H.; Lorigooini, Z.; Hosseinabadi, T.; Zareiforoush, H.; Behruzian, A. Study of Combined Ultrasound-microwave Effect on Chemical Compositions and E. coli Count of Rose Aromatic Water. Iran. J. Pharm. Res. IJPR 2018, 17, 146. [Google Scholar]
- García-Granja, P.E.; López, J.; Vilacosta, I.; Ortiz-Bautista, C.; Sevilla, T.; Olmos, C.; Sarriá, C.; Ferrera, C.; Gómez, I.; San Román, J.A. Polymicrobial infective endocarditis: Clinical features and prognosis. Medicine 2015, 94. [Google Scholar] [CrossRef]
- Mulak, V.; BECEL, P.; TAILLIEZ, R. Bactériologie des produits de la mer: Caractérisation des flores bactériennes après traitement thermique. Sci. Des Aliment. 1992, 12, 415–428. [Google Scholar]
- Obioma, A. Impact of low frequency ultrasound on pathogens in polluted potable water. Sch. J. App. Med. Sci. 2015, 3, 1978–1984. [Google Scholar]
- Doosti, M.; Kargar, R.; Sayadi, M. Water treatment using ultrasonic assistance: A review. Proc. Int. Acad. Ecol. Environ. Sci. 2012, 2, 96. [Google Scholar]
- Mason, T.; Joyce, E.; Phull, S.; Lorimer, J. Potential uses of ultrasound in the biological decontamination of water. Ultrason. Sonochemistry 2003, 10, 319–323. [Google Scholar] [CrossRef]
- Mahvi, A.; Maleki, A.; Rezaee, R.; Safari, M. Reduction of humic substances in water by application of ultrasound waves and ultraviolet irradiation. J. Environ. Health Sci. Eng. 2009, 6, 233–240. [Google Scholar]
- Broekman, S.; Pohlmann, O.; Beardwood, E.; de Meulenaer, E.C. Ultrasonic treatment for microbiological control of water systems. Ultrason. Sonochemistry 2010, 17, 1041–1048. [Google Scholar] [CrossRef]
- Butz, P.; Tauscher, B. Emerging technologies: Chemical aspects. Food Res. Int. 2002, 35, 279–284. [Google Scholar] [CrossRef]
- Gholami, M.; Mirzaei, R.; Mohammadi, R.; Zarghampour, Z.; Afshari, A. Destruction of Escherichia coli and Enterococcus faecalis using low frequency ultrasound technology: A response surface methodology. Health Scope 2014, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rajasekhar, P.; Fan, L.; Nguyen, T.; Roddick, F.A. Impact of sonication at 20 kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp. Water Res. 2012, 46, 1473–1481. [Google Scholar] [CrossRef]
- Declerck, P. Biofilms: The environmental playground of Legionella pneumophila. Environ. Microbiol. 2010, 12, 557–566. [Google Scholar] [CrossRef]
- Kalantar, E.; Maleki, A.; Khosravi, M.; Mahmodi, S. Evaluation of ultrasoundwaves effect on antibiotic resistance pseudomonas aeruginosa and staphylococcus aureus isolated from hospital and their comparison with standard species. Iran. J. Health Environ. 2010, 3, 319–326. [Google Scholar]
- Kwak, T.Y.; Kim, N.H.; Rhee, M.S. Response surface methodology-based optimization of decontamination conditions for Escherichia coli O157: H7 and Salmonella Typhimurium on fresh-cut celery using thermoultrasound and calcium propionate. Int. J. Food Microbiol. 2011, 150, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Zhou, B.; Liang, W.; Feng, H.; Martin, S.E. Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling. J. Food Eng. 2009, 93, 354–364. [Google Scholar] [CrossRef]
- Gómez-López, M.; Bayo, J.; García-Cascales, M.; Angosto, J. Decision support in disinfection technologies for treated wastewater reuse. J. Clean. Prod. 2009, 17, 1504–1511. [Google Scholar] [CrossRef]
- Toor, R.; Mohseni, M. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere 2007, 66, 2087–2095. [Google Scholar] [CrossRef]
- Ortuño, C.; Duong, T.; Balaban, M.; Benedito, J. Combined high hydrostatic pressure and carbon dioxide inactivation of pectin methylesterase, polyphenol oxidase and peroxidase in feijoa puree. J. Supercrit. Fluids 2013, 82, 56–62. [Google Scholar] [CrossRef]
- Mafart, P.; Couvert, O.; Gaillard, S.; Leguérinel, I. On calculating sterility in thermal preservation methods: Application of the Weibull frequency distribution model. Int. J. Food Microbiol. 2002, 72, 107–113. [Google Scholar] [CrossRef]
- Peleg, M.; Cole, M.B. Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. Nutr. 1998, 38, 353–380. [Google Scholar] [CrossRef]
- Benjamin, E.; Reznik, A.; Williams, A. Mathematical models for conventional and microwave thermal deactivation of Enterococcus faecalis, Staphylococcus aureus and Escherichia coli. Cell. Mol. Biol. 2007, 53, 42–48. [Google Scholar] [CrossRef]
- Dehghani, M.H. Effectiveness of ultrasound on the destruction of E. coli. Am. J. Environ. Sci. 2005, 1, 187–189. [Google Scholar] [CrossRef] [Green Version]
- Naddeo, V.; Meriç, S.; Kassinos, D.; Belgiorno, V.; Guida, M. Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation. Water Res. 2009, 43, 4019–4027. [Google Scholar] [CrossRef] [PubMed]
- Blume, T.; Neis, U. Improved wastewater disinfection by ultrasonic pre-treatment. Ultrason. Sonochemistry 2004, 11, 333–336. [Google Scholar] [CrossRef]
- Chen, X.; Tang, R.; Wang, Y.; Yuan, S.; Wang, W.; Ali, I.M.; Hu, Z.-H. Effect of ultrasonic and ozone pretreatment on the fate of enteric indicator bacteria and antibiotic resistance genes, and anaerobic digestion of dairy wastewater. Bioresour. Technol. 2021, 320, 124356. [Google Scholar] [CrossRef]
- Mawioo, P.M.; Rweyemamu, A.; Garcia, H.A.; Hooijmans, C.M.; Brdjanovic, D. Evaluation of a microwave based reactor for the treatment of blackwater sludge. Sci. Total Environ. 2016, 548, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Pino-Jelcic, S.A.; Hong, S.M.; Park, J.K. Enhanced anaerobic biodegradability and inactivation of fecal coliforms and Salmonella spp. in wastewater sludge by using microwaves. Water Environ. Res. 2006, 78, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Vialkova, E.; Obukhova, M.; Belova, L. Microwave irradiation in technologies of wastewater and wastewater sludge treatment: A review. Water 2021, 13, 1784. [Google Scholar] [CrossRef]
- Ara, E.; Sartaj, M.; Kennedy, K. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge. Waste Manag. Res. 2014, 32, 1200–1209. [Google Scholar] [CrossRef]
- Hong, S.M.; Park, J.K.; Teeradej, N.; Lee, Y.; Cho, Y.; Park, C. Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance. Water Environ. Res. 2006, 78, 76–83. [Google Scholar] [CrossRef]
- Hollywood, N.; Varabioff, Y.; Mitchell, G. The effect of microwave and conventional cooking on the temperature profiles and microbial flora of minced beef. Int. J. Food Microbiol. 1991, 14, 67–75. [Google Scholar] [CrossRef]
- Benlloch-Tinoco, M.; Martínez-Navarrete, N.; Rodrigo, D. Impact of temperature on lethality of kiwifruit puree pasteurization by thermal and microwave processing. Food control 2014, 35, 22–25. [Google Scholar] [CrossRef]
- Valero, A.; Cejudo, M.; García-Gimeno, R. Inactivation kinetics for Salmonella Enteritidis in potato omelet using microwave heating treatments. Food Control 2014, 43, 175–182. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, G.; Liao, X.; Hu, X. Effects of microwave and ultrasonic wave treatment on inactivation of Alicyclobacillus. Int. J. Food Sci. 2010, 45, 459–465. [Google Scholar] [CrossRef]
- Kim, H.-S.; Chang, S.W.; Baek, S.-H.; Han, S.H.; Lee, Y.; Zhu, Q.; Kum, K.-Y. Antimicrobial effect of alexidine and chlorhexidine against Enterococcus faecalis infection. Int. J. Oral Sci. 2013, 5, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleary, S.F.; Cao, G.; Liu, L.M.; Egle, P.M.; Shelton, K.R. Stress proteins are not induced in mammalian cells exposed to radiofrequency or microwave radiation. Bioelectromagnetics 1997, 18, 499–505. [Google Scholar] [CrossRef]
- Laurence, J.A.; French, P.W.; Lindner, R.A.; Mckenzie, D.R. Biological effects of electromagnetic fields—Mechanisms for the effects of pulsed microwave radiation on protein conformation. J. Theor. Biol. 2000, 206, 291–298. [Google Scholar] [CrossRef]
- Woo, I.-S.; Rhee, I.-K.; Park, H.-D. Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Appl. Environ. Microbiol. 2000, 66, 2243–2247. [Google Scholar] [CrossRef] [Green Version]
- Peuker. Ullmann’s Encyclopedia of Industrial Chemistry. Sonochemistry 2006, 17, 363–376. [Google Scholar]
- Daverey, A.; Pakshirajan, K. Pretreatment of synthetic dairy wastewater using the sophorolipid-producing yeast Candida bombicola. Appl. Biochem. Biotechnol. 2011, 163, 720–728. [Google Scholar] [CrossRef]
- Muñoz-Cuevas, M.; Guevara, L.; Aznar, A.; Martínez, A.; Periago, P.M.; Fernández, P.S. Characterisation of the resistance and the growth variability of Listeria monocytogenes after high hydrostatic pressure treatments. Food Control 2013, 29, 409–415. [Google Scholar] [CrossRef]
- Cabassi, C.S.; Falanga, G.; Romani, A. Disinfectant and antimicrobial compositions, in particular for the veterinary field. U.S. Patent Application 15/318,570, 11 May 2017. [Google Scholar]
- Pourhajibagher, M.; Chiniforush, N.; Shahabi, S.; Ghorbanzadeh, R.; Bahador, A. Sub-lethal doses of photodynamic therapy affect biofilm formation ability and metabolic activity of Enterococcus faecalis. Photodiagnosis Photodyn. Ther. 2016, 15, 159–166. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Treatments | α | Β | R2 | RMSE | α (β = 2.6) | ||
---|---|---|---|---|---|---|---|
MW only | |||||||
350 W | - | 47.2 ± 9.7 | 2.2 ± 1.2 | 0.927 | 0.314 | 50.0 ± 4.2 | |
650 W | - | 32.7 ± 7.3 | 2.7 ± 1.1 | 0.974 | 0.375 | 32.2 ± 1.7 | |
US pre-treatment | |||||||
350 W | US 10 min | 47.2 ± 3.4 | 2.2 ± 0.7 | 0.981 | 0.101 | 45.1 ± 2.2 | |
US 20 min | 50.8 ± 6.0 | 3.5 ± 1.2 | 0.975 | 0.263 | 45.7 ± 3.6 | ||
US 30 min | 45.1 ± 8.5 | 2.9 ± 1.2 | 0.953 | 0.377 | 43.1 ± 2.8 | ||
650 W | US 10 min | 32.8 ± 6.5 | 2.5 ± 0.9 | 0.977 | 0.301 | 33.6 ± 1.6 | |
US 20 min | 29.1 ± 11.9 | 2.5 ± 1.6 | 0.941 | 0.708 | 29.6 ± 2.4 | ||
US 30 min | 33.6 ± 11.6 | 3.5 ± 2.3 | 0.947 | 0.842 | 28.3 ± 3.0 | ||
US post-treatment | |||||||
350 W | US 10 min | 49.9 ± 2.0 | 1.5 ± 0.2 | 0.995 | 0.040 | 57.3 ± 6.0 | |
US 20 min | 50.6 ± 7.9 | 2.3 ± 1.1 | 0.942 | 0.249 | 52.4 ± 4.0 | ||
US 30 min | 50.0 ± 6.4 | 2.5 ± 0.9 | 0.965 | 0.217 | 50.5 ± 2.8 | ||
650 W | US 10 min | 42.8 ± 6.2 | 3.9 ± 1.8 | 0.971 | 0.291 | 37.8 ± 3.7 | |
US 20 min | 38.4 ± 7.8 | 3.0 ± 1.5 | 0.962 | 0.344 | 36.3 ± 2.6 | ||
US 30 min | 33.4 ± 9.4 | 2.4 ± 1.3 | 0.951 | 0.413 | 34.5 ± 2.5 |
Treatment | Operating Conditions | Micro-Organisms Studied | Microbial Reduction (CFU ml−1, UFC/g) Bacterial Survival (%) | References | |
---|---|---|---|---|---|
Ultrasound | 350 W.l−1/30 min | Escherichia coli 0157:h7 | 1 log UFC mL−1 | [51] | |
Ultrasound | 20 kHz, 35% amplitude and 600 W/L/15, 30 and 45 min. | Escherichia coli | 4.55 Log10 MPN/100 mL, 0.48 Log10 MPN/100 mL, 0.48 Log10 MPN/100 mL | [28] | |
Bacilus subtilis | 3.16 Log10 CFU/mL, NA, NA | ||||
faecal coliforms | 5.56 Log10 MPN/100 mL, 3.88 Log10 MPN/100 mL, 0.48 Log10 MPN/100 mL | ||||
Total coliforms | 6.34 Log10 MPN/100 mL, 4.68 Log10 MPN/100 mL, 0.48 Log10 MPN/100 ml | ||||
Ultrasound assisted by UV radiation | 1400 W, 15 min | 2 UV-C lamps of 150 W | Escherichia coli | Below the limits of the legislation | [52] |
Ultrasound assisted by UV radiation | 30 s of UV radiations (14 W of which 3 W are emitted at 254 nm) | 20 kHz, 5 s, 50 W L−1 20 kHz, 5 s, 310 W L−1 | Faecal coliforms | 3.30 log CFU mL−1 | [53] |
Faecal coliforms | 3.70 log CFU mL−1 | ||||
US/ozone pretreatment | 200 W, 40 kHz at 10, 20 and 30 min | 4.2 mg O3/L at a flow rate of 600 mL/min | Enterococci | 0.90 log UFC/g, 0.95 log UFC/g and 1.11 log UFC/g | [54] |
Total coliforms | Below 100 CFU/g after 20 min | ||||
Microwave | 465 W/30 s, 60 s 1085 W/<30 s | Escherichia coli | 3 log UFC mL−1, <1000 CFU/g <1000 CFU/g | [55] | |
Microwave | 130 W/65 °C | Enterococcus faecalis | 0.28% | [50] | |
Staphylococcus aureus, | 0.02% | ||||
Escherichia coli | 0.04% | ||||
Microwave/anaerobic digestion | 60–65 °C/110 s | 35 °C, semicontinuous mode for 190 days, V = 4 l, hydraulic retention time was 25 days. | Faecal coliform | 4.2 log UFC mL−1 | [56] |
Salmonella spp. | Greater than 2 log CFU mL−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kernou, O.-N.; Belbahi, A.; Sahraoui, Y.; Bedjaoui, K.; Kerdouche, K.; Amir, A.; Dahmoune, F.; Madani, K.; Rijo, P. Effect of Sonication on Microwave Inactivation Kinetics of Enterococcus faecalis in Dairy Effluent. Molecules 2022, 27, 7422. https://doi.org/10.3390/molecules27217422
Kernou O-N, Belbahi A, Sahraoui Y, Bedjaoui K, Kerdouche K, Amir A, Dahmoune F, Madani K, Rijo P. Effect of Sonication on Microwave Inactivation Kinetics of Enterococcus faecalis in Dairy Effluent. Molecules. 2022; 27(21):7422. https://doi.org/10.3390/molecules27217422
Chicago/Turabian StyleKernou, Ourdia-Nouara, Amine Belbahi, Yasmine Sahraoui, Kenza Bedjaoui, Kamelia Kerdouche, Akila Amir, Farid Dahmoune, Khodir Madani, and Patricia Rijo. 2022. "Effect of Sonication on Microwave Inactivation Kinetics of Enterococcus faecalis in Dairy Effluent" Molecules 27, no. 21: 7422. https://doi.org/10.3390/molecules27217422
APA StyleKernou, O.-N., Belbahi, A., Sahraoui, Y., Bedjaoui, K., Kerdouche, K., Amir, A., Dahmoune, F., Madani, K., & Rijo, P. (2022). Effect of Sonication on Microwave Inactivation Kinetics of Enterococcus faecalis in Dairy Effluent. Molecules, 27(21), 7422. https://doi.org/10.3390/molecules27217422