Combination of Spray-Chilling and Spray-Drying Techniques to Protect Carotenoid-Rich Extracts from Pumpkin (Cucurbita moschata) Byproducts, Aiming at the Production of a Powdered Natural Food Dye
Abstract
:1. Introduction
2. Results and Discussion
2.1. Encapsulation Efficiency, Carotenoid Stability during 90 Days of Storage, and Instrumental Colour Parameters
2.2. Mean Size of Particles
2.3. Morphology
2.4. Oxidative Stability Index by the Rancimat Method
2.5. Release of Carotenoids from the Particles during Simulated Digestion
3. Materials and Methods
3.1. Materials
3.2. Production of Carotenoid-Rich Pumpkin Peel Extract
3.3. Production of Microparticles by Spray-Drying and Coating by Spray-Chilling
3.4. Production of Microparticles by Spray-Chilling
3.4.1. Encapsulation Efficiency (EE, %)
3.4.2. Characterisation of the Microparticles and their Storage Stability
3.4.3. Quantification of Total Carotenoids
3.4.4. Carotenoid Retention
3.4.5. Instrumental Colour Parameters
3.4.6. Particle Size
3.5. Analysis of Selected Microparticles
3.5.1. Morphology
3.5.2. Oxidative Stability Index by the Rancimat Method
3.5.3. Total Release and Relative Release of Carotenoids during In Vitro Digestion
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Siegmund, B.; Murkovic, M. Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (Part 2: Volatile compounds). Food Chem. 2004, 84, 367–374. [Google Scholar] [CrossRef]
- Norfezah, M.N.; Hardacre, A.; Brennan, C.S. Comparison of waste pumpkin material and its potential use in extruded snack foods. Food Sci. Technol. Int. 2011, 17, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wang, X. Extraction of carotenoids from pumpkin peel. Chin. Agric. Sci. Bull. 2012, 28, 295–299. [Google Scholar]
- Nuerbiya, Y.; Ayinuer, R.; Abdulla, A. Optimization of extraction pigment from pumpkin skin product’s stability. Food and Ferment. Ind. 2014, 40, 216–222. [Google Scholar]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol. 2017, 174, 1290–1324. [Google Scholar] [CrossRef] [Green Version]
- Xianquan, S.; Shi, J.; Kakuda, Y.; Yueming, J. Stability of lycopene during food processing and storage. J. Med. Food 2005, 8, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Chranioti, C.; Nikoloudaki, A.; Tzia, C. Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system. Carbohydr. Polym. 2015, 127, 252–263. [Google Scholar] [CrossRef]
- Domian, E.; Brynda-kopytowska, A.; Oleksza, K. Rheological properties and physical stability of o/w emulsions stabilized by OSA starch with trehalose. Food Hydrocoll. 2015, 44, 49–58. [Google Scholar] [CrossRef]
- Janiszewska, E. Microencapsulated beetroot juice as a potential source of betalain. Powder Technol. 2014, 264, 190–196. [Google Scholar] [CrossRef]
- Kolanowski, W.; Ziolkowski, M.; Weissbrodt, J.; Kunz, B.; Laufenberg, G. Microencapsulation of fish oil by spray drying—Impact on oxidative stability. Part 1. Eur. Food Res. Technol. 2006, 222, 336–342. [Google Scholar] [CrossRef]
- Favaro-trindade, C.S.; Okuro, P.K.; Matos, F.E., Jr. Encapsulation via Spray Chilling/Cooling/Congealing. In Handbook of Encapsulation and Controlled Release; Mishra, M., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 71–88. ISBN 9781482232325. [Google Scholar]
- Okuro, P.K.; Eustáquio de Matos, F.; Favaro-Trindade, C.S. Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol. Biotechnol. 2013, 51, 171–182. [Google Scholar]
- Fadini, A.L.; Alvim, I.D.; Ribeiro, I.P.; Ruzene, L.G.; da Silva, L.B.; Queiroz, M.B.; de Oliveira Miguel, A.M.R.; Chaves, F.C.M.; Rodrigues, R.A.F. Innovative strategy based on combined microencapsulation technologies for food application and the influence of wall material composition. LWT-Food Sci. Technol. 2018, 91, 345–352. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT-Food Sci. Technol. 2017, 81, 160–169. [Google Scholar] [CrossRef]
- Pinho, L.S.; de Lima, P.M.; de Sá, S.H.G.; Chen, D.; Campanella, O.H.; da Costa Rodrigues, C.E.; Favaro-Trindade, C.S. Encapsulation of Rich-Carotenoids Extract from Guaraná (Paullinia cupana) Byproduct by a Combination of Spray Drying and Spray Chilling. Foods 2022, 11, 2557. [Google Scholar] [CrossRef]
- Mascarenhas, J.M.O. Dyes in Foods: Perspectives, Uses and Restrictions. Master’s Thesis, Food Science and Technology, Federal University of Viçosa, Viçosa, Brazil, 1998. [Google Scholar] [CrossRef]
- Mota, I. Artificial Dyes: Health Risks and Need for Revision of Brazilian Regulations. Undergraduate Thesis, Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil, 2016. [Google Scholar]
- Schiozer, A.L.; Barata, L.E.S. Stability of dye and pigments of vegetable origin—A review. Rev. Fitos 2007, 3, 6–24. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Effects of processing and storage on food carotenoids. Sight Life Newslett. 2002, 3, 25–35. [Google Scholar]
- Cutrim, C.S.; Alvim, I.D.; Cortez, M.A.S. Microencapsulation of green tea polyphenols by ionic gelation and spray chilling methods. J. Food Sci. Technol. 2019, 56, 3561–3570. [Google Scholar] [CrossRef]
- Gamboa, O.D.; Gonçalves, L.G.; Grosso, C.F. Microencapsulation of tocopherols in lipid matrix by spray chilling method. Procedia Food Sci. 2011, 1, 1732–1739. [Google Scholar] [CrossRef] [Green Version]
- Sartori, T.; Consoli, L.; Hubinger, M.D.; Menegalli, F.C. Ascorbic acid microencapsulation by spray chilling: Production and characterization. LWT-Food Sci. Technol. 2015, 63, 353–360. [Google Scholar] [CrossRef]
- Lima, P.M.; Rubio, F.T.V.; Silva, M.P.; Pinho, L.S.; Kasemodel, M.G.C.; Favaro-Trindade, C.S.; Dacanal, G.C. Nutritional Value and Modelling of Carotenoids Extraction from Pumpkin (Cucurbita Moschata) Peel Flour By-Product. Int. J. Food Eng. 2019, 15, 20180381. [Google Scholar] [CrossRef]
- Provesi, J.G.; Dias, C.O.; Amante, E.R. Changes in carotenoids during processing and storage of pumpkin puree. Food Chem. 2011, 128, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Amaya, D.B. Changes in carotenoids during processing and storage of foods. Arch. Latino Am. Nutr. 1999, 49 (Suppl. 1), 38S–47S. [Google Scholar]
- Pelissari, J.R. Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food Bioprod. Process. 2016, 98, 86–94. [Google Scholar] [CrossRef]
- Santos, P.P.; Paese, K.; Guterres, S.S.; Pohlmann, A.R.; Costa, T.H.; Jablonski, A.; Flôres, S.R.; Rios, A.A. Development of lycopene-loaded lipid-core nanocapsules: Physicochemical characterization and stability study. J. Nanoparticle Res. 2015, 17, 106–116. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Oliveira, S.M.; Ramos, I.N.; Brandão, T.R.S.; Silva, C.L.M. Effect of air-drying temperature on the quality and bioactive characteristics of dried galega kale (Brassica oleracea L. Var. Acephala). J. Food Process. Preserv. 2015, 39, 2485–2496. [Google Scholar] [CrossRef]
- Mcclements, D.J. Theoretical prediction of emulsion color. Adv. Colloid Interface Sci. 2002, 97, 63–89. [Google Scholar] [CrossRef]
- Rentfrow, G.; Linville, M.L.; Stahl, C.A.; Olson, K.C.; Berg, E.P. The effects of the antioxidant lipoic acid on beef longissimus bloom time. J. Anim. Sci. 2004, 82, 3034–3037. [Google Scholar] [CrossRef]
- Haas, K.; Obernberger, J.; Zehetner, E.; Kiesslich, A.; Volkert, M.; Jaeger, H. Impact of powder particle structure on the oxidation stability and color of encapsulated crystalline and emulsified carotenoids in carrot concentrate powders. J. Food Eng. 2019, 263, 398–408. [Google Scholar] [CrossRef]
- Trotta, M.; Pattarino, F.; Ignoni, T. Stability of drug-carrier emulsions containing phosphatidylcholine mixtures. Eur. J. Pharm. Biopharm. 2002, 53, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Westesen, K.; Siekmann, B. Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int. J. Pharm. 1997, 151, 35–45. [Google Scholar] [CrossRef]
- Di Sabatino, M.; Albertini, B.; Kett, V.L.; Passerini, N. Spray congealed lipid microparticles with high protein loading: Preparation and solid state characterisation. Eur. J. Pharm. Sci. 2012, 46, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Maschke, A.; Becker, C.; Eyrich, D.; Kiermaier, J.; Blunk, T.; Göpferich, A. Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur. J. Pharm. Biopharm. 2007, 65, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Matos, F.E., Jr.; Comunian, T.A.; Thomazini, M.; Favaro-Trindade, C.S. Effect of feed preparation on the properties and stability of ascorbic acid microparticles produced by spray chilling. LWT-Food Sci. Technol. 2007, 75, 251–260. [Google Scholar] [CrossRef]
- Pedroso, D.L.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S. Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int. Dairy J. 2012, 26, 127–132. [Google Scholar] [CrossRef]
- Pedroso, D.L.; Dogenski, M.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Braz. J. Microbiol. 2013, 44, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.I. Morphological characterization of pequi extract microencapsulated through spray drying. Int. J. Food Prop. 2017, 20, 1298–1305. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and arabic gum as wall matrices. Foods 2020, 9, 718. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Santos, P.D.F.; Rubio, F.T.V.; Balieiro, J.C.C.B.; Thomazini, M.; Favaro-Trindade, C.S. Application of spray drying for production of microparticles containing the carotenoid-rich tucumã oil (Astrocaryum vulgare Mart.). LWT-Food Sci. Technol. 2021, 143, 111106. [Google Scholar] [CrossRef]
- Montero, P.; Calvo, M.M.; Gómez-Guillén, M.C.; Gómez-Estaca, J. Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: Characterization, stability, and bioaccessibility. LWT-Food Sci. Technol. 2016, 70, 229–236. [Google Scholar] [CrossRef]
- Montenegro, M.A.; Boiero, M.L.; Valle, L.; Borsarelli, C.D. Gum Arabic: More Than an Edible Emulsifier. In Products and Applications of Biopolymers; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Y.; Chung, T.S.; Ng, N.P. Morphology, Drug Distribution, and in Vitro Release Profiles of Biodegradable Polymeric Microspheres Containing Protein Fabricated by Double-Emulsion Solvent Extraction/Evaporation Method. Biomaterials 2001, 22, 231–241. [Google Scholar] [CrossRef]
- Christophersen, P.C.; Birch, D.; Saarinen, J.; Isomäki, A.; Nielsen, H.M.; Yang, M.; Strachan, C.J.; Mu, H. Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy. J. Control. Release 2015, 197, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Whorton, C. Factors Influencing Volatile Release from Encapsulation Matrices; American Chemical Society: Washington, DC, USA, 1995; pp. 134–142. [Google Scholar]
- Donhowe, E.G.; Flores, F.P.; Kerr, W.L.; Wicker, L.; Kong, F. Characterization and in vitro bioavailability of β-carotene: Effects of microencapsulation method and food matrix. LWT-Food Sci. Technol. 2014, 57, 42–48. [Google Scholar] [CrossRef]
- Ishida, B.K.; Chapman, M.H. Carotenoid extraction from plants using a novel, environmentally friendly solvent. J. Agric. Food Chem. 2009, 57, 1051–1059. [Google Scholar] [CrossRef]
- Das, S.; Bera, D. Mathematical model study on solvent extraction of carotene from carrot. Int. J. Res. Eng. Technol. 2013, 02, 343–349. [Google Scholar] [CrossRef]
- D’evoli, L.; Lombardi-boccia, G.; Lucarini, M. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes. Foods 2013, 2, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, M.S.; Rodrigues, C.E.C.; Gomes, G.B.; Meirelles, A.J.A. Vegetable oils deacidification by solvent extraction: Liquid− Liquid equilibrium data for systems containing sunflower seed oil at 298.2 K. J. Chem. Eng. Data 2010, 55, 3859–3862. [Google Scholar] [CrossRef]
- Xu, D.; Wang, X.; Yuan, F.; Hou, Z.; Gao, Y. Stability of β-Carotene in Oil-in-Water Emulsions Prepared by Mixed Layer and Bilayer of Whey Protein Isolate and Beet Pectin. J. Dispers. Sci. Technol. 2013, 34, 785–792. [Google Scholar] [CrossRef]
- Mutsokoti, L.; Panozzo, A.; Pallares Pallares, A.; Jaiswal, S.; Van Loey, A.; Grauwet, T.; Hendrickx, M. Carotenoid bioaccessibility and the relation to lipid digestion: A kinetic study. Food Chem. 2017, 232, 124–134. [Google Scholar] [CrossRef]
- Rocha, G.A.; Fávaro-Trindade, C.S.; Grosso, C.R.F. Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food Bioprod. Process. 2012, 90, 37–42. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoids Analysis in Food; International Life Sciences Institute: Washington, DC, USA, 2001; 71 p. [Google Scholar]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
Trial | EE (%) | (%) | (µg/g) | (μg·g−1·s−1) | (day) | |
---|---|---|---|---|---|---|
SC-20 | 82.9 ± 8.4 B | 65.9 ± 4.4 A | 66.4 | 0.205 | 161.4 | 0.866 |
SC-30 | 97.4 ± 4.0 A | 51.1 ± 8.4 C | 133.97 | 0.840 | 79.7 | 0.990 |
SC-40 | 94.3 ± 6.7 A | 59.9 ± 3.2 B | 237.96 | 1.096 | 108.6 | 0.977 |
SDC-5 | 96.8 ± 13.7 A | 89.7 ± 7.0 A | 8.74 | 0.017 | 256 | 0.857 |
SDC-10 | 100.8 ± 4.5 A | 66.9 ± 6.6 B | 16.8 | 0.054 | 154.3 | 0.825 |
SDC-15 | 95.2 ± 15.4 A | 60.8 ± 7.2 C | 28.5 | 0.094 | 150.8 | 0.946 |
Trial | Luminosity Day 0 | Luminosity Day 90 | Chroma Day 0 | Chroma Day 90 | Hue Angle Day 0 | Hue Angle Day 90 | Color Difference |
---|---|---|---|---|---|---|---|
SC-20 | 77.4 ± 3.3 a | 76.5 ± 1.5 b | 35.2 ± 0.18 c | 33.9 ± 0.99 c | 57.07 ± 0.13 e | 56.77 ± 0.01 e | 4.21 ± 0.2 B |
SC-30 | 78.9 ± 0.8 a | 74.1 ± 1.4 b | 42.06 ± 3.52 c | 40.91 ± 2.77 c | 55.97 ± 0.07 e | 56.34 ± 0.15 e | 7.06 ± 1.3 A |
SC-40 | 78.7 ± 0.08 a | 74.2 ± 1.8 b | 53.4 ± 1.11 c | 47.5 ± 0.28 d | 55.72 ± 0.11 e | 55.96 ± 0.22 e | 7.45 ± 2.2 A |
SDC-5 | 84.5 ± 1.6 a | 78.2 ± 1.5 b | 22.45 ± 0.05 c | 22.2 ± 0.89 c | 57.36 ± 0.12 f | 86.68 ± 0.0 e | 6.39 ± 0.1 A |
SDC-10 | 79.7 ± 1.12 a | 76.7 ± 1.5 b | 28.95 ± 1.09 c | 29.16 ± 0.74 c | 57.0 ± 0.02 e | 57.16 ± 0.03 e | 3.53 ± 0.4 B |
SDC-15 | 79.4 ± 0.02 a | 77.4 ± 0.4 b | 35.51 ± 0.18 c | 32.7 ± 0.22 d | 56.64 ± 0.02 e | 56.94 ± 0.03 e | 3.48 ± 0.2 B |
Trial | (µm) | (µm) |
---|---|---|
SC-20 | 70.9 ± 7.0 b | 99.5 ± 6.2 a |
SC-30 | 72.1 ± 6.0 b | 109.4 ± 10.8 a |
SC-40 | 72.1 ± 5.0 b | 112.7 ± 17.3 a |
SDC-5 | 110.7 ± 7.8 b | 117.5 ± 9.7 a |
SDC-10 | 106.9 ± 6.3 b | 122.9 ± 6.3 a |
SDC-15 | 97.7 ± 2.2 b | 132.2 ± 13.9 a |
Trial | Induction Time (h) |
---|---|
Non-encapsulated extract | 0.03 ± 0.01 C |
SC-40 | 0.13 ± 0.02 B |
SDC-15 | 32.91 ± 0.0 A |
Formulation | Core (%) | Carrier Material (%) |
---|---|---|
Free extract | Vegetable fat | |
SC-20 | 20 | 80 |
SC-30 | 30 | 70 |
SC-40 | 40 | 60 |
SD microparticles | Vegetable fat | |
SDC-5 | 5 | 95 |
SDC-10 | 10 | 90 |
SDC-15 | 15 | 85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, P.M.; Dacanal, G.C.; Pinho, L.S.; de Sá, S.H.G.; Thomazini, M.; Favaro-Trindade, C.S. Combination of Spray-Chilling and Spray-Drying Techniques to Protect Carotenoid-Rich Extracts from Pumpkin (Cucurbita moschata) Byproducts, Aiming at the Production of a Powdered Natural Food Dye. Molecules 2022, 27, 7530. https://doi.org/10.3390/molecules27217530
de Lima PM, Dacanal GC, Pinho LS, de Sá SHG, Thomazini M, Favaro-Trindade CS. Combination of Spray-Chilling and Spray-Drying Techniques to Protect Carotenoid-Rich Extracts from Pumpkin (Cucurbita moschata) Byproducts, Aiming at the Production of a Powdered Natural Food Dye. Molecules. 2022; 27(21):7530. https://doi.org/10.3390/molecules27217530
Chicago/Turabian Stylede Lima, Priscilla Magalhães, Gustavo César Dacanal, Lorena Silva Pinho, Samuel Henrique Gomes de Sá, Marcelo Thomazini, and Carmen Sílvia Favaro-Trindade. 2022. "Combination of Spray-Chilling and Spray-Drying Techniques to Protect Carotenoid-Rich Extracts from Pumpkin (Cucurbita moschata) Byproducts, Aiming at the Production of a Powdered Natural Food Dye" Molecules 27, no. 21: 7530. https://doi.org/10.3390/molecules27217530
APA Stylede Lima, P. M., Dacanal, G. C., Pinho, L. S., de Sá, S. H. G., Thomazini, M., & Favaro-Trindade, C. S. (2022). Combination of Spray-Chilling and Spray-Drying Techniques to Protect Carotenoid-Rich Extracts from Pumpkin (Cucurbita moschata) Byproducts, Aiming at the Production of a Powdered Natural Food Dye. Molecules, 27(21), 7530. https://doi.org/10.3390/molecules27217530